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Abstract: The fuel system serves as the core component of marine diesel engines, and
timely and effective fault diagnosis is the prerequisite for the safe navigation of ships.
To address the challenge of current data-driven fault-diagnosis-based methods, which
have difficulty in feature extraction and low accuracy under small samples, this paper
proposes a fault diagnosis method based on digital twin (DT), Siamese Vision Transformer
(SViT), and K-Nearest Neighbor (KNN). Firstly, a diesel engine DT model is constructed by
integrating the mathematical, mechanism, and three-dimensional physical models of the
Medium-speed diesel engines of 6L21/31 Marine, completing the mapping from physical
entity to virtual entity. Fault simulation calculations are performed using the DT model
to obtain different types of fault data. Then, a feature extraction network combining
Siamese networks with Vision Transformer (ViT) is proposed for the simulated samples.
An improved KNN classifier based on the attention mechanism is added to the network
to enhance the classification efficiency of the model. Meanwhile, a Weighted-Similarity
loss function is designed using similarity labels and penalty coefficients, enhancing the
model’s ability to discriminate between similar sample pairs. Finally, the proposed method
is validated using a simulation dataset. Experimental results indicate that the proposed
method achieves average accuracies of 97.22%, 98.21%, and 99.13% for training sets with 10,
20, and 30 samples per class, respectively, which can accurately classify the fault of marine
fuel systems under small samples and has promising potential for applications.

Keywords: marine fuel system; few-shot fault diagnosis; Siamese network; transformer;
KNN

1. Introduction
Currently, the majority of vessels globally are propelled by diesel engines [1]. In con-

trast to other shipboard equipment, diesel engines consist of various subsystems, including
the fuel system, lubricating oil system, and cooling water system [2]. These subsystems
exhibit varying probabilities of fault due to their distinct functions and operating condi-
tions. An analysis of shutdown faults provided by the Association of British Diesel Engine
Engineers and Users indicates that fuel system faults account for 60% of the total diesel
engine faults, which represents the highest proportion [3]. Consequently, research on fault
diagnosis for the fuel system is pivotal for enhancing the reliability of diesel engines and
ensuring the safe navigation of vessels.

Digital twin, as an emerging virtualization method, enables more accurate fault di-
agnosis by building virtual models of physical entities for simulated computation and
deduction [4]. The scholarly community has initiated a series of research on the application
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of DT for fault diagnosis. Liu et al. [5] leveraged structural digital twin technology to
generate simulated monitoring signals and as an input to the designed network, signifi-
cantly enhancing its performance of fatigue damage detection across different structures.
Xu et al. [6] developed a DT model of a centrifugal pump, which was used to simulate a
spectrum of health conditions and augmented the dataset, finally constructing a graphical
convolutional neural network, and facilitating cross-domain fault diagnosis. Yi et al. [7]
made a significant stride by integrating a bearing dynamics model within a neural network
architecture. Their innovative method involved using actual vibration data to construct a
DT model of the bearing, thereby enriching the fault repository and enhancing the diagnos-
tic accuracy. Liu et al. [8] analyzed faults under constant and variable speed conditions by
establishing a fault diagnosis test platform. Then, the obtained data are integrated into the
Unity3D platform to realize online diagnosis and the digital twin model is conducted for
subsequent fault diagnosis of reducer. Despite the notable achievements of DT technology
in these areas, its application in diesel engine fault diagnosis still needs to be explored.

Alternatively, deep learning has achieved excellent results in the field of fault diagnosis
due to its ability to extract data features and use them fully [9]. Nonetheless, deep learning-
based diagnostic methodologies typically necessitate an extensive array of fault samples,
which is difficult to realize in practice due to many constraints. Few-shot learning provides
a solution to this problem [10,11], enabling models to learn new tasks or categories with
few labeled samples quickly. At present, most few-shot learning methods are based on data
augmentation [12], transfer learning [13], and meta-learning [14], with researchers world-
wide actively engaged in exploring these approaches. Li et al. [15] introduced a generalized
few-shot classification framework founded on Convolutional Neural Networks (CNN).
This framework innovatively incorporates an orthogonal Softmax layer as the network’s
classifier, thereby maximizing the distinction between training and test samples, optimizing
the network’s architecture, and achieving structural simplification. Li et al. [16] proposed a
fault diagnosis method which converts raw vibration signals into two-dimensional time-
frequency images and extracts deep features using KANs-CNN. Then, the FAN module
aggregates features from multiple levels, and data generation through diffusion networks
addresses the small sample issue. Fu et al. [17] proposed a few-shot fault diagnosis method
based on Deep Auto-Encoder (DAE) and transfer learning. This approach pre-trains a DAE
on a normal sample corpus, then applies SVM classification to fault samples via transfer
learning, as proven effective on a civil aviation dataset. Despite these advancements, which
have enhanced diagnostic accuracy in scenarios with small samples, there remain certain
challenges. For instance, data augmentation may introduce noise and other negative effects
during the generation process. Transfer learning not only relies on a large amount of source
domain data but also requires that the data distribution difference between the source
and target domains should not be too large. Meanwhile, meta-learning requires too many
computational resources.

Compared with the above methods, the Siamese network, as a comparison network,
known for its simple architecture and ease of training, is extensively applied in fields such
as image processing [18], fingerprint recognition [19], target tracking [20]. During training,
two samples are randomly selected and input into the network for training, when the
number of training samples is n , a total of C2

n times of effective training for the network, so
in the case of small samples, the Siamese network can expand the number of training times
of the network, which effectively solves the problem of network underfitting due to the
lack of training samples [12]. However, the utilization of Siamese networks also entails a
suite of considerations that require resolution:
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(1) Common Siamese networks mostly use CNNs as their subnetworks, which are
limited by the influence of the receptive field; CNNs can only extract local features and
cannot focus on the global information of the input samples.

(2) The Siamese network is a comparison network; its output is the degree of similarity
of the two input samples. Consequently, when confronted with multiclass classification
tasks, the samples to be tested need to be compared with all types of samples one by one;
this approach inherently diminishes classification efficiency.

In response to the challenges previously mentioned, this paper introduces a novel
DT-SViT-KNN few-shot fault diagnosis method. Initially, a diesel engine DT model is con-
structed by integrating the mathematical model, mechanism model, and three-dimensional
physical model of the Medium-speed diesel engines of 6L21/31 Marine. Then, the DT
model is used to calculate fault simulation to obtain different types of fault samples. For the
acquired fault samples, this paper proposes a feature extraction network that merges
Siamese network architecture with ViT. Finally, an improved KNN classifier based on the at-
tention mechanism is added on the basis of this network to improve the model classification
efficiency. The specific contributions of this paper are delineated as follows:

(1) This study constructs a comprehensive DT model that integrates diesel engine
mathematical, mechanical, and three-dimensional physical models, which facilitates the
mapping from the physical entity to its virtual counterpart. In conjunction, a novel feature
extraction network is devised by combining the Siamese network with the ViT, enabling
the extraction of global multiscale features from the input data.

(2) For the issue of the model’s limited discriminative capacity between similar sample
categories, we designed a Weighted-Similarity loss function. This innovation introduces
similarity labels and penalty coefficients, thereby enhancing the model’s efficiency in
distinguishing between similar and dissimilar samples. This advancement elevates the
differentiation accuracy of similar and distinct sample pairs to a novel level of precision.

(3) The incorporation of an attention mechanism during the KNN search phase allows
the model to account for the relevance and significance of each neighbor rather than relying
solely on distance-based classification. The attention-scoring mechanism enables the model to
assign greater weight to more pertinent samples, enhancing overall classification accuracy.

The rest of this paper is organized as follows: Section 2 presents the detailed theoretical
information of the proposed method. Experimental validation is carried out in Section 3.
Section 4 gives the conclusion.

2. Proposed Method
Figure 1 shows the overview of the fault diagnosis method proposed in this paper,

which consists of diesel engine entity, mathematical model, twin model, and state identifi-
cation. On the basis of the diesel engine entity, the diesel engine DT model is established.
Through the diesel engine DT model for fault simulation to obtain different types of fault
data, the system uses the fault diagnosis algorithm for fault diagnosis and outputs the
diagnosis results.

2.1. Diesel Engine Digital Twin Model Creation
2.1.1. Mathematical Model Construction of Diesel Engine

The mathematical model of a diesel engine can be divided into the following parts by
components [21]:

(1) Diesel engine body
The diesel engine dynamics equations are as follows:

π I
30

· dND
dt

= Md − Ml (1)
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Md = C0 · gcyl · ηcy − M f (2)

where M f represents the friction loss of the diesel engine, ηcy represents the combustion
efficiency of the diesel engine, and ND is the rotational speed of the diesel engine.

(2) Fuel Injection Pump
The characteristics of the injection pump are represented by the injection volume gcyl ,

which is a function of the displacement Fr of the throttle rack and the speed ND of the
diesel engine:

gcyl = f (ND, Fr) (3)

For a multicylinder diesel engine, its calculation can be calculated separately for each
cylinder injection, and then its average value can be taken. However, the calculation is more
complicated, so this paper gives an approximate formula according to the literature [22]:

τ = 15/ND (4)

(3) Intake air flow
The intake air flow ṁ consists of 2 parts, the cylinder closed air flow ṁtr and the swept

air flow ṁSC.
ṁ = ṁtr + ṁSC (5)

ṁtr = V · Ncy ·
ND
120

· ην ·
PI

RTI
(6)

ṁSC =
Aν · PI√

TI

 2K1

K1 − 1
1
R

(PE
PI

) 2
K1 −

(
PE
PI

) K1+1
K1


1
2

(7)

where ην is the inflation coefficient, Av is the swept volume coefficient, Ncy is the number
of diesel cylinders, PI , TI denotes the intake pressure and temperature, and PE denotes the
pre-turbine pressure.

(4) Intercooler
Diesel intake air temperature:

TI = TC(1 − ε) + εTW (8)

where ε is the efficiency of the intercooler, and TW is the cooling water temperature.
Diesel intake pressure:

Pi = Pc − ∆Pcool (9)

where ∆Pcool is the intercooler pressure loss.
(5) Pre-turbine temperature
The pre-turbine temperature TE (diesel exhaust temperature) determines the amount of

exhaust energy, which is a function of the overall air-fuel ratio AF2 and the rotational speed:

TE = ∆TE + Ti (10)

∆TE =
x

1 + AF2
·

ωηcy

Cpex
+ f (ND) (11)

where ω is the low calorific value of the fuel and x is the proportion of the energy carried
into the exhaust pipe by the exhaust gas to the amount of fuel injected into the cylinder.

(6) Turbocharger
π Itc

30
· dNtc

dt
= MTηMT − MC

ηMC
(12)
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where ηMT and ηMC denote the mechanical efficiencies of the turbine and compressor,
respectively.

Figure 1. Composition of diesel engine digital twin system.

2.1.2. Diesel Engine Simulation Model Construction

In this study, the diesel engines of 6L21/31 Marine are modeled by utilizing the
specialized diesel engine modeling software AVL-Boost R2020. According to the structural
composition and parameters of the diesel engine shown in Table 1. The corresponding
modules within the AVL-Boost software are used to represent each subsystem [23–25],
and the simulation model of the whole engine is obtained as shown in Figure 2.

Table 1. Main parameters of 6L21/31 marine diesel engine.

Items Parameters

Number of cylinders 6
Stroke count 4
Bore (mm) 210

Piston stroke (mm) 310
Compression ratio 15.5

Rotation speed (r/min) 900
Cylinder displacement (dm3) 10.73
Mean effective pressure (bar) 24.6

Fuel consumption rate (g/(kW · h)) 195
Maximum combustion pressure (bar) 200

Rated power (kW) 1290
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Figure 2. Simulation schematic of the 6L21/31 marine diesel engine.

2.1.3. Diesel Engine 3D Model Construction

In this section, we use SolidWorks 2017 modeling software to complete the visual
modeling of the diesel engine with reference to the relevant data of the diesel engines of
6L21/31 Marine, and on this basis, we use the Animator plug-in to complete the simulation
of the working process of the diesel engine [26]. The specific modeling steps are as follows:

(1) Obtain the information of each part of the diesel engine and establish the three-
dimensional model of each part of the diesel engine;

(2) Correct the dimensions of each part model to meet the fit requirements;
(3) Determine the assembly order and assembly relationship of each component,

and complete the assembly design;
(4) Complete the assembly work, and carry out the diesel engine operation simulation.

The diesel engine visualization results are shown in the following Figure 3:

Figure 3. Twin model of 6L21/31 marine diesel engine.
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2.1.4. Validation of Model Validity

To substantiate the precision of the developed model further, an assessment of the DT
model’s effectiveness is conducted. This involves simulating the diesel engine under three
distinct operational conditions: full load (100%), three-quarter load (75%), and half load
(50%). The DT model’s performance is stabilized at each load level, and the correspond-
ing outcomes are documented. Subsequently, the simulated results from the DT model
are compared against the actual data. The comparative analysis is presented in Table 2,
illustrating the model’s accuracy and reliability.

Table 2. Comparative Analysis of Deduced Data and Actual Data.

Operating Conditions

Parameters 100% 75% 50%

Real
Value

Simulation
Value Errors Real

Value
Simulation

Value Errors Real
Value

Simulation
Value Errors

Fuel consumption rate g/kW · h 190.5 187.73 1.45% 186.5 184.97 0.82% 191.9 188.52 1.76%
Effective power kW 1200 1190.91 0.76% 900 888.25 1.31% 600 597.19 0.47%

Combustion pressure bar 197.4 202.35 2.51% 161.4 160.52 0.55% 120.8 117.37 2.84%
Mean effective pressure bar 23.93 24.65 3% 18.02 18.45 2.39% 12.03 12.32 2.41%

According to Table 2, the model’s simulated data under the three operational states
closely match the actual data, with a maximum divergence of 3%. This result confirms that
the developed DT model adheres to the stringent criteria for high fidelity.

2.1.5. Fault Deduction

To address the problem of scarcity of fuel system fault data, this paper analyzes
the causes of fuel system faults according to the literature [27], and then modifies the
corresponding parameters in the DT model to carry out fault deduction. In this paper,
based on the digital twin model, the fuel system normal state, supercharger failure, injection
advance, injection lag, cooler failure, injector wear, and fuel supply pipe blockage are
deduced to obtain the relevant fault data in seven health states. The specific derivation is
shown in Table 3:

Table 3. Types of faults and the method of deduction.

Fault Type Method of Deduction Fault Label

Normal state Normal system operation F1
Turbocharger failure Adjust turbocharger pressure efficiency F2

Fuel injection advance Adjust the injection angle F3
Fuel injection lag Adjust the injection angle F4

Cooler failure Adjust cooler efficiency F5
Injector wear Adjust the cylinder oil supply volume F6

Clogged oil supply lines Adjust the cylinder oil supply volume F7

2.2. Key Theories

Owing to the limited information available on fault characteristics within small sam-
ples, coupled with the propensity of traditional neural networks to underfitting, a Siamese
network architecture is used to expand the number of training. Subsequently, a ViT encoder
is utilized as a subnetwork to extract global multiscale features from the input data, facili-
tating deep learning processes. The fault features thus extracted are then integrated into an
improved KNN algorithm for fault classification. This section delves into the theoretical
underpinnings of Siamese networks, the ViT encoder, and the KNN classifier.
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2.2.1. Siamese Networks

The idea of siamese network is to compare 2 groups of input samples, its structure is
shown in Figure 4, the model firstly uses 2 subnetworks with shared weights to extract the
features of the input sample (X1, X2), then calculates the distance between the 2 groups of
features in the feature space, and measures the similarity of the 2 groups of samples by the
distance between the sample features and outputs them [28]. When the 2 samples belong to
the same category, the more the similarity label Yi,j of the model output tends to 1, and Yi,j

tends to 0 if the 2 samples belong to different categories.

Figure 4. Structure of the siamese network.

2.2.2. Vision Transformer Encoder

The encoder is the main component of the Vision Transformer, which consists of a stack
of N encoders with similar structures. Each encoder is in turn mainly composed of Multi-
Head Self-Attention (MSA) and MultiLayer perceptron (MLP) layers [29,30]. Among them,
MSA, as the core component of the encoder, can compute the attention weights of the input
vectors through multiple dimensions to extract multifaceted features, which has excellent
global feature extraction capability. MSA consists of multiple single-head self-attention and
the single-head self-attention mechanism is computed as shown below:

Q = Wq · T

K = Wk · T

V = Wν · T

(13)

Attention(Q, K, V) = so f t max(
QKT
√

dk
)V (14)

where Q, K, V are three different weight matrices obtained by three different linear transfor-
mations of the input vector T,

√
dk denotes the dimensionality of Q, K, V, and Attention(·)

is the self-attention computation.
MSA as an improved version of the single-head attention mechanism consists of self-

attention, which allows the model to focus on several different locations from different
subspaces to capture different levels of features and information, and finally the outputs of
the h single-head attention mechanism are connected and then fused by the linear mapping
weight matrix Wo to obtain the final feature information, which is shown as follows:

headi = Attention(Qi, Ki, Vi) i = 1, 2 · · · h (15)

Multihead(Q, K, V) = Concat(head1, . . . , headh)Wo (16)

where headi is the output of h single-headed self-attentive mechanisms and Concat(·) is the
splicing operation.
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2.2.3. K-Nearest Neighbor Classification Algorithm

The KNN algorithm is one of the most widely used classification algorithms proposed
by Cover and Hart [31], with the advantages of fast computation speed and no need for
training. Its principle is to find the K training samples in the feature space closest to the
sample to be tested. If the vast majority of the K samples belong to a certain category, it
is assumed that the sample to be tested also belongs to this category. The steps of KNN
classification are as follows:

(1) Select the parameter K.
(2) Calculate the distance between the sample to be tested and all known samples.
(3) Select the K samples closest to the sample to be tested.
(4) Output the sample category to be tested as the most numerous category among the

K nearest samples according to the voting law of minority to the majority.

2.3. Fault Diagnosis Method Based on SViT-KNN
2.3.1. Data Preprocessing

When a fuel system operates, it inevitably generates various noises, such as mechanical
noise and combustion noise. The noise will make the already limited data contain more
misleading information with small samples, thus affecting the generalization ability of the
model [32]. Especially in ViT encoder, the attention mechanism may be more sensitive
to the noise in the samples, and the noise may be extracted as an important feature in
the self-attentive computation, affecting the classification of the subsequent model. So,
it is meaningful to denoise the samples. In this paper, the traditional wavelet threshold
denoising method is used, which has sound localization and multiresolution characteristics
and can effectively distinguish between data and noise; the steps are as follows:

(1) Wavelet decomposition: the noise-containing signal x(t) is decomposed to different
frequencies by wavelet transform with the following equation:

Wk = DWT(x(t), ϕk) (17)

Wk = Aj +
j

∑
k=1

Dk (18)

where Wk denotes the decomposed wavelet signal, DWTdenotes the discrete wavelet
transform, ϕk is the wavelet basis function, Aj is the low-frequency part of layer j , and Dk

is the high-frequency part of layer k. In this paper, ϕk chooses haar wavelet, and the number
of decomposition layers k is taken as 3.

(2) Threshold processing: After the signal has undergone wavelet transformation,
the distribution of the signal and noise on the spectrum is often different. The signal
portion usually appears at low frequencies, while the noise primarily appears at high
frequencies. An appropriate threshold is selected to filter out the abnormal frequency parts
of the signal by utilizing this characteristic. The formula is as follows:

Ŵk =

Wk if |Wk| > λ

0 otherwise
(19)

where Ŵk is the denoised wavelet signal, λ is the threshold, the Sqtwolog threshold is
selected as the wavelet threshold.

(3) Wavelet reconstruction: the thresholded wavelet signal is de-noised by inverse
transformation reconstruction, and the reconstructed signal x̂(t) is obtained by the follow-
ing equation:

x̂(t) = IDWT(Âj, {D̂k}
j
k=1) (20)
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where IDWT denotes the discrete wavelet inverse transform and x̂(t) is the denoised data.
To further improve the data quality under small sample sizes, the denoised data are

finally subjected to maximum and minimum normalization to eliminate the influence of
data dimensions. The resulting data are used as input for subsequent models.

2.3.2. SViT Feature Extraction Network

In contemporary Siamese network designs, CNNs are predominantly used as subnet-
works for feature extraction, with these networks adept at capturing local features of the
input data via convolutional kernels of varying dimensions. Nevertheless, the constraints
imposed by the receptive field size and the depth of the CNN model impede its ability to
attend to the global features within the input data effectively. In contrast, the ViT encoder,
leveraging its intrinsic attention mechanism, demonstrates a superior capacity to concen-
trate on the global characteristics of the input samples [33–35]. To concurrently extract
both local details and global information from the data, a more sophisticated architecture
termed the Siamese Vision Transformer is introduced. This architecture is integrated with
an improved KNN classifier to facilitate the automatic classification of input samples.
The structure of the proposed model is delineated in Figure 5, with the detailed parameters
enumerated in Table 4.

After preprocessing, samples X =
[

x1, x2, . . . , x11

]T
and Y =

[
y1, y2, . . . , y11

]T
are

transmitted to the SViT feature extraction network for the extraction of pertinent features.
Within this network, the encoder embedding module translates the input samples into
vectors of dimension 11 × 1 , each encapsulating a set of thermal parameters relevant to the
diesel fuel system. Subsequently, the model deploys a multihead self-attention mechanism
to compute the self-attention of the input vectors concurrently. This mechanism enables
each self-attention unit to concentrate on distinct aspects of the input vectors, facilitating
the capture of a hierarchy of features and information. The output of the multihead self-
attention is then directed to the multilayer perceptron layer, where it undergoes nonlinear
transformations and mappings to yield the final encoder output. This output comprises
a rich representation of the input data across multiple dimensions. Finally, the extracted
features from the encoder are transmitted to the KNN classifier for automatic classification.

Table 4. Main parameters of the model.

Network Model Parameters Value

Input data dimensions 11 × 1
Feature extraction network Batch size 64

Learning rate 0.001
Transformer code block 2

Number of multihead attention 8
Embedding dimensions 512

Hidden dimensions 512
Classifier Nearest neighbor K 1

The Transformer encoder relies on its multiattention mechanism to extract features
from the input data, which focuses on both global and local features of the data and
makes the model better understand the correlation and importance of different features
by calculating the attention weights of the features in each dimension, which effectively
avoids the shortcomings of the local feature extraction and provides a convenient method
of subsequent data classification.

2.3.3. Weighted-Similarity Loss Function

Due to the complexity and diversity of fuel system faults, the values of thermal param-
eters of different types of faults may be closer. Traditional loss functions, during the training
of models, primarily concentrate on the relationship between model outputs and labels,
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neglecting the connections between sample categories. Leading to suboptimal performance
when classifying samples of similar categories. This study introduces a novel Weighted-
Similarity loss function to bolster further the model’s capability to discern between identical
category samples. By incorporating similarity labels and penalty coefficients, the model
can effectively distinguish between samples belonging to similar categories. This enhanced
loss function significantly elevates the precision in distinguishing between similar and dis-
similar sample pairs, with its composition comprising two distinct components: similarity
loss and penalty loss.

Figure 5. Structure of SViT-KNN model.

(1) Loss of similarity: for pairs of similar samples (the similarity label Yi,j is 1), the loss
function calculates the square of the Euclidean distance, which encourages the model to
reduce the distance between the features of the similar samples by the following formula:

LS =
N

∑
i,j=1,i ̸=j

[Yi,j(1 − Ri,j)
2] (21)

(2) Penalty Loss: For dissimilar sample pairs (the similarity label Yi,j is 0), he loss
function calculates a penalty loss. The penalty coefficient is determined based on the
difficulty of distinguishing between different categories of sample pairs. The penalty
loss incentivizes the model to augment the feature distance between samples of distinct
categories beyond a predefined threshold, as per the following formula:

LS =
N

∑
i,j=1,i ̸=j

[αi,j(1 − Yi,j)(0 − Ri,j)
2] (22)

Integrating the aforementioned two components, the final formula for the Weighted-
Similarity loss function is as follows:

LS =
N

∑
i,j=1,i ̸=j

[Yi,j(1 − Ri,j)
2 + αi,j(1 − Yi,j)(0 − Ri,j)

2] (23)
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where Yi,j denotes the similarity label between the two samples and αi,j denotes the penalty
coefficient when sample i and sample j belong to different fault types. When the two
samples belong to different categories, if the Ri,j value of the network output is not close to
zero, a larger αi,j value is assigned to increase the loss During the training process the loss
value can motivate the model to learn more accurately the subtle differences between pairs
of samples with similar categories. After determining the loss function the model is trained
using the gradient descent method, the goal of training is to make the samples of the same
category as close to the feature distance as possible, while the samples of different categories
are as far away from the feature distance as possible, so as to significantly improve the
accuracy of the model to classify samples of similar categories.

2.3.4. Improved KNN Classifier

Traditionally, the KNN algorithm classifies samples solely based on their distances to
all training samples, which are computed across all features. Among these features, some
are strongly correlated with the classification task, others are weakly correlated, and others
are entirely unrelated [36]. In light of this, this paper introduces an attention mechanism
within the KNN search process. This mechanism allows the model to extend beyond mere
distance-based classification, leveraging the attention mechanism to weigh the neighbor
voting in the KNN framework impartially. By doing so, the model moves away from a
simplistic majority voting approach, thereby enhancing the accuracy of the classification
process. The operational steps are outlined as follows:

(1) Find the k nearest neighbors
{

x1, x2, . . . xk

}
of the sample x to be tested based on

the Euclidean distance with the following equation:

d2
f (x1, x2) =

√√√√ n

∑
j=1

(
f j(x)− f j(xi)

)2 (24)

where f j is the number of features for j samples and n is the total number of features.
(2) Calculate the weight αi of each neighbor xi on x through the attention mechanism,

where the Key, Value, Query relationship is as follows. First, use the dot product of data
sample K and query Q to calculate the similarity between the samples with the following
formula:

Similarity(xi, x) = QTKi (25)

Then, the obtained similarity is normalized to obtain the attention coefficient with the
following formula:

si = so f t max(Similarity(xi, x)) (26)

Finally, the weight αi of each nearest neighbor xi to x is obtained by the dot product
operation of the attention coefficients and the attention value Value, which is calculated
as follows:

αi =
k

∑
i=1

si · xi (27)

(3) These weights are then used to calculate the weighted voting result V, which is
calculated as follows:

V =
k

∑
i=1

αi · li (28)

where li is the category of the i neighbor.
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Finally, the category of x is determined based on the weighted vote V. The highest
weighted vote is chosen as the category with the following formula:

ŷ = arg max
l

Vl (29)

where ŷ is the final category label, which is the maximum value chosen based on the
weighted vote V.

2.3.5. Overall Diagnostic Process

Figure 6 illustrates the comprehensive diagnostic workflow for the ship’s fuel system
under conditions of few available samples. The detailed steps are as follows:

(1) Data Acquisition: fault simulation is conducted to generate fault data utilizing the
established diesel engine DT model.

(2) Data Preprocessing: raw data are standardized by normalizing the maximum and
minimum values to eliminate the influence of the scale.

(3) Model Training: Preprocessed data are segmented into training and testing subsets.
From the training set. Two samples are randomly selected from the training set to form
pairs, which are then input into the Siamese network. The loss function is computed
by Equation (19), and the model’s parameters are updated using the gradient descent
method. Training concludes when the model’s accuracy meets the predefined threshold
or the maximum number of training iterations is reached, with the model being saved at
this juncture.

(4) Fault Diagnosis: Input sample pairs are randomly generated from the test set
and fed into the trained model. Following feature extraction, the classifier autonomously
generates diagnostic outcomes.

(5) Output the diagnostic results and troubleshoot the diesel engine based on the results.

Figure 6. Overall Diagnostic Flowchart.
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3. Experimental Validation
In this section, ablation and comparison experiments are set up, and the results are

analyzed to demonstrate the effectiveness of the proposed method. All the experiments
are run in the same environment, the deep learning framework is built by Pytorch 2.0.1,
and the computers are configured as follows: the GPU is NVIDIA GeForce RTX 3060,
and the CPU is Intel Core i7 12700H. Three sets of experiments are conducted, with the
number of samples per class participating in the network training, n, set at 10, 20, and 30 for
each set of experiments, respectively. The model’s accuracy, precision, recall, and F1 score
are selected as the evaluation indexes. Each group of experiments is carried out 10 times,
respectively, to ensure the reliability of the experimental results, and the final results are
averaged for comparison.

3.1. Ablation Experiments

This section validates the effectiveness of the method proposed in this study by
adding specific steps to the Siamese Convolutional Neural Network (SCNN) model from
the literature [37] and comparing the experimental results.

(1) SCNN, which uses Siamese Convolutional Neural Networks for feature extrac-
tion and FC layer-based classification, and loss function using traditional cross-entropy
loss function.

(2) SViT-KNN, using ViT encoder instead of CNN for feature extraction, improved
KNN for classification and loss function using traditional cross-entropy loss function.

(3) The diagnostic model of the method proposed in this paper uses SViT-KNN, and the
loss function uses the Weighted-Similarity loss function. The SCNN model structure and
parameters are shown in Figure 7:

Figure 7. Structure of SCNN model.

The experimental outcomes are presented in Table 5, alongside Figures 8 and 9, which
collectively assess the performance of the three methods across varying sample sizes using
metrics such as accuracy, precision, F1 score, and recall.

Observations indicate that the SCNN model achieves an accuracy of 94.6% when
the sample count is substantial. However, as the number of samples engaged in training
diminishes, the model’s accuracy experiences a steep decline. Particularly noteworthy is the
accuracy of 83.63% when the training sample count per class is reduced to 10, suggesting
that with a lack of samples, the CNN-based model struggles to extract a sufficient quantity
of informative features, subsequently compromising its performance.

The SViT-KNN approach adopts the SViT network to extract global multiscale data
features, which are then inputted into the KNN classifier for classification. In contrast
to the SCNN model across all three experiments, SViT-KNN demonstrates a marked en-
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hancement in accuracy, attributed to the superior feature extraction ability of SViT over
SCNN. Nevertheless, both models exhibit many misclassifications when differentiating
samples within similar categories, as evidenced in Figure 9. This is a consequence of the tra-
ditional loss function’s exclusive emphasis on the discrepancy between model outputs and
labels, disregarding the categorical relationships between samples. Consequently, errors
are prevalent when classifying samples with overlapping characteristics, thus hindering
the potential for further augmentation in model performance.

Table 5. Comparison of the three methods at different sample sizes.

Sample Size n
Indexs Methods

SCNN SViT-KNN Proposed

10 Accuracy 0.8363 0.9345 0.9722
Recall 0.8409 0.8571 0.9836

Precision 0.8842 0.9375 0.9843
F1 0.7852 0.8955 0.9836

20 Accuracy 0.9098 0.9632 0.9821
Recall 0.9208 0.9231 0.9816

Precision 0.9328 0.9767 0.9837
F1 0.9172 0.9492 0.9815

30 Accuracy 0.9460 0.9768 0.9913
Recall 0.9595 0.9320 0.9895

Precision 0.9632 0.9716 0.9897
F1 0.9585 0.9514 0.9895

Figure 8. Experimental results of the three methods with different sample sizes.

The methodology introduced in this paper uses the SViT-KNN fault diagnosis model,
augmented by the Weighted-Similarity loss function outlined in Section 2.3.3 for training.
From Figures 8 and 9, the proposed method in this paper not only performs stably but also
has the highest accuracy, precision, F1 score, and recall in the three sets of experiments.
Remarkably, even when the training sample count is reduced to 10, the method main-
tains an accuracy of 97.97%. Furthermore, the examination of Figure 9c,f,i illustrates a
marked enhancement in the model’s capability to discern between samples of similar cate-
gories, underscoring the efficiency of the loss function devised in this paper in bolstering
diagnostic accuracy.

In summary, the ablation experiments (1) and (2) substantiate that the integration of the
Siamese network and ViT as a feature extractor outperforms SCNN when training samples
are scarce. The cumulative evidence from (1), (2), and (3) corroborates that the loss function
designed in this paper surpasses the traditional cross-entropy loss function in differenti-
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ating similar categories of samples, thereby enhancing the accuracy rate. Consequently,
the methodologies and steps outlined herein are indispensable and efficacious.

Figure 9. Confusion matrix of the three methods for different sample sizes.

3.2. Comparative Experiments

This section presents a comparative analysis to substantiate the proposed method’s
superiority in the context of few-shot fault diagnosis, aligning the method with 1D-CNN
classical methods, as well as a method outlined in [15,38].

(1) 1D-CNN is a classical deep learning network; the specific structure and parameters
of the 1D-CNN model selected in this paper are shown in Figure 10.

(2) DCSN-DRN is another kind of Siamese network proposed in the [38] for marine
engine fault diagnosis with small samples. The Sianese network was built by two Deep
Residual Networks (DRNs) with shared weights, then it was used to learn discriminative
information from limited fault samples. What’s more, the Siamese network applies strong
forces to hard samples towards their corresponding correct distribution areas. Finally,
the distribution area of intra-class samples was shrunk and further improved the accuracy
of the classification.

(3) OSLNet is a generalized few-shot fault classification network proposed by [15],
which designs an orthogonal Softmax layer on top of CNN as the classifier of the network,
so that the model maximizes the difference between samples during training and testing,
and the structure of the network is simplified.
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The 1D-CNN and OSLNet model structure and parameters are shown in Figure 10:

Figure 10. Structure of 1D-CNN and OSLNet models.

Table 6 and Figures 11 and 12 present the diagnostic results of each method in the
comparative experimentation. When the quantity of training samples is adequate, the ac-
curacy of all fault diagnosis approaches surpasses 90%. However, as the sample count
in the training set diminishes, the diagnostic accuracy of the 1D-CNN and OSLNet net-
works experiences a drastic decline. Particularly, the 1D-CNN yields the poorest results,
which can be attributed to its classification within the domain of traditional deep learning
networks. This classification renders the 1D-CNN highly susceptible to the number of
training samples, posing challenges in extracting sufficient features for learning under
limited sample conditions.

Table 6. Comparison of the four methods at different sample sizes.

Sample Size n Indexs
Methods

1D-CNN DCSN-DRN OSLNet Proposed

10 Accuracy 0.5303 0.9023 0.6372 0.9722
Recall 0.5303 0.8940 0.6339 0.9836

Precision 0.3978 0.9062 0.7438 0.9894
F1 0.4232 0.8847 0.5966 0.9836

20 Accuracy 0.8250 0.9246 0.8692 0.9821
Recall 0.8250 0.9282 0.7238 0.9816

Precision 0.7528 0.9335 0.6285 0.9893
F1 0.7745 0.9261 0.9815 0.9815

30 Accuracy 0.9011 0.9676 0.9642 0.9913
Recall 0.9937 0.9663 0.8653 0.9895

Precision 0.9939 0.9699 0.9306 0.9917
F1 0.9937 0.9661 0.9895 0.9895

Despite improved overall accuracy, DCSN-DRN and OSLNet show higher misclassifi-
cation within similar categories, indicating a struggle to differentiate under limited samples.
In contrast, the method presented in this paper demonstrates a remarkable resilience to
variations in the number of training samples, achieving the highest performance across
all four evaluation indexes in the three experimental groups. This comparative analysis
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underscores the substantial advantage of the proposed method in the diagnosis of diesel
engine fuel system faults under conditions of small sample availability.

Figure 11. Experimental results of the four methods with different sample sizes.

Figure 12. Confusion matrix of the four methods for different sample sizes.
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4. Conclusions
This paper proposes a DT-SViT-KNN few-shot fault diagnosis method to realize

accurate and efficient fault diagnosis. Firstly, a DT model of the diesel engine is established,
and the fault data are obtained through model deduction. Then, a new Siamese network
was designed by combining the Siamese network with ViT to extract the global multiscale
features of the input data. The Weighted-Similarity loss function is also designed to improve
the model’s differentiation accuracy for similar samples to a new level. Finally, an improved
KNN classifier based on the attention mechanism is added to the traditional Siamese
network, enabling the model to classify and improve the diagnostic efficiency automatically.
Ablation experiments and comparison experiments were conducted successively to verify
that DT-SViT-KNN is an accurate and reliable few-shot fault diagnosis method.

However, there are still some challenges in practical application scenarios. Fault
signals may be interfered with by a variety of noises, and the levels of these noises are
usually unknown, which makes it difficult to select the number of wavelet decomposition
layers and thresholds in wavelet denoising and affects the denoising effect. On the other
hand, as the operating conditions and time of the system change, the data will become
diversified, and the difference in the distribution of the same type of data will become larger,
so how to carry out fault diagnosis under variable operating conditions with small samples
is also a difficult problem. In future research work, we will investigate the performance
of the proposed method on real data and further solve the problems encountered in the
practical application of this method.
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