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Abstract: This survey extends and refines the existing definitions of integrity and protection
level in localization systems (localization as a broad term, i.e., not limited to GNSS-based
localization). In our definition, we study integrity from two aspects: quality and quantity.
Unlike existing reviews, this survey examines integrity methods covering various local-
ization techniques and sensors. We classify localization techniques as optimization-based,
fusion-based, and SLAM-based. A new classification of integrity methods is introduced,
evaluating their applications, effectiveness, and limitations. Comparative tables summarize
strengths and gaps across key criteria, such as algorithms, evaluation methods, sensor data,
and more. The survey presents a general probabilistic model addressing diverse error types
in localization systems. Findings reveal a significant research imbalance: 73.3% of surveyed
papers focus on GNSS-based methods, while only 26.7% explore non-GNSS approaches
like fusion, optimization, or SLAM, with few addressing protection level calculations.
Robust modeling is highlighted as a promising integrity method, combining quantification
and qualification to address critical gaps. This approach offers a unified framework for
improving localization system reliability and safety. This survey provides key insights
for developing more robust localization systems, contributing to safer and more efficient
autonomous operations.

Keywords: integrity; protection level; localization; SLAM; fault/outlier detection; robust
optimization; factor graph; fault detection and exclusion (FDE); model-based FDE;
coherence-based FDE

1. Introduction
Integrity is a critical evaluation criterion for localization systems. It complements tra-

ditional performance metrics such as accuracy, availability, and reliability [1,2]. According
to the Federal Radionavigation Plan [3], integrity is defined as follows: “The measure of the
trust that can be placed in the correctness of the information supplied by a positioning, navigation,
and timing (PNT) system. Integrity includes the ability of the system to provide timely warnings to
users when the system should not be used for navigation”.

This definition highlights two key aspects of integrity: system trustworthiness and
its ability to warn users of potential discrepancies. These aspects are particularly vital for
high-stakes applications such as aviation and autonomous driving systems (ADS), where
localization errors can have catastrophic consequences.

While this definition provides a solid foundation, new advances in localization tech-
nologies and increasing safety demands require a refinement of integrity concepts. High
levels of automation, as defined by SAE [4], depend on accurate localization and guaranteed
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integrity. This paper explores revised definitions and methods for integrity, as discussed
in Section 4.

Localization systems are affected by various error types (Section 2.1). Methods to
handle these errors include fault detection and exclusion (FDE) (Section 6) and error
quantification through the Protection Level (PL) (Section 5).

The PL “represents an upper bound on the localization error” [5]. It is widely used to
indicate the error level in system estimates and remains one of the most prominent integrity
metrics in the literature.

Integrity is critical for safety. In the United States alone, motor vehicle crashes cause
over 40,000 deaths and 2 million injuries annually [6]. Localization errors can result in
incorrect navigation decisions, leading to accidents [7]. Integrity also fosters consumer
confidence, essential for the widespread adoption of autonomous vehicles [8]. It assures
users of system reliability and enhances efficiency in navigation, route planning, and
control, especially in challenging environments such as extreme weather or limited vision.

This survey focuses on integrity challenges related to sensors and algorithms in robotic
systems, including autonomous vehicles. Sensor and algorithm failures compromise
localization integrity. Where no single method can address all faults and/or error types. Hence,
multiple techniques have been developed (Sections 6 and 7).

Several existing surveys focus primarily on integrity monitoring (IM) for Global
Navigation Satellite Systems (GNSSs). For example, ref. [9] discusses GNSS IM techniques,
including Receiver Autonomous Integrity Monitoring (RAIM), fault detection, exclusion
methods, and PL computation. Similarly, ref. [10] addresses GNSS-based IM for urban
transport applications, noting challenges and open research areas compared to aviation.

Other reviews, such as [11], explore IM methods for GNSSs, INS, map-assisted, and
wireless-augmented systems. It covers measurement errors, faults from various data
sources, and the integration of sensors with GNSSs to improve navigation reliability.
The review identifies challenges and highlights the need for advances in fault detection,
exclusion, error modeling, and real-time processing. It also explores IM techniques for
GNSS/INS with map-matching, discussing map/map-matching error handling and map
constraints.

In contrast, our survey covers a wider range of localization methods. These include
Simultaneous Localization and Mapping (SLAM), fusion-based, and optimization-based
approaches. We address integrity challenges for diverse sensors such as LiDAR, cameras,
HD maps, and INS. Our review emphasizes integrity in perception-based localization
systems and highlights gaps in PL methods for these sensors.

Based on data from [9,10,12–16], 73.3% of the surveyed papers focus on GNSS-based
integrity methods, while only 26.7% explore non-GNSS approaches. This imbalance high-
lights a research gap in perception-based localization systems (Sections 5–7). Figure 1
shows the distribution of surveyed papers and reveals the need for further exploration in
PL methods for these systems.

To address this gap and advance the field, this paper makes the following contributions:

1. Overview of integrity methods: A thorough review of integrity methods for localiza-
tion systems, covering sensors like LiDAR, cameras, HD maps, and INS.

2. A new classification framework: Introduction of a new categorization of integrity
methods (Figure 2).

3. Refined definitions: Updated definitions of integrity and PL specific to localization
systems, clarifying key concepts and metrics.

4. In-depth review and comparative analysis: A detailed analysis of robust modeling,
PL computation techniques, and FDE methods.
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5. Detailed comparisons: Comparisons of techniques, metrics, data types, sensors, and
integrity enhancements.

Figure 1. Percentage of surveyed literature on integrity methods, categorized as being w. (with) PL
and w.o (without) PL.
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Figure 2. Classification of integrity methods.

In conclusion, integrity is a critical aspect of localization systems across various
technologies, not just GNSSs. Existing research shows a lack of focus on PL methods for
perception-based systems. This paper addresses this gap by providing a comprehensive
framework, redefining integrity concepts, and advancing the understanding of integrity
methods in localization systems.

The remainder of this paper is organized as follows. In Section 2, we introduce
the key concepts related to error types and protection level parameters, providing a self-
contained foundation for the subsequent sections. Section 3 offers a brief review of GNSS-
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IM systems, summarizing their relevance in localization frameworks. In Section 4, we revisit
and discuss various integrity definitions proposed in the literature, concluding with our
proposed integrity definition, which better aligns with the objectives of this work. Similarly,
Section 5 reviews and analyzes existing definitions of the protection level and culminates
with our proposed definition that addresses identified limitations. Section 6 introduces
fault detection and exclusion methods, categorizing them into various approaches and
subcategories to highlight their roles in ensuring robust localization. Lastly, Section 7
focuses on robust modeling and optimization techniques, presenting their qualitative and
quantitative aspects and demonstrating their importance in enhancing localization system
performance. Together, these sections aim to provide a comprehensive understanding of
integrity and robustness within localization systems while presenting our contributions
and findings.

2. Background and Foundational Concepts
This section defines the vocabulary used to describe the integrity of localization

systems. First of all, this section introduces various error types that localization systems
encounter. Then, the different perspectives on the integrity definition that appear in the
literature are discussed. Finally the section concludes with a proposed integrity definition
that encompasses the different dimensions of the definitions found in the literature.

We propose the following concepts and terms to make the whole discussion self-
contained and easy to follow. These terms will help newcomers to the topic of integrity
and localization in general to understand the concepts more easily and clearly.

2.1. Error Types

A localization system can be affected by various error types. These can significantly
compromise the integrity of the system. The error types can be classified into four main
categories: uncertainty, bias, drift, and outliers, as illustrated in Figure 3.

Figure 3. Classification of error types.

Each of these error types has distinct characteristics and impacts on the system’s perfor-
mance, and understanding them is crucial for developing methods to improve localiza-
tion integrity.

Uncertainty, often referred to as random error, is “a short-term scattering of values
around a mean value” [17]. This type of error can be expressed using a probabilistic density
function, such as the Gaussian distribution. It is depicted in the left image of Figure 4, where
the measurement errors are distributed symmetrically around the true value, indicating
random fluctuations over time.
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Figure 4. (Left): Histogram of LiDAR measurements at the true distance (5 m). (Right): Histogram of
LiDAR measurements for the same true distance (5 m) with b = 0.5 m bias error (mean = 4.5 m).

Bias, or systematic error, is “a permanent deflection in the same direction from the true
value” [17]. Unlike uncertainty, bias is not random but consistently skews measurements
in one direction. The right image in Figure 4 shows a histogram of LiDAR measurements,
where a bias of b = −0.5 m is added to the true value of 5 m, resulting in a shift in the mean
of the measurement distribution.

Drift refers to “errors that grow slowly over time” [11], often due to cumulative sensor
inaccuracies or environmental factors. These errors can cause the estimated trajectory of
a vehicle to deviate progressively from the true path, as shown in Figure 5. The figure
demonstrates how the estimated path, affected by drift, diverges from the true path as
time progresses.

Figure 5. Due to the drift error, the vehicle’s estimated path is constantly deviating from the true path.

Outlier is “an observation that deviates so much from other observations as to arouse
suspicions that it was generated by a different mechanism” [18]. This indicates that they
might have been generated by a different mechanism. Outliers can occur due to sensor
malfunctions, environmental disturbances, or other external factors that influence the
measurement process. In the context of a LiDAR point cloud observation, an outlier
is considered to be any data point that does not belong to the assumed population of
true measurements. The presence of outliers is illustrated in Figure 6, where a uniform
distribution of outlier values is combined with the Gaussian distribution of true values.

We adopt the generative models used in [18,19], which utilize a generic observation
model to characterize the sensor behavior. We use a LiDAR sensor as an example. Each
measurement, like a single LiDAR beam, is independent given the sensor’s pose. This
assumption is important for the model’s simplicity and efficiency. It lets us model each
beam’s measurement separately and then combine them to create a complete sensor model.

Consider a point cloud data observation from a LiDAR at time t, Zt = {z1
t , z2

t , . . . , zk
t ,

. . . , zN
t } , where N is the number of LiDAR beams. This observed point cloud does not

contain only the true point cloud data, Zt = {z1
t , z2

t , . . . , zk
t , . . . , zN

t }, but also different
error types.

Starting with a single LiDAR beam, the measurement at time t, denoted as zk
t , can be

written as
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zk
t = zk

t︸︷︷︸
true value

+ b︸︷︷︸
bias value

+ d(t)︸︷︷︸
drift value

+ ν︸︷︷︸
uncertainty

(1)

Here, zk
t represents the raw measurement from the LiDAR sensor, which consists of

several components:

• The true value zk
t , which is the actual distance to the target;

• The bias b, which represents systematic errors that shift the measurement consistently
[20–23];

• The drift d(t), representing errors that change over time, typically due to sensor aging
or environmental influences;

• The uncertainty ν, which accounts for random noise in the measurement process.

Outliers, which are measurements that fall far outside the expected range of values,
are accounted for separately in the model. In particular, the outlier distribution is modeled
using a combined probability density function (PDF), which accounts for both the true
measurements and the outliers. The probability of encountering an outlier is represented
by δ, and the combined PDF for a LiDAR measurement is expressed as

p(zk
t ) = (1 − δ) pbasic(zk

t ) + δ poutlier(zk
t ) (2)

This equation combines the likelihood of the measurement being a true value with the
likelihood of it being an outlier. Here,

• pbasic(zk
t ) is the PDF for an observation, which is a PDF of the random variable zk

t in
Equation (1);

• poutlier(zk
t ) is outlier PDF.

The combined PDF allows us to model the probability that each measurement is either
a true value or an outlier, which is important for robust localization in the presence of
sensor errors.

Figure 6. The true and outlier distributions along with their combined PDF. The true distribution
(blue) is a Gaussian with mean 5 and variance 0.1. Outlier distribution (green) is a uniform PDF,
shifted to the right. Probability of encountering an outlier δ is set to 0.1.

Introducing more information about outliers into the model will improve its ability
to handle and account for them. This leads to more accurate results. The model’s outlier
handling mechanism is crucial. It ensures that the localization system can handle erroneous
data points and provide accurate estimates, even with sensor faults or disturbances.
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However, no single method can handle all these error types and remove their effect
on the final estimate. Different methods are required for this, which are discussed in
Sections 6 and 7.

2.2. Protection Level Related Parameters

To facilitate the understanding of the protection level concept, several related terms
and vocabulary are essential. The position error, denoted as E, represents the difference
between the estimated pose, x, and the true pose, xtrue, i.e., E = ||x − xtrue||. In systems
like RTK-GNSS, the true pose is estimated accurately, yet the localization system often
lacks knowledge of the true path. The position error is typically modeled by a probability
distribution, P(E), which can be influenced by various error types, Section 2.1, and ap-
proximations. In an ideal scenario, assuming a linear system, Gaussian distributions, and
the absence of bias, drift, and outliers, position error would be normally distributed, i.e.,
E ∼ N (0, ΣE).

Accuracy is defined as the degree to which the estimated position of the system
approaches the actual position, as described by [10,11]. The Alarm Limit (AL) “represents
the largest position error allowable for safe operation” [10]. When the error exceeds the AL, the
localization system is deemed unsafe to rely on.

Integrity risk (IR) is the probability that the position error, E, exceeds the AL, E > AL,
which can be expressed as

IRAL = P(E > AL) =
∫ −∞

AL
P(E = e)de (3)

However, since the AL can change over time and in different contexts, as noted in [24],
the PL is used as a more stable alternative. This leads to an updated definition of IR in
terms of PL, as presented in [25–27]:

IRPL = P(E > PL) =
∫ −∞

PL
P(E = e)de (4)

IR can be intuitively understood as the likelihood that the position error exceeds the
AL, typically quantified per hour or per mile. This probability reflects the likelihood of
undetected failures within the system that may lead to inaccurate or unsafe pose estimates.
It is crucial for evaluating the robustness of localization systems, particularly in critical
applications where safety is paramount.

Target Integrity Risk (TIR) is defined as the maximum acceptable level of IR, es-
sentially an upper bound on IR [25–27]. This threshold is determined based on industry
standards and safety requirements, and it ensures that the localization system remains safe
within specified operational contexts. The IR must be continuously monitored to ensure
that the system operates within acceptable limits. Additionally, the IR is calculated using
system performance data, error models, and the prevailing operating conditions. The
relationship between IR and TIR can be expressed as

IRPL < TIR (5)

Figure 7 shows how the PL is evaluated at a specific time t, given an arbitrary error
distribution. For a given PL, we can compute the probability that the error is below this
level, based on its probability distribution at time t. Similarly, for a given AL, we can
determine the probability that the error is below the AL. This allows us to calculate the IR
for the PL.

This is the forward approach. We use a given PL to check if it satisfies the integrity risk
criterion. However, the main goal is to find the PL that ensures a specified integrity risk for
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a given context and period. This is performed based on the error distribution at that time.
Thus, we aim to determine the PL that guarantees the desired level of integrity risk.

Figure 7. An arbitrary error distribution for a localization system at time t. The shaded regions
indicate the probability that the error E(t) = e falls within those areas.

Usually, TIR is used to refine and adjust the PL by tuning its parameters to fit the entire
trajectory of the localization system. This is typically performed offline, using a learning
approach with training and validation datasets, as described in [26]. The goal is to find the
parameters that best fit the whole trajectory. In contrast, our focus is on estimating the PL
in real time at each time step based on the current error distribution for a given IR.

3. Integrity Methods in GNSSs
Understanding integrity in localization systems is essential for many applications.

Global Navigation Satellite Systems (GNSSs) provide the foundational methods for achiev-
ing integrity in localization. Building upon this foundation, this paper focuses on extending
these integrity concepts to perception-based localization systems. This section presents key
integrity methods used in GNSSs. It highlights fundamental techniques and concepts. The
overview is not exhaustive. It does not cover all aspects of GNSS integrity. For a more
detailed review, readers are encouraged to consult the surveys [9,10].

GNSSs use various integrity methods, mainly categorized into Receiver Autonomous
Integrity Monitoring (RAIM) and (PL).

RAIM checks the consistency of multiple satellite signals by computing the position
using different subsets of satellites and comparing the results. It requires a minimum of
five satellites to detect faults. However, it is typically limited to handling only one faulty
satellite at a time.

Different RAIM variants use various measurements, like code or carrier measurements.
They also differ in their fault detection capabilities. Advanced RAIM, for instance, can
handle multiple faults more effectively compared to traditional RAIM. For a detailed
comparison of measurement types and fault detection capabilities in these variants, refer
to the surveys [9,10]. In this section, the results from these surveys are summarized and
illustrated in Figure 8, with a focus on the RAIM variants.
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Figure 8. RAIM method classification.

PL depends on satellite-user geometry and expected pseudorange error. For example,
in SBAS (Satellite-Based Augmentation System), PL is calculated as [28]:

PL = Kσ (6)

where K is an inflation constant and σ represents the confidence in the estimated position,
measured in meters. Accurate PL computation requires knowledge of the distribution of
residual position or range errors [29–31]. While PL has several formal definitions, discussed
in Section 5, this informal description captures its essence and primary use in GNSSs.

4. Revisiting Integrity: Review, Enhancement, and New Definition
In this section, various definitions of “integrity” as presented in the literature on

localization systems are reviewed and analyzed. Each definition’s approach to integrity is
examined, where strengths and limitations are highlighted. It is important to note that this
paper revisits the definitions of integrity, primarily in the context of non-GNSS localization
systems. We begin by presenting the standard definition used in GNSS-based systems, such
as the one outlined in the Federal Radionavigation Plan, and then analyze the integrity
definitions in non-GNSSs that rely on perception sensors, such as LiDAR and cameras. This
analysis seeks to complement and expand upon the existing literature in this area.

Tossaint et al. (2007) [32] define integrity for GNSS-based localization as “the system’s
ability to provide warnings to the user when the system is not available for a specific operation”.
Similarly, the Federal Radionavigation Plan defines integrity as “the measure of the trust that
can be placed in the correctness of the information supplied by a positioning, navigation, and timing
(PNT) system. Integrity includes the ability of the system to provide timely warnings to users when
the system should not be used for navigation”. While these definitions emphasize providing
warnings, they rely heavily on the context of specific user applications and operational
requirements. The concept of integrity is reduced to the system’s ability to issue warnings,
which, as a standalone metric, is vague and insufficient. Furthermore, neither definition
provides a framework to quantify terms like “correctness” or “trust,” which are central to a
robust understanding of integrity.

Ochieng et al. (2003) [33] and Larson (2010) [34] similarly define integrity as “the
navigation system’s ability to provide timely and valid warnings to users when the system must
not be used for the intended operation or phase of flight”. However, their definitions focus only
on giving a warning but don’t explain much about what the problem is or how serious it
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could be. That’s why we need definitions that not only give warnings but also provide
clear and useful (actionable) information.

Li et al. (2019, 2020) [35,36] describe integrity as “the degree of trust that can be placed on
the correctness of the localization solution, and compared it with the 3σ used in visual navigation.”
While this perspective provides a quantitative approach, it is unclear whether the compar-
ison to 3σ is limited to vision-based systems or can be generalized to other localization
approaches. This lack of clarity reduces its applicability across different system types.

In contrast, AlHage et al. (2021, 2022, 2023) [25–27] define integrity as “the ability to
estimate error bounds in order to address uncertainty in the localization estimates in real time.”
This definition shifts the focus toward quantifying uncertainty through error bounds,
emphasizing that these bounds should include the true position. However, their work
implicitly incorporates FDE methods, referred to as “internal integrity,” to enhance the
system’s overall performance. This implicit connection is not clearly articulated in their
definition, which could lead to ambiguity.

Arjun et al. (2020) [37] define integrity as ”the measures of overall accuracy and consistency
of data sources.” Although this definition highlights data source consistency, it does not ad-
dress fault impacts or provide mechanisms for evaluating how faults affect system integrity
quantitatively. As such, it lacks the necessary depth for a comprehensive understanding of
system performance.

Bader et al. (2017) [38] describe integrity as “the absence of improper system alterations”.
This definition adopts a rigid view, equating any fault with a complete loss of integrity.
By failing to distinguish between the varying impacts of different faults, this perspective
oversimplifies the concept. A more nuanced approach would involve quantifying fault
impacts to better evaluate system integrity.

Wang et al. (2022) [39] describe integrity as “an important indicator for ensuring the
driving safety of vehicles”. However, this definition lacks specificity, as it does not elaborate
on how integrity relates to localization systems or explain its role in ensuring safety.

Quddus et al. (2006) [40] focus on a narrower context, defining integrity as “the degree of
trust that can be placed in the information provided by the map matching algorithm for each position.”
This definition restricts the scope of integrity to map matching algorithms, ignoring other
critical components of localization systems.

Marchand et al. (2010) [41,42], Sriramya (2021) [43], and Shubh (2023) [44] describe
integrity as “the measure of trust which can be placed in the correctness of the information supplied
by the total system”, “the measure of trust that can be placed in the correctness of the estimated
position by the navigation system”, and “the measure of trust that can be placed in the accuracy
of the information supplied by the navigation system”, respectively. While these definitions
focus on trust and correctness, they fail to frame integrity as an evaluation criterion for the
entire localization system. Vague terms like “correctness” and “trust” are left undefined,
creating gaps in understanding how they relate to assessing system performance. This
oversight also neglects the broader need to evaluate how well the system manages errors
and deviations, which is essential for a comprehensive assessment of its integrity.

The reviewed definitions of integrity provide valuable insights but reveal several
critical gaps that necessitate a more comprehensive framework:

• Overemphasis on warnings: Existing definitions, such as those by Tossaint et al. [32],
Ochieng et al. [33], and Larson [34], focus heavily on issuing warnings without
addressing broader aspects like error management or quantification.

• Lack of quantification: Terms like “trust” and “correctness,” central to definitions
by Tossaint et al. [32], Marchand et al. [41], and others, are vague and unmeasurable,
limiting their practical applicability.
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• Limited scope: Definitions such as Quddus et al.’s [40] focus narrowly on specific
components (e.g., map matching) rather than the entire localization system.

• Fault impact and error management: Works like AlHage et al. [25,27] implicitly
address FDE but fail to clearly articulate its connection to integrity as a measur-
able concept.

• Oversimplification: Definitions like Bader et al.’s [38] equate any fault with a complete
loss of integrity, oversimplifying the varied impacts of different fault types.

• Misalignment with real-time systems: While some works, such as AlHage et al. [27],
propose real-time error estimation, they lack clarity in connecting these estimates to
actionable metrics like PL.

• Insufficient robustness considerations: Few definitions explicitly address robustness
or outlier handling, a crucial aspect of real-world localization systems.

This paper addresses these gaps by proposing a new definition of integrity that
combines both qualitative and quantitative dimensions. Integrity is redefined as the
system’s alignment with reality, encompassing robustness, outlier handling, and deviation
measurements. The proposed definition:

Definition 1 (Integrity). Integrity refers to the quality of a system being coherent with reality.

Definition 2 (Integrity for Localization Systems). In the context of a localization system,
integrity serves as an important evaluation criterion, encompassing both qualifying and quantify-
ing aspects:

• Qualifying aspect: Integrity represents the system’s ability to remain unaltered and effectively
handle outliers and errors;

• Quantifying aspect: Integrity also involves providing an overbounding measure of how far
the system’s outputs can deviate from reality.

The term how far will be formally quantified in Section 5.

The proposed framework evaluates robustness and reliability comprehensively. Qual-
itative methods focus on ensuring system reliability and managing outliers effectively,
while FDE methods (Sections 6.1 and 6.2) play a key role in mitigating errors. Quantitative
methods, like PL (Section 5), measure deviations between the system’s outputs and reality.

New robust modeling and optimization techniques, discussed in Section 7 and illus-
trated in Figure 2, enhance the system’s ability to handle outliers. These techniques provide
probabilistic interpretations of errors, improving the assessment of localization systems.

The paper reviews integrity methods across various localization systems and sen-
sors. It also redefines PL as a core metric for quantifying integrity, aligning it with the
proposed definition.

5. Protection Level: Current Definitions and New Perspectives
In the following discussion, multiple definitions of PL found in the literature will be

outlined. These definitions capture various meanings and applications of PL in the context
of integrity for localization systems. Following this review, a proposed definition of PL will
be presented to broaden and enhance our understanding of this crucial topic.

Li et al. (2019, 2020) [35,36] describe PL as “the highest translational error resulting from
an outlier that outlier detection systems cannot detect”. This definition is limited to translational
errors and does not fully address how PL should encompass all types of uncertainties,
including those from various sources beyond undetected outliers. Moreover, it fails to
capture the complete error region within which the true position is guaranteed and does
not consider the full scope of errors from all system components and algorithms.
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Marchand et al. (2010) [41,42] define PL as “the result of a single undiscovered fault on
the positioning error”. Similar to the previous definition, this one is confined to undetected
faults and does not account for multiple faults or the broader uncertainty inherent in
sensor measurements.

The importance of PL as “a statistical bound on position error, E, that guarantees that IR
does not exceed TIR” is highlighted by AlHage et al. (2021, 2022, 2023) [25–27]. In a similar
way, Arjun et al. (2020) [37] and Sriramya (2021) [43] define PL as “an error bound linked to a
pre-defined risk”. While these definitions connect PL to localization system requirements,
where TIR is used to check for undetected faults, they do not fully address how PL should
account for all uncertainties from various system components.

Shubh (2023) [44] defines PL as “the range within which the true position lies with a high
degree of confidence”, while Wang et al. (2022) [39] describe it as “an upper bound on positioning
error”. Larson (2010) [34] states PL as “ensuring that position errors remain within allowable
boundaries, even with faults”. While Wang’s use of “upper bound” is overly general, Larson’s
focus on error boundaries relates more to system error minimization and handling and
does not clearly separate PL from the system’s accuracy.

Overall, current definitions of PL provide useful insights but reveal several criti-
cal gaps:

• Limited scope of errors considered: Definitions by Li et al. [35,36] and Marchand
et al. [41,42] focus narrowly on undetected faults, failing to account for multiple
simultaneous faults or uncertainties from system components, such as sensor noise or
environmental factors.

• Lack of comprehensive uncertainty coverage: While definitions by AlHage et al. [25–27]
and Sriramya [43] connect PL to statistical bounds, they do not fully encompass
uncertainties from all sources, including sensor noise, dynamic conditions, and pro-
cessing errors.

• Generalization without specificity: Definitions by Wang et al. [39] and Larson [34]
use vague terms like “upper bound”, which fail to distinguish PL as a distinct metric
from accuracy or precision.

• Inconsistent real-time relevance: Shubh’s [44] focus on confidence lacks a connec-
tion to real-time adaptability, which is crucial for ensuring integrity in dynamic
environments.

• Separation from integrity assessment: Many definitions fail to explicitly link PL
as a core metric for evaluating and maintaining system integrity, limiting their
practical applicability.

To address these gaps, the proposed definition of PL is

Definition 3 (Protection Level). Protection Level is the real-time estimate or calculation of the
error region within which the true position is guaranteed to lie.

By assigning PL to each state estimate, the localization system can effectively adapt
to changing environments, sensor conditions, and vehicle dynamics. As a result, system
integrity is properly assessed and maintained in real time.

6. Fault Detection and Exclusion
FDE is crucial for enhancing the integrity of the localization system. FDE ensures

accurate outputs despite faults or deviations in sensors or algorithms intended behavior.
It works by identifying and removing faulty data. “Faults,” “failures,” and “outliers”
often refer to deviations that can negatively impact estimation accuracy. The FDE process
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addresses the qualifying aspect of integrity by making the localization resilient to various
error types.

The literature distinguishes between FDE and Fault Detection and Isolation (FDI). FDE
focuses on detecting and excluding anomalies to maintain integrity, without identifying
the specific error types that caused the deviation from the true value. However, FDI
aims to identify the specific cause of the problem, which is more relevant in the control
engineering and software industries. For localization systems, the key objective is detecting
and excluding abnormalities, regardless of their cause. Therefore, this discussion considers
all approaches under the category of FDE.

Extensive literature analysis reveals two possible main categories of FDE techniques:
model-based and coherence-based approaches. Model-based techniques, Figure 9, utilize
mathematical models to predict the system’s behavior, identifying deviations as potential
faults. Coherence-based techniques, Figure 10, leverage the consistency among various
sensors or measurements of the same quantity, flagging incoherent data points as poten-
tial faults.

Figure 9. Model-based fault detection and exclusion: A schematic representation illustrating the
integration of predictive models for system behavior and localization systems.

Figure 10. Coherence-based fault detection and exclusion: The figure illustrates three localization
systems (1, 2, and 3) undergoing coherence checks. Comparative analyses are performed between
systems 1 and 2, 2 and 3, and 1 and 3 to identify any non-coherent behavior.

The following sections explore each category in detail, including methods for comput-
ing the protection level. We will use some illustrative figures from the reviewed references.
Not all figures will be included; only those that help clarify the process will be selected.

6.1. Model-Based FDE

In the field of FDE in localization and navigation systems, Model-Based FDE, or
MB-FDE, is a vital component, providing reliable solutions through the use of predictive
models of system behavior; see Figure 9. These predictive models could be sensor models,
system models, or machine learning models like Convolutional Neural Networks (CNNs).

MB-FDE techniques identify discrepancies between expected and observed values to
detect and exclude faulty data. MB-FDE techniques identify faults by analyzing discrepan-
cies between predicted and observed values.
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As an illustrative example following Figure 9, the mathematical derivation involves
calculating the residuals r(t). These residuals represent the difference between the predicted
output ŷ(t) and the observed output y(t):

r(t) = y(t)− ŷ(t) (7)

where

• r(t) is the residual at time t;
• y(t) is the observed value at time t;
• ŷ(t) is the predicted value based on the system model.

To determine if the discrepancy is significant enough to indicate a fault, the residuals
are compared against a threshold. This threshold is typically derived from the statistical
properties of the residuals, often using a Chi-square test. The Chi-square statistic quantifies
the discrepancy between the residual vector and its expected distribution:

χ2 = r(t)TR−1r(t) (8)

where

• r(t) is the residual vector at time t;
• R is the covariance matrix of the residuals, which models the expected variability of

the residuals under normal operating conditions.

For a properly functioning system, the Chi-square statistic follows a known distribu-
tion. The threshold γα is selected based on a desired confidence level, 1 − α, where α is
the significance level. This corresponds to a critical value from the Chi-square distribution
with appropriate degrees of freedom, typically the number of residuals.

If the calculated Chi-square statistic exceeds this critical value, the discrepancy is
deemed too large to have occurred under normal conditions, indicating a fault. Then, the
fault exclusion rule is

γα = χ2
α,m

If the test statistic satisfies χ2 > γα, the measurement is flagged as faulty and excluded
from the estimation process. Otherwise, the measurement is considered valid:

χ2 > γα ⇒ Fault Detected

By dynamically generating the threshold based on the statistical properties of the resid-
uals, this method ensures that the system remains robust to normal variations while being
sensitive enough to detect faults. The previous example illustrates the general framework
of the MB-FDE methodology. As will be illustrated in the following sections, variations
in approaches within this domain arise primarily from differences in the computation
of residuals and the selection of thresholds, which are often based on specific statistical
distributions. The localization algorithm and input number and type affect these variations.

In the process of this review, a wide range of techniques will be examined, each of
which will provide special insights for improving the integrity and PL calculation.

Based on the surveyed papers, MB-FDE is further categorized into three types:

1. Post-estimation MB-FDE (Section 6.1.1);
2. Pre-estimation MB-FDE (Section 6.1.2);
3. Integrated (or Embedded) MB-FDE (Section 6.1.3).

Tables 1–3 provides a summary of all MB-FDE methods, comparing them across
various criteria. The first two tables focus on ground vehicles, while the last table covers
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multi-ground vehicles and micro aerial vehicles. Each of these categories will be explained
in the following sections.

Table 1. Summary of model-based fault detection and exclusion methods 1.

Reference Algorithm Fault Detection Fault Exclusion PL Evaluation Data Sensor

[25,26] EIF

Residual
calculation

using
Mahalanobis

distance

Compare
residual with

Chi-square
distribution

Adjust
covariance for
estimated error
using Student
t-distribution

Calculate IR
and compare

with TIR

Data gathered
for city

Rambouillet

Odometry,
GNSS, camera,

HD map

[27] t-EIF

Residual
calculation

using Kullback–
Leibler

Divergence

Compare
residual with

Chi-square and
F-distributions

Compute PL
with minimum

degree of
freedom

Calculate IR
and compare

with TIR

Data gathered
for town of
Compiegne

Odometry, GPS,
camera, HD

map

[45] Particle filter

Use selection
vector to vote

for faulty
measurement

Exclude faulty
measurements

Use GMM to
calculate error

probability

Compare PE
with PL

Simulation and
Chemnitz data

GNSS,
odometry

[41,42] EKF

Compute state
residual error
and compare

with Chi-square
distribution

Weight sensors
based on

residual error

Use Chi-square
distribution for

misdetection
probability

N/A Data acquired
in urban context

Wheel speed
sensors, yaw

rate gyroscope,
GPS

[39] EKF Feature-based
approach

Dynamic
thresholding

Use EKF error
bound for error

covariance

Miss detection
and false alarm

rate

Data acquired
in urban

canyons in
Beijing

GNSS, INS,
LiDAR

[46,47] GraphSLAM
Test statistic
computation,

RANSAC

Batch test
statistic

computation

Perform
worst-case

failure slope
analysis

Compare PE
with PL

Data collected
in alleyway of
Stanford and

semi-urban area
of Champaign,

Illinois

GPS, fish
eye camera

[48] UKF
Hotelling’s T2

test, Student
t-distribution

Compare with a
threshold N/A

Compare with
the standard

UKF, adaptive
UKF, adaptive
UKF with the

proposed FDE,
and t-student
adaptive UKF

with the
proposed FDE

Simulation and
Highway

experimental
scenario

GNSS, IMU,
velocity wheel

sensor, steer
angle, and

position and
azimuth using a

SLAM

[34] EKF Parity space test

Compare
residual with

Chi-square
distribution

Perform
worst-case

failure slope
analysis

Compare slope
of position error
with respect to
test statistics of
parity space test

Simulation data INS, camera

[49] CMRNet Outlier
weighting N/A

Cumulative
distribution
function of

a GMM

Bound gap,
false alarm rate
and failure rate

KITTI visual
odometry

dataset [50]
Camera

1 All vehicles are ground vehicles.
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Table 2. Summary of model-based fault detection and exclusion methods 1.

Reference Algorithm Fault Detection Fault Exclusion PL Evaluation Data Sensor

[51] RBPF + CNN
Detection of
localization

failure using CNN
N/A N/A

Compare the
results with

AMCL 2

Simulation data
and real indoor

experiments
LiDAR

[52] RBPF + CNN
+ LFM

Detection of
localization

failure using CNN
N/A N/A

Compare the
results with

AMCL

Experimental
environment and

simulation
environment

LiDAR

[53] Free-space fea-
ture + MCL +
IS

Detection of
localization

failure using MAE
N/A N/A

Compare the
results with

AMCL

Simulation
environment,

robotics 2D-Laser
datasets 3

LiDAR

[54] VO-EKF
FDE using

hierarchical
clustering

Distance
threshold between
the pseudo range

and the class
center

N/A

Compare the
result to the same

system but
without the FDE

step

Field test Nanjing,
Jiangsu, China,
with the raw

GNSS
measurement

GPS, IMU, and
binocular depth
stereo camera

[55] B-CIIF Decision tree Random forest N/A
Accuracy of the

decision tree and
random forest

Experimental
environment

Wheel encoders,
IMU, LiDAR, and

Marvelmind
system

1 All vehicles are ground vehicles. 2 Augmented MCL [19,56,57]. 3 https://www.ipb.uni-bonn.de/datasets/
(accessed on: 1 December 2024)

Table 3. Summary of model-based fault detection and exclusion methods 1.

Reference Algorithm Fault Detection Fault Exclusion PL Evaluation Data Sensor

[35,36] ORB-SLAM2 Parity space test
Compare residual
with Chi-square

distribution

Weighted
covariance for
sensor noise

Compare PL with
3σ

EuRoC dataset Camera

[58] B-CIIF MLP MLP N/A Accuracy of the
MLPs

Experimental
environment

Wheel encoders,
IMU, LiDAR and

Marvelmind
system

[59] EIF

GKLD measure
between

prediction and
update

distribution

Use EIF bank for
fault exclusion N/A

Compare FDE
with ground truth

trajectory

Indoor
environment

Wheel encoders,
gyroscope, Kinect,

LiDAR

[60] EIF

Jensen Shannon
divergence

compared to
Youden index of

ROC curve

Signature
matrix-based

exclusion
Not specified Data acquired by

three Turtlebot3
Experimental
environment

Wheel encoders,
IMU, LiDAR,
Marvelmind

system

1 All vehicles are multi-ground vehicles except for [35,36], which are micro aerial vehicles.

6.1.1. Post-Estimation MB-FDE

In the post-estimation scheme, FDE is applied after the localization system has pro-
duced an estimate, such as the pose. First, the localization algorithm performs data fusion,
Bayesian updates, or optimization. Then, faults or outliers are detected. This means mea-
surements are used as they are, known as the sensor level, and fault detection happens at
the system level, like the state or pose. Therefore, detection of faults or outliers happens
after the localization processing is complete; see Figure 11. The following provides an
in-depth review of post-estimation FDE methods found in the literature.

https://www.ipb.uni-bonn.de/datasets/
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Figure 11. Post-estimation FDE process in localization systems.

In [25,26], an Extended Information Kalman Filter (EIF) is introduced. Banks of EIFs
estimate the state using sensors like GNSS, cameras, and odometry. Each filter’s output
is compared to a main filter that combines, fuses, all outputs. Residuals, calculated as
the Mahalanobis distance, were used to identify and exclude deviant filters and their
sensor data.

PL is calculated by over-bounding the EIF error covariance with a Student’s t-
distribution. The degree of freedom for this distribution is adjusted offline during a
training phase. However, this method has limitations. It assumes Gaussian noise, which
doesn’t accurately represent noise during faults or outliers. The thresholding also depends
on this assumption, using Mahalanobis distance compared to a Chi-square distribution.
Additionally, the PL calculation is adjusted offline to find the best degree of freedom for
the t-distribution for a specific trajectory or scenario.

In [27], a Student t-distribution EIF (t-EIF) is utilized, akin to [25,26], but with different
residual generation methods. Instead of Mahalanobis distance, it employs Kullback–Leibler
Divergence (KLD) between updated and predicted distributions. Residual values adap-
tively adjust the t-distribution’s degree of freedom, enhancing robustness against outliers.
Larger residuals indicate noisy measurements, necessitating thicker tails and lower degrees
of freedom, while smaller residuals justify higher degrees of freedom. This adaptation
is governed by a negative exponential model, ensuring flexibility and optimization for
various measurement conditions. PL calculation depends on degrees of freedom at the
prediction and update steps. Errors are adjusted based on the minimum degrees of freedom
between these steps. The final PL formula mirrors that of [25,26]. Figure 12 shows a general
diagram of how the EIF is applied for FDE.

Figure 12. Multisensor fusion with FDE uses camera measurements and the HD map as inputs. In
the context of the information filter for multisensor fusion: Z denotes observations from GNSS or
cameras, X = (x, y, θ) is the state vector, Y is the information matrix, and y is the information vector.
Ii,k and ii,k represent the information contributions from observation Zi. This figure was adopted
from [26].
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A multirobot system with an FDE step is addressed in [59]. The approach utilizes an
EIF-based multisensor fusion system. The Global Kullback–Leibler Divergence (GKLD)
between the a priori and a posteriori distributions of the EIF is computed as a residual. This
residual, dependent on mean and covariance matrices, is utilized to detect and exclude
faults from the fusion process. First, the GKLD is used to detect faults. Next, an EIF bank is
designed to exclude faulty observations. The Kullback–Leibler Criterion (KLC) is then used
to optimize thresholds in order to achieve the optimal false alarm and detection probability.

In [60], a multirobot system uses EIF for localization. Each robot performs local fault
detection based on its updated and predicted states. The Jensen-Shannon divergence (JSD)
is applied to generate the residuals between distributions. Fault detection thresholds are
set using the Youden index from ROC curves. When a fault is detected, JSD is computed
for predictions versus corrections from Gyro, Marvelmind, and LiDAR. Residuals are
categorized based on their sensitivity to different error types and errors from nearby
vehicles. If thresholds are exceeded, residuals are activated using a signature matrix, which
helps detect and exclude faults and detects simultaneous errors. Faulty measurements are
then removed from the fusion process.

In [55,58], the setup is extended with a new FDE approach and batch covariance
intersection informational filter (B-CIIF). Fault detection and exclusion are based on JSD
between predicted and updated states from all sensors.

In [55], a decision tree is employed for fault detection, while a random forest classifier
is used for fault exclusion. Both methods use JSD residuals and a prior probability of the
no-fault hypothesis for training. In contrast, ref. [58] employs two Multi-layer Perceptron
(MLP) models. One for fault detection and the other for fault exclusion. The input to the
MLPs includes residuals and the prior probability of the no-fault hypothesis.

Training data for these machine learning techniques include various fault categories
like gyroscope drift, encoder data accumulation, Marvelmind data bias, and LiDAR errors.
However, the limitation of generalizability remains significant. Since the training data are
specific to certain scenarios, the models may struggle to detect and address faults in new
or unfamiliar environments. This limitation can compromise the overall reliability and
integrity of the system when deployed beyond the scope of the training data.

6.1.2. Pre-Estimation MB-FDE

In the pre-estimation scheme, FDE is applied before the localization estimate is made
at the sensor level. Sensor measurements, such as from LiDAR, cameras, odometry, or
GNSS, are first checked for faults or outliers. This means faults are detected and excluded
before the data are used in the localization system, whether it involves fusion, Bayesian
updates, or optimization; see Figure 13. An in-depth review of pre-estimation FDE methods
from the literature is presented next.

Figure 13. Pre-estimation FDE process in localization systems.

In GNSSs, ref. [45] presents a method to reduce residuals between predicted and
measured pseudo-range data from satellites. They use a Gaussian Mixture Model (GMM)
to handle errors that have multiple modes. Instead of a single linearization point, they
use a distribution over this point, managed by a particle filter. Each particle has a vector
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indicating the weight from each satellite. The particle with the highest total weight is
favored; this is called the voting step. This method relies on data from multiple satellites
and GNSS receiver correlations over time. If any data are missing, the method’s accuracy
declines. Integrity is measured by calculating the likelihood that the estimated pose exceeds
the AL region. Figure 14 illustrates the framework adopted in this work.

Figure 14. The framework addresses GNSS faults with GMM weighting with the voting scheme. This
figure was adopted from [45].

Integrity is assessed using two metrics: hazardous operation risk and accuracy. Accu-
racy measures the probability that the estimated pose is outside the AL, while hazardous
operation risk examines if the estimated position has at least a 50% probability of containing
the true position. An alarm is triggered if either metric exceeds a set threshold, indicating a
loss of integrity.

In [35,36], a vision-based localization system enhances ORB-SLAM2 with FDE tech-
niques. It uses a parity space test to detect faults, addressing one fault at a time by
comparing expected and observed measurements. Faulty features are removed iteratively
until the error hits a threshold. An adaptive residual error calculation accounts for un-
certainties. The modular design allows easy integration with existing SLAM techniques.
PL considers noise from observations and maximum deviation from undetected faults,
calculated as a weighted sum of covariance elements. Improved covariance matrix ele-
ments boost computation accuracy by removing inaccurate features or outliers iteratively.
A threshold ensures a sufficient number of inliers for SLAM operations; if not met, the
location estimate is deemed unsafe.

The technique used for FDE in the image-based navigation system described in [34] is
similar to that of GPS RAIM [61–63], which is based on performing a parity test for FDE as
in [35,36]. PL is calculated based on the maximum slope of the worst-case failure model,
similar to concepts discussed in [46,47]. The author of this work uses a feature-based
tracking method for localization.

Refs. [41,42] present a method to reduce errors by treating GNSS and odometry data
separately. They improve state estimation by using trajectory monitoring and a short-term
memory buffer instead of relying on the standard Markovian assumption. Their technique
estimates states over a finite horizon and uses sensor residuals and variances to weight
GNSS and odometry data.

For fault detection, they calculate sensor residuals, squared errors, and variances. They
then weight GNSS and odometry data based on the ratio of each residual to its standard
deviation. A Chi-square distribution threshold is used for detecting faults. The sensor with
the highest weight is prioritized for exclusion.

This approach relies on hyperparameters for its operation. These include the misde-
tection probability for the protection level calculation and the Chi-square distribution for
fault detection. Additionally, the size of the state buffer is a hyperparameter that should be
selected based on the environment and scenario.
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The technique presented in [39] is customized for FDE in real time within LiDAR
mapping and odometry algorithms. This technique uses a feature-based sensor model
to compute the mean and variance of the latest k innovations for the Extended Kalman
Filter (EKF) setting. This technique adaptively establishes a threshold for fault detection by
using the Chi-square distribution. Thus, the technique can adapt to environmental changes
and sensor conditions. Feature-based FDE technique, dynamic thresholding, and real-time
noise estimates are combined in this technique to effectively detect and exclude faults in
LiDAR odometry and mapping algorithms. The technique lacks a particular formula for
estimating the protection level. Its integrity is, however, evaluated by analyzing critical
parameters, including error boundaries, missed detection rate, and false alarm rate. Among
these parameters, the error bound stands out as a critical signal for integrity assessment,
showing the maximum possible pose error.

In [48], each sensor’s output is evaluated using Hotelling’s T2 test, based on expected
sensor output and covariance. This allows for accurate fault detection by examining
the correlation within the same sensor’s data. By employing the Student t-distribution
to overbound measurement noise and measurement innovation sample covariance to
inflate it, where measurement noise is adaptively updated. The adaptive updating of the
measurement noise covariance is similar to [39]. It takes into account faults and other
outliers adaptively. This application uses a UKF localization-based methodology.

The method in [54] uses raw GNSS measurements for FDE; see Figure 15. Vehicle
pose is predicted using IMU and Visual Odometry (VO). The error between this prediction
and the GPS receiver pose estimate is computed. FDE is implemented using Hierarchical
Clustering [64] to detect and exclude faulty satellite signals. Satellites are divided into three
clusters based on estimated errors: multipath, Non-Line of Sight (NLOS), and Line of Sight
(LOS) without errors. Initially, each satellite signal is considered a cluster, which is then
clustered based on similarity. The three resulting clusters represent the main types of GPS
errors. The LOS cluster, presumed to have the most samples, is used to compare expected
pseudo-range errors. If this error exceeds a preset threshold, the associated satellite is
excluded. The remaining measurements are used to calculate the GPS receiver’s position
and velocity. However, selecting and adjusting thresholds lacks standardization, and the
method to calculate the threshold in [54] is not specified.

Figure 15. The algorithm framework of using hierarchical clustering for FDE. This figure was adopted
from [54].
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6.1.3. Integrated MB-FDE

In the integrated (or embedded) FDE scheme, FDE is incorporated within the lo-
calization process itself, suggesting that the fault detection and exclusion steps occur
simultaneously with the localization algorithm, rather than as a separate phase. As sensor
data are collected, they are immediately checked for faults or outliers, often using a weight-
ing or selection method, before being used for localization. This means that the system
continuously adjusts how each measurement affects the final output, such as the pose.
For example, if a sensor reading is found to be unreliable, it is down-weighted or ignored
during the data fusion or optimization steps. Unlike pre-estimation or post-estimation
methods, which handle faults before or after main processing, integrated FDE handles
faults dynamically as data are processed; see Figure 16. Next, a detailed examination of
integrated FDE methods in the literature is provided.

Figure 16. Integrated FDE process in localization systems.

A GraphSLAM-based FDE technique is used in [65]. GPS satellites are treated as 3D
landmarks by combining GPS data with the vehicle motion model in the GraphSLAM
framework; see Figure 17. The algorithm creates a factor graph using pseudo-ranges, a
motion model, and broadcast signals. The difference between predicted and measured
pseudo-ranges is used to compute residuals, which are weighted in the graph optimization
to detect and reject faulty measurements. The sample mean and covariance of these
residuals form an empirical Gaussian distribution, used for FDE. New residuals must
fall within a 25% region of this distribution to update the mean and covariance. The
algorithm iteratively localizes the vehicle and satellites, eliminating faulty measurements,
and updates the 3D map through local and global optimization steps.

Figure 17. GraphSLAM-based FDE algorithm detects and excludes multiple GPS faults. Orange stars
represent GPS satellite landmarks. Blue triangles show the GPS receiver trajectory estimated by the
GraphSLAM-based FDE. Gray triangles depict the vehicle trajectory estimated using only its motion
model. This figure was adopted from [65].

Building on the previous technique, the authors of [46,47] combine GPS and visual
data for integrity monitoring in a GraphSLAM framework. They use GPS pseudoranges,
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vision pixel intensities, vehicle motion models, and satellite ephemeris to construct a
factor graph. Temporal analysis of GPS residuals and spatial analysis of vision data are
performed. Superpixel-based intensity segmentation [66,67], using RANSAC [68,69], labels
pixels as sky or non-sky to remove vision faults. Residuals for all inputs are included in
the graph optimization, with weights to detect faults and/or outliers. GPS FDE relies on
temporal correlation, while vision FDE uses spatial correlation. A batch test statistic, the
sum of weighted squared residuals, is computed to assess integrity. This statistic follows
a Chi-squared distribution, and the protection level is calculated using the non-centrality
parameter and the worst-case failure mode slope. This approach is illustrated in Figure 18.

Figure 18. An illustration of the GraphSLAM-based integrity monitoring approach combining GPS
and visual data. This figure was adopted from [47].

The method in [51] enhances system integrity by estimating both the robot’s posi-
tion and its reliability. According to [51], reliability is defined as the probability that the
estimated pose error falls within an acceptable range. A modified CNN from [70] identi-
fies localization failures by learning from successful and failed localizations. It converts
CNN output into a probabilistic distribution using a Beta distribution [71], based on a
reliability variable.

The conventional Dynamics Bayesian Network (DBN) model is updated with two
new variables, Figure 19: the reliability variable and the CNN output. The DBN uses a
Rao-Blackwellized Particle Filter (RBPF) to estimate both reliability and position. Over
time, the reliability variable decays if no observations are made. To improve efficiency,
ref. [52] introduces a Likelihood-Field Model (LFM) for calculating particle likelihoods. The
CNN output uses a sigmoid function to indicate localization success. Positive and negative
decisions are modeled with Beta and uniform distributions, respectively, with constants
optimized experimentally.

Despite the LFM’s efficiency benefits, it may reduce data representation, affecting
failure detection accuracy. The method also faces challenges due to the computational
demands of visual data analysis. Domain-specific knowledge and computational resources
are needed to determine the constants for optimal performance.

In [53], a more advanced method extends pose and reliability estimation by incorpo-
rating observed sensor measurements’ class. This approach includes three latent variables:
localization state (successful or failed), measurement class (mapped or unmapped), and
vehicle state. A modified LFM is used for observation sensors, and the proposed model
integrates information about observed obstacles using conditional class probability [72].

In contrast to the previous methods [51,52], which employed a CNN to make decisions,
this strategy uses a basic classifier based on the Mean Absolute Error (MAE) of the residual
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errors. The residual is the difference between the observed beams and the closest obstacle
in the occupancy grid map. The final decision is computed using a threshold. This method
includes both global localization using the free-space feature proposed in [73] and local
pose tracking using the MCL presented in [19]. As such, it can perform relocalization due
to pose tracking failure. The method in [74] is used to fuse the local and global localization
approaches via importance Importance Sampling (IS).

Figure 19. Graphical model for estimating both the robot’s current pose xt and the reliability, rt, of
this estimate. White nodes represent hidden variables, and gray nodes represent observable variables.
The CNN uses sensor observations zt, the map m and the pose xt to make a decision dt. Reliability is
treated as a hidden variable and is estimated using the CNN’s decision dt and the control input ut.
This figure was adopted from [51].

In [44,49], a method is proposed to enhance camera-based localization in GNSS-limited
areas by improving PL calculations. The approach leverages CNNs and 3D point cloud
maps from LiDAR to estimate location error distributions, capturing both epistemic and
aleatoric uncertainties [75,76].

The CNN has two components, Figure 20: one estimates position error, and the other
calculates covariance matrix parameters. It uses CMRNet [77] with correlation layers [78]
for error estimation and a model similar to [79] for covariance.

To handle CNN fragility, the method applies outlier weighting using robust Z-scores.
A GMM is built from weighted error samples to represent position errors and calculate PL
from the GMM’s cumulative distribution function.

However, the method’s effectiveness is limited by the need for large, high-quality
training datasets, which can be labor-intensive and affect accuracy due to variability in
input data and dataset quality.

Figure 20. Architecture of the deep neural network for estimating error distribution using CMRNet
and correlation layers. A similar architecture, CovarianceNet, is used to produce covariance matrix
parameters based on the translation error output. This figure was adopted from [49].
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6.1.4. Model-Based FDE Methods: Summary and Insights

MB-FDE algorithms are promising for fault handling in localization systems but face
scalability and reliability challenges. The reliance on correct sensor data, as well as the
assumption of specific noise distributions, may limit their application in real-world scenar-
ios with a wide range of environments and sensors. Practical implementation is further
complicated by the computational complexity of analyzing several failure hypotheses and
the combinatorial explosion in the number of measurements. Furthermore, the efficiency
of these strategies is strongly reliant on the proper modeling of temporal and spatial cor-
relations, which is not always simple or precise. Overall, while these FDE techniques are
significant advances in maintaining the integrity of localization systems, more research
is needed to overcome their shortcomings and increase their robustness in a variety of
operating environments.

6.2. Coherence-Based Techniques

These techniques use the consistency of data from various sensors or localization
systems to perform FDE. Fundamentally, coherence-based FDE, or CB-FDE, techniques
take advantage of the idea that, in typical operational environments, several estimates of
the same quantity should show coherence or agreement. These estimates can be acquired
by different sensors, systems, or algorithms. Usually, the coherency check is carried out by
weighing the estimates from each source and accepting the set of estimates that satisfy a
threshold test. Alternatively, a test between each pair of estimate sources can be performed
to check for inconsistencies.

To perform a coherence check, as shown in Figure 10, we calculate the pairwise
residuals and use a coherence measure to identify the faulty measurement among y1, y2,
and y3. First, we define the residuals as the differences between each pair of measurements.
These residuals are

r12 = y1 − y2,

r23 = y2 − y3,

r13 = y1 − y3.

(9)

These residuals represent the discrepancies between each pair of measurements. The
coherence between two measurements (or residuals) can be calculated using a similarity
measure, such as the cosine similarity or correlation coefficient. For simplicity, we define
the coherence between yi and yj as the normalized dot product of their residuals. The
coherence between yi and yj is

Coherenceij =
rT

ijrij

∥rij∥∥rij∥
(10)

This coherence measure ranges from 0 to 1, where 1 indicates perfect agreement
between the measurements (i.e., no fault), and 0 indicates a large discrepancy. To detect
a faulty measurement, we compare the pairwise coherencies. Let the coherencies be
computed as

Coherence12 =
rT

12r12

∥r12∥∥r12∥

Coherence23 =
rT

23r23

∥r23∥∥r23∥

Coherence13 =
rT

13r13

∥r13∥∥r13∥
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Now, we apply a threshold for coherence, γ, where measurements with coherence
values below this threshold indicate a faulty measurement.

The faulty measurement is detected based on its incoherence with the others. We
define a decision rule to flag the faulty measurement:

Faulty Measurement =


y1 if Coherence12 < γ and Coherence13 < γ

y2 if Coherence12 < γ and Coherence23 < γ

y3 if Coherence23 < γ and Coherence13 < γ

Here, the measurement with the lowest pairwise coherence compared to the others is
flagged as the faulty one.

Once the faulty measurement is identified, it can be excluded from further processing
or estimation.

Remaining Measurements =


{y2, y3} if y1 is faulty

{y1, y3} if y2 is faulty

{y1, y2} if y3 is faulty

The above example is just one case of many variations in coherence-based methods,
which lie in the way coherency checks are generally performed. These variations depend
on the localization algorithm or approach and the types of input utilized. The following
in-depth analysis will examine a wide range of algorithms and approaches, each providing
unique perspectives and techniques for CB-FDE techniques. An innovative approach for
detecting localization failures is introduced by [80]. It examines the coherency between sen-
sor readings and the map by analyzing latent variables. The model uses Markov Random
Fields (MRF) [81,82] with fully connected latent variables [83] to find misalignments. These
latent variables can be aligned, misaligned, or unknown, based on residual errors between
measurements and the map.

The method integrates with the localization module and uses the 3D Normal Distri-
bution Transform (3D-NDT) scan-matching technique [84,85]. It estimates the posterior
distribution of latent variables from residual errors and applies a probabilistic likelihood
model. The model includes a hyperparameter and selection bias. Failure probability is
approximated using sample-based methods, though the precision of this approximation
is not verified. The model’s multimodality, due to latent variables, may not capture all
possible outcomes.

The technique from [37] integrates data from LiDAR, cameras, and maps into a unified
model, as shown in Figure 21. It maintains data consistency through redundancy and
weighting. The method aligns sensor data with map data using GPS positions. A Feature
Grid (FG) is used to label physical areas and assign weights based on distance. This FG
model overcomes limitations of traditional geometrical models by representing different
features with labels and evaluating coherence between feature grids; see Figure 22.

The particle filter from [86] is adapted for map matching, creating a uniform integrity
testing framework. This approach avoids specific thresholds and does not rely on particular
error noise models. The PL, including the Horizontal Protection Level (HPL), is calculated
using the variances of particle distributions from sensor combinations, focusing on average
standard deviation.



Sensors 2025, 25, 358 26 of 41

Figure 21. Framework for assessing integrity by ensuring consistency across multiple data sources.
This figure was adopted from [37].

The technique in [87] uses multiple localization systems to detect and recover from
faults. It combines an EKF with a Cumulative Sum (CUSUM) test [88] to detect faults and
estimate the time when they occur. The EKF tracks outputs from various systems, compar-
ing them to find deviations. The CUSUM test helps reduce false alarms by monitoring these
deviations. When a fault is detected, the system uses stored sensor data for position estima-
tion based on the fault time. This method does not need a specific fault model, simplifying
implementation. However, it lacks the ability to exclude faults and relies on assumptions
about system consistency, which may lead to false alarms or missed detections.

The approach in [89] uses EKF for sensor fusion in SLAM. It integrates multiple
sensors, including MarvelMind for localization, gyroscopes, encoders, and LiDAR, with
two EKFs: EKF-SLAM1 processes encoder and LiDAR data, while EKF-SLAM2 handles
encoder and gyro data. Faults are detected by comparing Euclidean distances between EKF
positions and MarvelMind data against a threshold. A large residual indicates a fault if it
exceeds this threshold. Faults are identified by specific residual subsets, simplifying fault
exclusion in sensors like gyroscopes and indoor GPS. When both the encoder and laser
rangefinder fail, angular velocities are compared to find the faulty sensor. This method
requires a global position estimate from Marvelmind to function correctly.

Research by [38] introduces a method for enhancing fault tolerance in multisensor
data fusion systems. It uses two separate data fusion systems to ensure that only one fault
occurs at a time. When a fault is detected, the system compares outputs from duplicated
sensors and data fusion blocks. It measures the Euclidean distance between two EKF
outputs and checks it against a preset threshold. If the distance is too high, it indicates a
fault. The process involves two steps: comparing residuals and sensor outputs. Hardware
faults are identified by comparing sensor outputs, while faulty localization systems are
detected through residual comparison. The system recovers by using error-free localization
values. However, setting detection thresholds can be expensive and context-specific.



Sensors 2025, 25, 358 27 of 41

In [90], a combined approach of model-based and hardware redundancy addresses
drift-like failures in wheels and sensors. Model-based redundancy uses a mathematical
model to mimic component behavior. The technique employs a bank of EKF and three
gyroscopes, each assigned to specific faults, producing distinct residual signatures for fault
detection. Residuals are used to identify faults in wheels, encoders, and gyroscopes. A fault
is flagged if the residual exceeds three times its standard deviation for a set number of times.
Simulations demonstrate the technique’s effectiveness in detecting sensor and actuator
failures. However, the initial thresholds for fault detection, based on the three-sigma rule,
do not adapt well to varying conditions. This can lead to false alarms or missed detections,
affecting the system’s accuracy in dynamic environments.

Figure 22. Feature grid representing the vehicle’s localization. The Feature Grid illustrates data
consistency across LiDAR, camera, and map sources. It includes the detection of road surfaces (red),
lane markings (blue), other surfaces (green), and unclassified points (black). PL is indicated based on
the variances of particle distributions. This figure was adopted from [37].

In [91], a process model predicts the initial pose by integrating data from stereoscopic
systems, LiDAR, and GPS for vehicle localization. GPS provides the absolute position,
while stereoscopic systems and LiDAR estimate ego-motion. The method uses the extended
Normalized Innovation Squared (NIS) test to ensure sensor coherence before data fusion.
Faulty sensor observations are removed before integration. LiDAR accuracy is improved
with Iterative Closest Point (ICP) and outlier rejection. Sensor coherence is checked using
the extended NIS test. An Unscented Information Filter (UIF) integrates data from multiple
sensors, minimizing error accumulation. Parity relations [92], calculated with Mahalanobis
distance, help detect faults.

However, this method assumes only one fault occurs at a time, which may not reflect
real-world scenarios. It also assumes Gaussian sensor readings, which may not be accurate
in complex situations. Moreover, the Gaussian assumption may not handle noise or outliers
efficiently, potentially leading to incorrect fault detection. Accurate sensor modeling and
calibration are challenging, and computational costs increase with more sensors.

In [93,94], the maximum consensus algorithm localizes the vehicle. Ref. [93] uses
LiDAR data, while [94] converts 3D LiDAR point clouds into 2D images. An approximate
pose is aligned with a georeferenced map point cloud. The search for the vehicle’s position
is limited to a predefined range, ensuring the true position is within it. Candidate positions
are discretized, and a consensus set is created for each cell by counting matches between
map points and sensor scan points, using a distance threshold and classical ICP cost
function [95–98].

An exhaustive search finds the global optimum by identifying the transformation
with the highest consensus. Despite the exponential cost with more dimensions, the search
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becomes constant with fixed dimensions. The algorithm covers the entire objective function
distribution, and parallel processing is facilitated by simple count operations. Real-time
applications benefit from discrete optimization techniques like branch-and-bound [99,100],
which speed up computations.

However, ref. [93,94] have limitations due to their simplistic counting approach. It
does not fully account for the importance of correspondences in vehicle pose estimation,
especially in urban environments where most matches are from the ground and facades.
Ref. [94] introduces a new objective function that uses normal vectors for point-to-surface
matching, improving constraints, especially longitudinally. Errors are measured using the
covariance matrix of position parameters, with a smaller trace (The trace of a matrix is the
sum of its diagonal elements.) indicating fewer errors. Helmert’s point error, the inverse of
the matrix trace, scores solution quality, guiding localization. The algorithm uses a physical
beam model [19] to create a probability grid from LiDAR data, defining the PL from grid
cells with a probability p > 1 × 10−7. A significant drawback is the grid-based search
constraint, which limits precision to the resolution of the search space. Handling irregular
point cloud distributions remains challenging, even with point-to-surface mapping.

Coherence-Based FDE Methods: Summary and Insights

CB-FDE techniques have a number of shortcomings. As the number of sources rises,
scalability problems occur, and comparisons grow quadratically. For example, 10 sources
require 45 comparisons, whereas 20 sources demand 190. This leads to increased computa-
tional complexity, making real-time problem detection difficult owing to processing delays.
Additionally, these techniques rely on redundancy, which is less successful in systems with
fewer sources because it requires multiple sources to provide the same value. Furthermore,
as CB-FDE performs best with errors that consistently affect all sources, it is less effective
with irregular error patterns.

Table 4 summarizes all MB-FDE methods and compares them using various criteria.

Table 4. Summary of coherence-based fault detection and exclusion methods 1.

Reference Algorithm Coherency Check PL Evaluation Data Sensor

[37] Particle filter-
based map-
matching

FG cell’s weight is
used to weight each

source and a threshold
is applied to detect the

incoherent source

HPL determined by
the variances of

particle distributions
from each sensor

combination used in
the localization

algorithm

Compare the HPL
calculated by this

method with
historical values

in [101]

KITTI with different
scenarios Cameras, LiDAR, GPS

[80] 3D-NDT

MRF that exploits the
full correlation

between the sensor
measurement

N/A Root Mean
Square error

SemanticKITTI
dataset, and data

acquired on Japanese
public roads

LiDAR

[87] EKF Cumulative Sum test N/A
Observing when a
faulty localization
system is detected

Data acquired by
the vehicle Odometry and LiDAR

[89] EKF-SLAM

Euclidean distances
between positions
from the EKFs and

MarvelMind are
measured and
compared to a
predetermined

threshold

N/A
Compare the obtained
pose with the ground

truth trajectory

Acquired data
through an

experimental
environment

EKF1 (encoder and
LiDAR), EKF2
(encoder and
gyroscope),

Marvelmind
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Table 4. Cont.

Reference Algorithm Coherency Check PL Evaluation Data Sensor

[38] EKF

Euclidean distance
between the two EKF

systems output is
calculated and

compared with a
threshold

N/A

False positive rate, no
detection rate,
detected errors

rate, etc.

Data acquired in the
city of Compiègne,

France; also, a
simulation

environment by using
real data

processed offline

INS, GPS, wheel
sensors, gyrometer,
and steering angle

sensor

[90] EKF

8 residuals are
generated and the one
that exceeds 3σ for a
specific number of

time steps is excluded

N/A False alarm Simulation models Gyroscopes and
wheel encoders

[91] UIF

Extended NIS test
where the sensor of
increased residual is

excluded

N/A
Compare with the

ground truth
trajectory

Real data acquired by
an experimental

vehicle

GPS, stereoscopic
system, LiDAR

[93,94] Maximum
consensus

A consensus set for
each pose candidate

Subset of grid cells
that together account

for a probability
p > 1 − 10−7

N/A

Measurement data
were recorded in an

inner-city area with a
dense building

structure

LiDAR

1 All Vehicles are Ground Vehicle.

7. Robust Modeling and Optimization
FDE methods primarily focus on qualifying system integrity by detecting and manag-

ing faults and outliers. Qualification in this context means determining whether the system
is functioning correctly by identifying when and where things go wrong. However, FDE
methods often fall short in the quantification of integrity, which involves measuring the
extent or impact of these faults. Without quantification, it is difficult to assess how errors
affect the overall system performance. To address this gap, additional techniques, such as
PL, are required to provide a numerical measure of system integrity.

Robust modeling and optimization techniques address both qualification and quantifi-
cation. These methods do not depend on specific fault models; instead, they use general
approaches to handle a wide variety of faults and noise. This allows for both a thorough as-
sessment of whether the system is performing correctly (qualification) and a measurement
of how well it is performing (quantification). By providing probabilistic interpretations of
error distributions, robust methods give a more complete picture of system integrity.

In localization tasks, the common assumption that errors follow a Gaussian distri-
bution often fails. This is not only because of linear approximations in algorithms like
factor graphs and Bayesian methods but also due to other factors such as the presence of
unknown outlier distributions; see Section 2.1.

These outliers can arise from various front-end [102] processes involved in building
the factor graph, such as the following:

• Image or LiDAR Scan Matching Errors [103–105]: In odometry, mismatches in image
sequences or LiDAR scans can introduce significant outliers.

• Loop Closure Detection [106]: In SLAM-based localization, incorrect identification of
loop closures can distort the graph and lead to substantial errors.

• Erroneous Map Queries [107–109]: In map-based localization, errors can occur during
the process of querying the map, particularly in the absence of accurate GPS data.

• Mapping Errors [105,110–112]: Outliers can also arise due to inaccuracies in the
map itself, which may result from errors accumulated during the map generation
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process. These mapping errors can propagate through the system, leading to further
mismatches during map matching and adding additional outliers.

These front-end issues, if not properly handled, can weaken both the qualification and
quantification of system integrity.

Robust modeling techniques are particularly valuable in these scenarios because they
can manage diverse sources of error without needing detailed models of every possible
fault. Unlike traditional methods, robust algorithms dynamically adapt to uncertainties in
real time, which is crucial in complex, changing environments. These algorithms effectively
mitigate the impact of various uncertainties, making them essential for both qualifying and
quantifying system performance.

In localization, robust modeling is often applied using a factor graph model [113–115],
as shown in Figure 23. In this model, a graph representation is adopted, where nodes
correspond to different states or poses, and edges represent constraints between them.
These constraints can come from various sources, such as the following:

• Odometry: Using methods like ICP from image sequences or LiDAR scans, or motion
models from IMU data;

• GPS: Providing positional constraints based on satellite data;
• Map Matching: Aligning sensor data with a known map;
• Landmarks Observations: Constraints from observing known landmarks;
• Calibration Parameters: Constraints related to sensor calibration.

These constraints generate residuals, and the sum of these residuals represents the
total energy or loss of the graph. The goal of optimization is to minimize this loss, thereby
refining the graph’s configuration to best fit the sensory information. Factor graph opti-
mization can be performed either online, as data are received, or offline, using a batch
of data.

Figure 23. The factor graph illustrates the pose estimation problem with various constraints. The
poses x0 to x5 are represented as circular nodes, connected by different types of factors, indicated
by colored filled circles. Odometry constraints (blue) are binary factors linking successive poses,
representing the motion model between consecutive states. GPS constraints (red) are unary factors
applied to specific poses, reflecting time-dependent GPS measurements. The map matching constraint
(green) is a multi-node factor connecting all poses, ensuring alignment with a known map. In this
figure we ignore the prior over initial state.

To mathematically model this process, the optimization problem can be formalized
as follows:

x∗ = min
x ∑

i
ρ(||r(x)||1) (11)

where
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• ri(x) is the residual for the i-th constraint;
• ρi(·) is a robust kernel (e.g., Huber, Cauchy) that reduces the influence of large residu-

als caused by outliers.

The residuals are defined generically over manifolds as the abstract difference between
measurements zi and predictions ẑi(x). This abstract difference is expressed using the
boxminus operator (⊟) [116] to ensure proper handling of the manifold structure. The
residual for factor i is given by

ri(x) = ẑi(x)⊟ zi (12)

where

• ẑi(x) is the predicted measurement based on the current estimate of the state x;
• zi is the observed measurement for factor i;
• ⊟ denotes the manifold-aware difference, which accounts for the non-Euclidean nature

of the state space.

Solving Equation 12 using the iteratively reweighted least squares (IRLS) [117–120]:

x∗ = min
x ∑

i
wi||ri(x)||2 (13)

where the weights wi are defined as

wi =
∂||ri(x)||1

∂x
∂ρ(||ri(x)||1)

∂||ri(x)||1
(14)

The optimization process alternates between solving the weighted least squares prob-
lem and updating the weights wi based on the residuals ri(x) of the current solution. This
iterative process continues until convergence criteria (e.g., residual reduction or parameter
update threshold) are satisfied.

By addressing both the qualification and quantification of errors, robust modeling
ensures that the system not only identifies faults but also accurately measures their impact,
leading to a resilient and precise localization system. This approach is particularly crucial
in environments where the quality of the sensor’s data can significantly influence the
overall performance.

This section reviews the primary algorithms and techniques used to create robust
localization algorithms.

7.1. Analysis of Robust Modeling and Optimization Techniques

Current localization methods often use least squares optimization but face challenges
when dealing with outliers like data association errors and false positive loop closures.

To address these issues, ref. [121] introduced a solution that improves the back-end
optimization process. Instead of keeping the factor graph structure or topology fixed,
this method allows the graph topology to change dynamically during optimization. This
flexibility helps the system detect and reject outliers in real time, making SLAM more
robust. The method uses switch variables, see Figure 24, for each potential outlier constraint
or edge. These variables help the system decide which constraints to include or exclude
based on their accuracy. Essentially, switch constraints (SC) act as adjustable weights for
each factor in the factor graph. These weights are optimized along the map for SLAM [121]
and the pose for GNSS-based localization [122,123].

This approach is similar to FDE because it automatically identifies and removes
erroneous data associations or pseudo measurements, ensuring the system uses only
reliable data [121–123]. However, this approach introduced extra switch variables for each
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potential outlier, which increased both the computational cost and complexity of each
iteration. As a result, the system could become less efficient and slower to converge.

Figure 24. A binary weight ω2,j ∈ {0, 1} is assigned to each loop closure constraint. When ω2,j = 1,
the constraint remains active (top). When ω2,j = 0, the constraint is either disabled or removed
(bottom). If these weights are treated as variables in the optimization process, the constraints can be
adjusted or excluded during optimization. This figure was adopted from [124].

In contrast, Dynamic Covariance Scaling (DCS) [125–128] offers a more efficient
method for managing outliers in SLAM without adding extra computational load. DCS
adjusts the covariance of constraints based on their error terms, changing the information
matrix without needing additional variables. This makes the optimization process more
efficient and speeds up convergence. The scaling function in DCS is determined analytically
and is related to weight functions in M-estimation [129], which reduces the number of
parameters to estimate compared to the SC approach, since DCS does not require iterative
optimization of the scaling function.

The earlier methods using SC and DCS had challenges with tuning the scaling function
based on error and also required manual adjustment of parameters [130]. The method
in [131] addresses this issue with self-tuning M-estimators. This approach directly adjusts
the parameters of M-estimator cost functions, which simplifies the tuning process.

The self-tuning M-estimators method connects M-estimators with elliptical probability
distributions, as introduced in [131]. This means that M-estimators can be chosen based on
the assumption that errors follow an elliptical distribution. The algorithm then automati-
cally adjusts the parameters of the M-estimators during optimization, selecting the best
one based on the data’s likelihood.

A broader approach to robust cost functions is introduced in [132]. This method
improves algorithm performance for tasks like clustering and registration by treating
robustness as a continuous parameter. The robust loss function in this framework can handle
a wide range of probability distributions, including normal and Cauchy distributions,
by using the negative log of a univariate density. By incorporating robustness as a
latent variable in a probabilistic framework, this approach automatically determines
the appropriate level of robustness during optimization, which eliminates the need for
manual tuning and provides a more flexible solution.Building on this, ref. [133] presents
a method that dynamically adjusts robust kernels based on the residual distribution during
optimization. This dynamic tuning improves performance compared to static kernels and
previous methods. The key difference from [132] is that the new method covers a wider
range of probability distributions by extending the robust parameter’s range. The shape of
the robust kernel is controlled by a hyperparameter that adjusts in real time, enhancing
both performance and robustness. Figure 25 represents various robust kernels and the
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switching between them during optimization. The switching between these kernels during
optimization occurs due to the fact that robustness is modeled by an optimizable latent variable.

In contrast, ref. [134] introduces a probabilistic approach to improve convergence.
This method fits the error distribution of a sensor fusion problem using a multimodal GMM.
In real-time applications like GNSS localization, the adaptive mixing method adjusts to the
actual error distribution and reduces reliance on prior knowledge. This approach effectively
handles non-Gaussian measurements by accurately accounting for their true distribution
during estimation. In sensor fusion, where asymmetric or multimodal distributions are
common, this method provides a probabilistically accurate solution. It uses a factor graph-
based sensor fusion approach and optimizes the GMM adaptation with the Expectation
Maximization (EM) algorithm [135,136].

Figure 25. The top plot displays the robust loss functions: L2 (Squared) loss, L1 (Absolute) loss, Huber
loss, Cauchy loss, and Geman–McClure loss, each depicted with distinct line styles. The bottom plot
shows the associated probability distributions, including Gaussian PDF for L2 loss, Laplacian PDF
for L1 loss, and the specific distributions for the other kernels. Notably, Geman–McClure loss has no
associated probability distribution, represented by a horizontal zero line.

In [44,137], a robust multisensor state estimation method combines a Particle Filter
(PF) with a robust Extended Kalman Filter (R-EKF) using RBPF. It replaces the Gaussian
likelihood with robust cost functions like Huber or Tukey biweight loss [129] to better
handle non-Gaussian errors and outliers unlike standard EKF methods [138,139]. The
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approach uses PF for linearization points and R-EKF for state estimation, integrating
estimates across points with resampling [140]. Position error bounds are estimated using a
GMM and Monte Carlo integration [19], addressing orientation uncertainty and providing
robust probabilistic bounds. Limitations include sensitivity to initial parameters, potential
convergence to local optima, and added complexity in tuning and balancing loss terms,
which can introduce biases or errors.

7.2. Robust Modeling and Optimization: Summary and Insights

In conclusion, this section underscores the importance of both FDE techniques and
robust modeling approaches for enhancing the integrity of localization systems. FDE
qualifies system integrity by managing faults and deviations but doesn’t measure their
impact on performance. Robust modeling qualifies and quantifies integrity by handling
errors and providing probabilistic error bounds. Specifically, robust modeling offers two
key features: it associates a probabilistic distribution over the error and dynamically
accounts for variations in system uncertainty as described in [132,133]. Thus, to fully
address the integrity of the localization system, integrating FDE or robust modeling with
PL is essential.

Lastly, while PL quantifies integrity, the evaluation of integrity varies across applica-
tions. This typically involves computing the Integrity Risk (IR) and comparing it with the
Total Integrity Risk (TIR) to determine the likelihood of the true position exceeding the
provided PL, as described in Section 5.

Table 5 summarizes all the robust methods and compares them using various criteria.

Table 5. Summary of Robust Algorithms 1.

Reference Algorithm PL Evaluation Data Sensor

[137] RBPF R−EKF Compute the maximum
quantile for a specific TIR

Compare with base lines
such as EKF with GNSS
measurements only, EKF
with MD-VO 2 only and

EKF with GNSS
measurements and MD-VO

Hong Kong UrbanNav
dataset [141]

GNSS, LiDAR, camera,
and IMU

[121] Factor Graph
+ SC

N/A Compare with the
ground truth

Synthetic, like Manhattan,
and real-world datasets,

e.g., Intel
Odometry and Camera

[122] Factor Graph
+ SC

N/A Compare with the
ground truth real dataset Odometry and

GNSS receiver

[125] Factor Graph
+ DCS

N/A Compare with the results
of SC [122]

Synthetic, like Manhattan,
and real-world datasets,

e.g., Intel
Odometry and Camera

[131] Factor Graph
+ Self tuning
M-Estimator

N/A
Compare the normalized

squared error for different
M-estimators

real data Four monocular fish-eye
cameras

[133] ICP + Bundle
Adjustment

N/A
Compare with static kernels,

with [132] as well as
SuMa 3 [142]

KITTI for ICP and CARLA
simulator[143] for
bundle adjustment

LiDAR for ICP, and camera
for bundle adjustment

[134] Factor Graph
+ EM

N/A Chemnitz City and
smartLoc [144] dataset N/A GNSS receiver

and odometry

1 All Vehicles are Ground Vehicle. 2 Monocular-Depth Visual Odometry (MD-VO) 3 A dense mapping approach
called Surfel-based Mapping (SuMa).

8. Conclusions
In conclusion, this survey paper presents several significant contributions to the field

of integrity methods in localization systems. It identifies a crucial gap in the research on
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integrity methods for non-GNSS-based systems, highlighting the need for more efforts in
this area.

While 73.3% of surveyed literature focuses on GNSS-based systems, only 26.7% covers
non-GNSSs that use various sensors and approaches, such as cameras, LiDAR, fusion,
optimization, or SLAM. Furthermore, among these, only a small fraction specifically
explores protection level calculations.

This paper introduces a unified definition of integrity that encompasses both qual-
itative and quantitative aspects, cf. Section 4. The new definition integrates robustness,
outlier management, and deviation measures, providing a holistic evaluation of localiza-
tion systems. The proposed framework improves upon existing definitions by offering
a comprehensive view that includes the system’s alignment with reality and detailed
error handling.

The survey reviews and refines the definitions of PL, cf. Section 5. It points out that cur-
rent definitions do not account for all uncertainties and limitations from system components
and algorithms. The new definition of PL provided here addresses these gaps by requir-
ing a real-time estimate of PL. This definition facilitates effective adjustment to changing
environments and sensor conditions, ensuring real-time system integrity assessment.

The survey provides a detailed review of FDE methods. The FDE techniques are
categorized into model-based and coherence-based approaches, examining their appli-
cations, effectiveness, and limitations. Model-based FDE methods are further divided
into post-estimation, pre-estimation, and integrated-processing categories. While these
methods are promising for fault handling, they face challenges related to scalability, reliabil-
ity, computational complexity, model selection, and accurate modeling. Coherence-based
FDE techniques also encounter issues with scalability and effectiveness, particularly with
irregular error patterns.

Moreover, the paper introduces robust modeling and optimization as essential meth-
ods for integrity. Unlike traditional FDE methods that focus primarily on qualification,
robust modeling addresses both qualification and quantification. It provides probabilistic
error bounds and adapts to variations in system performance, offering a more compre-
hensive view of integrity. This approach allows for a thorough assessment of system
performance and measurement of how well it is functioning.

Finally, the survey includes comparative tables that summarize and evaluate various
integrity methods, highlighting their strengths and limitations. This comparative analysis
provides a clearer understanding of how different methods can be applied across various
localization systems.

Overall, this paper offers a valuable reference for researchers and practitioners, pre-
senting a detailed review of integrity methods, new definitions, and a comprehensive
classification framework. It sets a foundation for future research and development, aiming
to enhance the safety and efficiency of localization technologies by addressing key gaps
and offering a more complete understanding of integrity and protection levels.
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