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Abstract: Universal image segmentation aims to handle all segmentation tasks within a
single model architecture and ideally requires only one training phase. To achieve task-
conditioned joint training, a task token needs to be used in the multi-task training to
condition the model for specific tasks. Existing approaches generate the task token from
a text input (e.g., “the task is panoptic”). However, such text-based inputs merely serve
as labels and fail to capture the inherent differences between tasks, potentially misleading
the model. In addition, the discrepancy between visual and textual modalities limits the
performance gains in existing text-involved segmentation models. Nevertheless, prevailing
modality-alignment methods rely on large-scale uni-modal encoders for both modalities
and an extremely large amount of paired data for training, and therefore it is hard to
apply these existing models to lightweight segmentation models and resource-constrained
devices. In this paper, we propose Adaptive Feature Alignment (AFA) integrated with a
learnable task token to address these issues. The learnable task token automatically captures
inter-task differences from both image features and text queries during training, providing a
more effective and efficient solution than a predefined text-based token. To efficiently align
the two modalities without introducing extra complexity, we reconsider the differences
between a text token and an image token and replace image features with class-specific
means in our proposed AFA. We evaluate our model performance on the ADE20K and
Cityscapes datasets. Experimental results demonstrate that our model surpasses baseline
models in both efficiency and effectiveness, achieving state-of-the-art performance among
segmentation models with a comparable amount of parameters.

Keywords: computer vision; universal image segmentation; multimodal learning; feature
alignment

1. Introduction
Image segmentation aims to interpret an image by segmenting different objects from

each other presented in the image. Based on segmentation principles, three different
segmentation tasks are defined. Semantic segmentation classifies each pixel by category,
and instance segmentation classifies each pixel, while also distinguishing between different
instances of the same object class. Panoptic segmentation combines both semantic and
instance segmentation to provide a more comprehensive understanding of an image.

To unify these tasks within a single network architecture, MaskFormer [1,2] treats
image segmentation as a mask classification problem. It introduces a transformer decoder
module from DETR [3] and uses object queries to progressively refine region proposals
for final prediction. However, this approach requires multiple training cycles to train the
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model for each segmentation task separately. To address this limitation, OneFormer [4]
enhances Mask2Former [2] by introducing a task-conditioned joint training scheme. This
method helps the model adapt to different tasks by conditioning object queries with a
task token generated from a predefined text input: “the task is {TASK}", where {TASK} is
uniformly sampled from {semantic, instance, panoptic} and assigned to each image during
training. However, this predefined task input merely provides the task name and fails
to capture the intrinsic distinctions between different segmentation tasks. In addition,
the predefined task token for a specific task remains constant after training, leading to
unnecessary computational overhead during evaluation. To address these issues, we
propose the use of learnable task tokens that offer several advantages over predefined
ones. First, a learnable task token can acquire comprehensive and robust representations
of cross-task distinctions beyond what a predefined task token can capture, as it can be
updated automatically through interactions with image and text modalities during training.
Second, learnable task tokens can be directly utilized during inference without the need for
generation, thereby reducing computational costs and improving efficiency. To implement
this, we define a set of learnable parameters in our model to replace the predefined task
tokens, with each parameter corresponding to one of the segmentation tasks. Experimental
results demonstrate that this straightforward approach of using learnable task tokens
significantly enhances the model’s performance, particularly in semantic segmentation.

To incorporate text supervision into image segmentation, OneFormer [4] integrates a
query–text contrastive loss between object queries and text queries using a fixed one-to-one
matching mechanism. In this step, text supervision is extracted from ground-truth labels to
produce the text queries. However, the text-based supervision in OneFormer [4] involves
significant redundancy due to padding operations. To address this, our previous work,
EQO [5], redesigns the text template for extracting supervisory information and proposes
an attention-based contrastive loss, achieving parameter and computation efficiency. De-
spite the improvements made by EQO [5], cross-modality differences remain between the
two branches of the model throughout the training stage. For example, in [4,5], the image
branch consists of a complete universal image segmentation model, while the text branch
includes a uni-modal encoder that processes the textual modality only. The query–text
contrastive loss is computed without aligning features from the two modalities. Recent
studies [6,7] have shown that learning a joint embedding space across different modalities
can enhance performance in downstream vision tasks. Motivated by this, we hypothe-
size that aligning the two modalities in EQO [5] could further improve its performance.
However, existing methods [6,8,9] for modality alignment often rely on large-scale, compu-
tationally intensive encoders and vast image-paired training data, which are not friendly
to lightweight segmentation models trained on resource-constraint devices. To achieve
efficient alignment without these resources, we address the disparity in information density
between image tokens and text tokens that can necessitate significant computational costs
and extensive training data for alignment. Specifically, we utilize ground-truth binary
masks to compute class-specific means over foreground regions, and replace the original
image features in the alignment process. This approach facilitates efficient and effective
modality alignment in a segmentation model without introducing extra complexity.

We name our proposed framework as Adaptive Feature Alignment (AFA), a novel
approach to address the limitations of existing image segmentation models that utilize text
supervision. A learnable task token is integrated with AFA that simultaneously captures
cross-task differences from both image features and textual supervision. Furthermore, AFA
reinterprets the cross-modality differences within text-guided segmentation models and
presents an efficient and effective modality alignment method by leveraging the semantic
equivalence between text queries and class-specific means.
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Our major contributions are summarized as follows:

• Identifying Limitations in Text-Supervised Universal Image Segmentation Models:
We reveal the limitations of universal image segmentation models that utilize text
supervision. Specifically, predefined text inputs offer limited guidance on inter-task
differences for generating task tokens. Moreover, the cross-modality barrier between
the image and text branches of the model makes it challenging to effectively learn
from text supervision.

• Proposing Adaptive Feature Alignment (AFA): We introduce Adaptive Feature Align-
ment (AFA), which incorporates a learnable task token to achieve cross-modality
alignment in text-supervised image segmentation. This approach enhances adaptabil-
ity to different segmentation tasks and improves both segmentation precision and
computational efficiency.

• Demonstrating Superior Performance through Comprehensive Evaluation: We
evaluate our model across three segmentation tasks using two datasets—ADE20K [10]
and Cityscapes [11]. Our model surpasses its meta-architecture [5] while achieving
gains in model efficiency and computational complexity reduction. Compared to
other universal segmentation models of similar size, our model exhibits even greater
performance advantages. Specifically, on the ADE20K dataset, we achieve 44.4 PQ in
panoptic segmentation, 50.1 mIoU in semantic segmentation, and 29.3 AP in instance
segmentation. On the Cityscapes dataset, our approach achieves 81.0 mIoU (single-
scale), 42.4 AP, and 65.3 PQ. Additionally, we conduct extensive and detailed analyses
of our approach.

The remainder of this paper is organized as follows. Section 2 reviews recent works
closely related to ours. Section 3 details our proposed approach. Section 4 presents the
experimental results and analyses of our model. Section 5 discusses the limitations of our
approach. Finally, we conclude the paper and summarize its contributions in Section 6.

2. Related Work
Universal Image Segmentation. A universal segmentation model aims to perform se-

mantic, instance, and panoptic segmentation tasks using a single network. The MaskFormer
framework [1,2] achieves this by treating all segmentation tasks as mask-classification
problems. However, it still requires multiple training runs, each dedicated to a specific
segmentation task. To address this limitation, OneFormer [4] introduces a multi-task train-
ing strategy that enables universal segmentation with a single training cycle. Building
upon OneFormer, EQO [5] identifies redundancy in its text supervision. It presents an
efficient text template to extract text-based supervisory information from visual annotations.
Additionally, EQO introduces an attention-based contrastive loss that supports one-to-
many matching between text queries and object queries. This loss enhances performance
by aligning with the nature of object queries, where one query can capture objects from
multiple categories. Despite these advancements, cross-modality discrepancies and the use
of a vague predefined task token continue to hinder further performance improvements. To
address these challenges, our proposed method aims to align the modalities and reinforce
inter-task distinctions during training.

Cross-Modality Alignment. Cross-modality alignment is presented to learn a joint
embedding space between two different modalities. CLIP [8] processes image–text pairs
using two separate encoders to obtain image and text embeddings. Contrastive learning
is then applied between these two sets of embeddings, with the objective of aligning the
two modalities by maximizing the similarity between each image embedding and its corre-
sponding text embedding. This strategy enables the pre-trained model to adapt effectively
to downstream tasks, even in zero-shot and open-vocabulary scenarios. Following this



Sensors 2025, 25, 359 4 of 17

approach, CoCa [12] aims to enhance the performance of image–text pre-training by intro-
ducing an image captioning loss, further strengthening the alignment between images and
textual descriptions. FILIP [13] achieves finer-grained alignment by maximizing the token-
wise similarity between the two modalities, allowing for more detailed correspondence
between image regions and words. Numerous other works [8,9,14–19] have continued
to contribute to this area by exploring various strategies for multimodal representation
learning. Furthermore, some methods [6,7] extend the concept of image–text alignment to
bind any two modalities using contrastive learning. These approaches aim to learn a joint
embedding space that accommodates multiple modalities, thereby facilitating cross-modal
understanding and interaction. Motivated by these works, we believe incorporating modal-
ity alignment has the potential to further enhance the performance of a segmentation model
with text supervision. However, most of these approaches require large-scale encoders
and web-scale image-paired data. For instance, in [6], an image encoder utilizes a ViT-H
architecture [20] with 630 million parameters and a text encoder comprising 302 million
parameters [21]. Such approaches are impractical for lightweight segmentation models with
text supervision. To address this limitation, we propose an approach to achieve efficient
cross-modality alignment.

Image Segmentation with Text Supervision. Recent research has explored various
strategies for improving image segmentation with text supervision. One approach is open-
vocabulary segmentation [22–24], which leverages pre-trained vision–language models
by fine-tuning on manually annotated images. Another line of work focuses on using
text supervision solely during training [25,26]. On the other hand, UniLSeg [27] fuses
images and text prompts in a joint embedding space for universal segmentation, while
OMG-Seg [28] unifies multiple segmentation tasks—including image, video, and open
vocabulary—in a shared decoder. Building on OMG-Seg, OMG-LLaVA [29] integrates rea-
soning across image, object, and pixel levels. Meanwhile, diffusion-based methods [30–32]
have attracted attention for generating high-resolution images from text prompts, with
several studies [33,34], adapting them for segmentation. In contrast, OneFormer [4] and
EQO [5] neither employ pre-trained vision–language models nor use external data, deriving
text supervision solely from ground-truth labels. However, their frameworks process text
and images in separate branches and compute the query–text contrastive loss without
modality alignment. To address this, we propose binding the two branches in a parameter-
and computation-efficient manner.

3. Proposed Method
3.1. Preliminaries

Before introducing our approach, we first review the meta-architecture EQO [5], upon
which our model is built. EQO comprises four main components:

1. The encoder–decoder feature extractor includes a Swin-T backbone [35,36] to extract
multi-scale feature maps from the input image, and a pixel decoder to progressively
upsample these feature maps for producing detailed and high-resolution representa-
tions. This corresponds to the backbone and the pixel decoder of our model as shown
in the image branch of Figure 1.

2. The task-conditioned query formulation module initializes object queries as the
repetitions of a task token generated from a predefined text input. This conditions the
queries based on the specific segmentation task at hand. For each image fed into the
model, object queries are specialized with the extracted image features in a two-layer
transformer decoder. Our method simplifies this procedure by leveraging a learnable
task token, and the comparison between two different query formulation methods is
depicted in Figure 2.
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3. Efficient query optimizer performs query–text contrastive learning to reinforce the
inter-class distinctions. After extracting text supervision from the ground-truth masks,
EQO processes the text tokens to produce text queries with a text encoder [25]. An
attention-based contrastive loss is then applied to measure the similarity between the
object queries and text queries, using a one-to-many matching mechanism. We adopt
this design to generate text queries and compute query–text contrastive loss in our
model as shown in the text branch of Figure 1.

4. The prediction head includes a DETR [37] decoder, which is used to obtain the task-
dynamic class and mask predictions. This corresponds to the transformer decoder
module in our model.

Figure 1. Architecture Overview. We propose Adaptive Feature Alignment (AFA) integrated with
a learnable task token to address existing issues in our baseline models [4,5]. First, AFA effectively
achieves cross-modality alignment without increasing model complexity. Second, the query formula-
tion module to construct task-conditioned object queries is driven by our proposed learnable task
token, enhancing the model’s adaptability across different segmentation tasks.

Figure 2. We compare our query formulation approach using a learnable task token with that of our
baseline models [4,5]. Our task token is defined as a group of learnable parameters, and the original
text input “The task is {TASK}" is retained but used as a selection criterion only. Different from the
query formulation with predefined Qtask, we discard the tokenizer, MLP, the transformer module,
and the involvement of image features produced by the pixel decoder to achieve efficiency gains. The
element-wise addition and concatenation are applied to generate task-conditioned object queries,
which are fed into the transformer decoder module to produce predictions and perform query–text
contrastive learning with text queries.
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3.2. Learnable Task Token for Efficient Universal Image Segmentation

In universal image segmentation models [4,5], a task token is employed to condition
the model to train for a specific segmentation task. This token is generated from a prede-
fined text template “the task is {TASK}”. Subsequently, the predefined task token interacts
with image features produced by the pixel decoder to formulate task-conditioned object
queries as illustrated in Figure 2a.

However, this procedure introduces computational redundancy and results in unin-
formative task tokens. To address these issues, we propose a straightforward approach in
which the task token is selected from a set of learnable parameters, each corresponding
to one of the segmentation tasks. A learnable task token can automatically acquire the
inter-task difference from image and text modalities through the training stage. The pre-
defined text input for the original task token is still retained but used solely as a selection
criterion. The detailed procedure is presented in Algorithm 1. We first initialize 3 learnable
parameters, each corresponding to one segmentation task. After determining which task
is assigned, the corresponding learnable task token Qtask is selected and duplicated N − 1
times, where N is a hyperparameter denoting the total number of object queries. Element-
wise addition is then applied between the duplicated task tokens Qdup

task and initial N − 1
object queries. Finally, the learnable task token Qtask is concatenated with the previous
addition result to formulate N task-conditioned object queries.

Algorithm 1 Pseudocode of query formulation using a learnable task token.

Learnable Params Qt ∈ R3×dim ▷ “dim” equals the number of channels
Qti ∈ R1×dim ▷ One row of Qt; i ∈ {s, p, i}
{TASK} ← {semantic, instance, panoptic} ▷ Random sampling
Q′ ∈ R(N−1)×dim ▷ Q′: N − 1 initial object queries;

▷ “N” is the total number of object queries

if {TASK} == “semantic” then
Qtask ← Qts ▷ Qtask: the learnable task token

else if {TASK} is “panoptic” then
Qtask ← Qtp

else
Qtask ← Qti

end if

Qdup
task ∈ R(N−1)×dim ← Duplicate{Qtask}

Q← cat(Qtask, Q′ + Qdup
task) ▷ “cat”: Concatenation

return Q ∈ RN×dim ▷ Q: task-conditioned object queries

Compared to the query formulation using the predefined task token [4,5], we eliminate
the transformer module previously used to specialize object queries with image features
to further enhance the model efficiency as illustrated in Figure 2b. Experimental results
demonstrate that the updated model achieves higher accuracy than before. This outcome
not only underscores the effectiveness of our proposed learnable task token but also
suggests that incorporating image features into query formulation is redundant.

3.3. Adaptive Feature Alignment for Efficient Cross-Modality Learning

In universal image segmentation models that incorporate text queries [4,5], the
query–text contrastive loss is computed without adequately addressing the cross-modality
gap between the image and text branches. This limitation hampers the model’s ability
to effectively learn from text supervision. However, existing methods for modality align-
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ment often rely on large-scale and computationally intensive uni-modal encoders. Such
resource-intensive methods are impractical for lightweight segmentation models trained
with manually annotated images. To overcome this limitation and achieve efficient modality
alignment, we revisit the basic units of the two modalities in segmentation models [4,5] that
use text supervision. We identify that the information density differs between image tokens
(from the pixel decoder) and text tokens (from the text encoder). Each text token contains
class-level semantic information, while an image token includes pixel-level details. We
hypothesize that this disparity complicates the modality alignment process and necessitates
large-scale encoders trained with extensive data. To validate our assumption, we propose
Adaptive Feature Alignment (AFA), which aims to effectively bind image features and text
queries in a parameter- and computation-efficient manner.

The core idea of AFA is to ensure symmetry between the two alignment subjects in
terms of sequence length and, more importantly, information density. To achieve this, we
aim to extract class-specific means from an image feature map “I” to serve as counterparts
to the text queries, where each extracted item encapsulates the semantics of a single object
class. In the pixel decoder, the feature map I is used to generate the final mask predictions,
so the localization information of foreground objects is consistent between the ground-
truth masks and I. Therefore, we first utilize a ground-truth mask Mgt to identify the
corresponding regions of instances present in I. This allows us to extract all relevant image
tokens from the feature map I. As illustrated in Figure 3, for objects of a particular class
in an image, we identify the foreground regions and extract all the image tokens within
these regions by multiplying the feature map I with the binary mask Mgt. To reduce the
computational complexity in computing the image–text contrastive loss and to address
the sequence length disparity between text queries and extracted image tokens, we aim
to merge these tokens into a single representation. ALGM [38] found that averaging
similar image tokens yields better performance than other merging methods. Inspired by
this, we aggregate the extracted image tokens by computing their average. The resulting
output, referred to as the class-specific mean, contains an equivalent amount of semantic
information as a text query. For each ground-truth mask, a class-specific mean is produced
accordingly. The overall procedure is shown in Algorithm 2.

Figure 3. AFA. Using one ground-truth binary mask of an image, AFA temporarily makes the image
tokens of a feature map I equal to zero if they are not located in the foreground regions. Then, AFA
can take the average of all remaining tokens and obtain the class-specific mean. If there are M binary
masks for the image, such a procedure would be repeated for M times to produce M class-specific
means. The image–text contrastive loss [5] is computed between the resulting class-specific means
and text queries from the text branch.
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Algorithm 2 Pseudocode of producing a class-specific mean.

Ground-truth Mask: Mgt ∈ RH′×W ′ ▷ H′, W ′: the resolution of images
Image Feature Map: I ∈ RC×H×W ▷ H, W: resolution of the feature map

▷ C: the number of channels
Mpooled ∈ RH×W ← pooling(Mgt ∈ RH′×W ′)

I′ ∈ RC×H×W ← I ⊗Mpooled ▷ ⊗: element-wise multiplication

Class-specifc mean: mclass ← sum(I′)/sum(Mpooled)

return mclasss ∈ RC

By computing the attention-based contrastive loss [5] between the class-specific means
and the text queries, we effectively align image features with text queries. This alignment
enables object queries from the image branch to learn more comprehensive representations
through the original query–text contrastive learning.

In addition to the contrastive loss (Lcontra), we also calculate the classification CE-loss
(Lcls), dice loss (Ldice), and binary cross-entropy loss (Lbce).The final loss computation is
a weighted sum of four losses as shown in Equations (1) and (2). Following [4,5], we set
λcontra = 0.5, λcls = 2, λdice = 5, λbce = 5. Specifically, the contrastive loss Lcontra equals
the sum of the image–text contrastive loss Lmclass↔Qtext and the query–text contrastive loss
LQ↔Qtext :

L f inal = λcontraLcontra + λclsLcls + λdiceLdice + λbceLbce (1)

Lcontra = Lmclass↔Qtext + LQ↔Qtext (2)

4. Experimental Results
4.1. Implementation Details

In our model, we employ the Swin-T [35] as the backbone. The backbone is pre-trained
on the ImageNet-1k dataset with an image resolution of 224 × 224. For the ADE20K [10] and
Cityscapes [11] datasets, the input images are cropped to sizes of 512 × 512 and 512 × 1024,
respectively. Our implementation uses a batch size of 16 for the ADE20K dataset and 10
for the Cityscapes dataset. Our model is built with the PyTorch (1.10.1) [39] framework
and the Detectron2 (v0.6) [40] library. We utilize the AdamW [41] optimization algorithm,
setting the base learning rate to 0.0001 for the ADE20K dataset and to 0.00009 for the
Cityscapes dataset.

4.2. Datasets

To evaluate the performance of our proposed model, we conduct experiments on two
widely recognized datasets in computer vision: ADE20K [10] and Cityscapes [11]:

• ADE20K Dataset: This dataset is extensively used in research due to its rich annotations
and diversity of scenes. It comprises over 20,000 images depicting a wide range of
environments, each annotated at the pixel level for more than 150 object categories.
Such detailed annotations make ADE20K particularly suitable for tasks like semantic
and instance segmentation.

• Cityscapes Dataset: Designed specifically for urban street scene understanding, the
Cityscapes dataset consists of 5000 images collected from 50 different cities. Each
image is annotated with pixel-level labels for 19 semantic classes relevant to urban
driving scenarios. The dataset is divided into a training set of 2975 images, a validation
set of 500 images, and a test set of 1525 images.

For the evaluation metrics, we utilize three key measures standard in segmentation
tasks: Mean Intersection over Union (mIoU) [42] for semantic segmentation is a metric that
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calculates the average overlap between the predicted segmentation and the ground truth
across all classes. Panoptic Quality (PQ) [43] for panoptic segmentation provides a holistic
evaluation by considering both the Segmentation Quality of “stuff” (background regions)
and “things” (foreground objects). It is defined as PQ = SQ× RQ, where the Segmentation
Quality (SQ) measures the average IoU of correctly matched segments, reflecting how
precisely the model segments the objects. Recognition Quality (RQ) is the harmonic mean
of precision and recall, indicating the model’s effectiveness in detecting and classifying
objects correctly. Average Precision (AP) [44] for instance segmentation evaluates the
model’s accuracy in detecting and delineating individual object instances, considering both
localization and classification performance.

By employing these datasets and evaluation metrics, we provide a comprehensive
assessment of our model’s performance across various segmentation tasks.

4.3. Experimental Results
4.3.1. ADE20K

To evaluate the efficacy of our proposed model, we conduct experiments on the
ADE20K dataset [10], with the results summarized in Table 1. This table compares our
model against other leading universal segmentation models that have a similar number
of parameters. All models, except kMaX-DeepLab [45], are trained on images with a
resolution of 512× 512. The input size of kMaX-DeepLab [45] is 1281× 1281. An important
aspect of our meta-architecture [5] is that components related to query–text contrastive
learning are omitted during the inference phase. Consequently, when comparing the net
parameter counts, we focus on the training phase—particularly between our model and
EQO [5]. Additionally, the computational complexity, measured in GFLOPs (Giga Floating
Point Operations), is calculated during the evaluation stage.

Table 1. Image segmentation on ADE20K val with 150 categories. The single-scale mIoU is reported.

Method Backbone mIoU (s.s.) PQ AP #Params GFLOPs Throughput

Individual Training

Swin-UperNet [35,46] Swin-T † 46.1 * - - 60.0 M 236.0 -
Segmenter [47] DeiT-B [48] † 48.7 - - 86.0 M - -

MaskFormer [1] Swin-T † 46.7 - - 42.0 M 55.0 -
R101 45.5 - - 60.0 M 73.0 -

Mask2Former [2] Swin-T † 47.7 - - 47.4 M 74.0 -
R101 47.8 - - 63.0 M 90.0 -

SeMask [49] Swin-S ‡ 45.9 - - 56.0 M 63.0 -
kMaX-DeepLab [45] R50 45.3 42.3 - 57.0 M 295.0 -

Joint Training

OneFormer [4] Swin-T † 49.0 42.8 28.7 68.3 M 81.4 16.0 img/s
EQO [5] Swin-T † 49.2 43.6 29.3 63.4 M 81.4 16.5 img/s

Our Model Swin-T † 50.1 44.4 29.3 60.1 M 72.5 16.7 img/s
†: Backbone is pre-trained on ImageNet-1k; ‡: backbone is pre-trained on ImageNet-22k; and *: multi-scale mIoU.
Numbers in bold represent the best performance in each metric.

Our approach offers a significant reduction in parameter complexity, reducing the
total number of parameters by 3.3 million compared to the baseline model [5]. In addition,
our model achieves higher throughput during training, resulting in a faster training cycle.
Especially in inference, we successfully reduce the computational costs by 11% in terms of
GFLOPs, compared to EQO [5].
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Notably, these gains in efficiency are accompanied by enhancements in performance.
Our model demonstrates superior results in both semantic and panoptic segmentation tasks
compared to the baseline [5]. Specifically, we observe a 0.9% increase in mean Intersection
over Union (mIoU) and a 0.8% improvement in Panoptic Quality (PQ), while maintaining
the same Average Precision (AP) score for instance segmentation. When compared to other
universal segmentation models of a similar size [1,2,4], our model exhibits even greater
performance advantages. For visual illustrations of our model’s predictions, please refer to
Figure 4.

Figure 4. Panoptic Predictions Visualization on ADE20K val. Compared to our meta-architecture [5],
our model achieves significant improvements in diminishing misclassification, capturing small objects,
and outlining precise boundaries between different instances. The discrepancies in predictions are
highlighted using blue rectangular boxes.

4.3.2. Cityscapes

Table 2 presents a validation of our model’s performance across three tasks on the
Cityscapes [11] dataset, comparing it with other competitive models in universal image
segmentation. The training images for the models listed in Table 2 are cropped to a size of
512× 1024, except for SeMask [49], which uses images of 768× 768. Notably, our model
achieves a reduction of 3.3 million parameters compared to its baseline [5] and outperforms
it in instance segmentation by 0.5%. Additionally, it attains equal performance in semantic
segmentation and comparable results in panoptic segmentation.
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Table 2. Image segmentation on Cityscapes val. The single-scale mIoU is reported.

Method Backbone mIoU (s.s.) PQ AP Params GFLOPs Throughput

Individual Training

Segmenter [47] DeiT-B [48] † 80.6 - - 86.0 M - -
SETR-PUP [50] ViT-L 79.3 - - 318.3 M - -

Mask2Former [2] Swin-T † 82.1 63.9 39.7 47.4 M - -
R101 80.1 62.4 38.5 63.0 M - -

SeMask [49] Swin-S ‡ 77.1 - - 56.0 M 134.0 -
CMT-DeepLab-S [51] Axial-R50 [52] ‡ 81.4 64.6 - 95.0 M 396.0 -

Joint Training

OneFormer [4] Swin-T † 80.7 64.9 41.9 68.3 M 168.2 6.6 img/s
EQO [5] Swin-T † 81.0 65.6 41.9 63.4 M 168.2 7.9 img/s

Our Model Swin-T † 81.0 65.3 42.4 60.1 M 148.5 8.1 img/s
†: Backbone is pre-trained on ImageNet-1k; ‡: backbone is pre-trained on ImageNet-22k. Numbers in bold
represent the best performance in each metric.

4.4. Ablation Study

The analysis of our model is performed using Swin-T backbone on the ADE20K [10]
dataset.

4.4.1. Ablation Studies on Each Presented Modules

To evaluate the contributions of each component in our model, we perform an ablation
study by incrementally adding modules to our meta-architecture [5]. The results of this
study are presented in Table 3.

Table 3. Ablation on each component.

PQ mIoU AP

Baseline [5] 43.6 49.2 29.3
+Learnable Task Token 43.6 50.4 29.1

+AFA (Our model) 44.4 50.1 29.3
Numbers in bold represent the best performance in each metric.

The introduction of learnable task tokens leads to a significant increase in efficiency
and an improvement of up to 1.2% in mean Intersection over Union (mIoU), while main-
taining consistent Panoptic Quality (PQ) scores and comparable Average Precision (AP)
scores. This indicates that learnable task tokens are more effective than predefined task
tokens in capturing inter-task differences. During training, these tokens autonomously
discern cross-task distinctions from image features and text queries, thereby enhancing
segmentation performance.

Furthermore, the integration of our Adaptive Feature Alignment (AFA) module, de-
signed to align text queries with image features, results in additional performance gains of
0.8% in panoptic segmentation and 0.2% in instance segmentation. These improvements
support our assertion that AFA effectively bridges the cross-modality gap between the im-
age and text branches. Moreover, the modality alignment achieved by AFA does not require
large-scale encoders or extensive image–text paired datasets for training, underscoring the
effectiveness of the class-specific means formulated by the AFA module.

4.4.2. Ablation Studies on Learnable Task Tokens

In our approach, we utilize a learnable task token tailored for specific segmentation
tasks to generate task-conditioned object queries. These object queries interact with image
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features within the transformer decoder module and are also linked to text queries through
query–text contrastive learning. Through both interactions, the learnable task token cap-
tures inter-task distinctions from both image and text modalities. To further validate our
design, we introduce two alternative variants of the original learnable task tokens. After
selecting a learnable parameter Qtask for a specific task, the first variant concatenates Qtask

with the supervisory text tokens used to generate text queries. This concatenated sequence
is then input into the text encoder, allowing Qtask to directly learn inter-task distinctions
from the text queries via self-attention mechanisms. Subsequently, the updated Qtask is
separated from the text encoder’s output. We designate this output as learnable task token
v0.1. However, as illustrated in Table 4, incorporating learnable task token v0.1 results in
significant performance degradation across all three segmentation tasks. Specifically, the
performance decline arises from integrating Qtask into the text queries. Since text queries
contain supervisory information derived from ground-truth labels, introducing a randomly
initialized parameter Qtask is equivalent to adding noise. Given that our text encoder is
lightweight and lacks sufficient robustness, this disturbance diminishes the efficacy of text
supervision in text queries, leading to the observed performance decline.

Table 4. Ablation on Task Token Design.

PQ mIoU AP

Baseline [5] 43.6 49.2 29.3
+Learnable Task Token v0.1 41.6 48.6 26.6
+Learnable Task Token v0.2 43.1 49.3 29.1

+Learnable Task Token 43.6 50.4 29.1
Numbers in bold represent the best performance in each metric.

Next, we investigate a second alternative configuration, where a contrastive loss is
computed between the original learnable task token Qtask and the text queries. We re-
fer to this setup as learnable task token v0.2, with results detailed in Table 4. Although
v0.2 demonstrates improvements over v0.1, it still underperforms relative to our baseline
model [5], particularly in panoptic segmentation. We attribute this shortfall to the absence
of a large-scale text encoder. In this configuration, the text encoder must handle addi-
tional responsibilities: aggregating key semantic information and cross-task distinctions
to guide the learnable task token via the contrastive loss, in addition to its primary role of
generating text queries. This added complexity hampers the training process, resulting in
degraded performance.

In contrast to the aforementioned configurations, our straightforward design of the
learnable task token achieves substantial performance enhancements across various seg-
mentation tasks without incurring additional computational costs. This highlights the
efficacy of our approach in efficiently improving the model performance.

On the other hand, learnable task tokens capture intrinsic distinctions among seg-
mentation tasks, making the model task-sensitive. As illustrated in Table 5, we train three
task-specific learnable tokens Qt1, Qt2, and Qt3 for semantic, panoptic, and instance segmen-
tation, respectively. We then examine how the model performs in inference when the chosen
task token does not match the current task. When the task is panoptic segmentation, both
Qt1 and Qt3 lead to considerable performance degradation in PQ, yet Qt1 achieves a high
PQSt score, reflecting its strong capability for recognizing amorphous “stuff” classes. In
contrast, Qt3 outperforms Qt1 in terms of PQTh, demonstrating its effectiveness in modeling
“thing” classes. Furthermore, because panoptic segmentation integrates the characteristics
of semantic and instance segmentation, Qt2 (trained for panoptic segmentation) performs
well even when the current task is not panoptic. Specifically, when the task is instance
segmentation, switching to Qt1 causes an 8.1% drop in AP, whereas using Qt2 only reduces
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AP by 0.2%. Similarly, in semantic segmentation, Qt2 still delivers a competitive mIoU,
whereas Qt3 induces substantial performance loss. These findings validate the effectiveness
of our learnable task tokens in capturing cross-task distinctions and highlight the task
sensitivity of the resulting model.

Table 5. Ablation on varied task tokens.

Task Token Type PQ PQTh PQSt mIoU AP

Semantic (Qt1) 36.8 31.8 46.8 50.1 21.2
Panoptic (Qt2) 44.4 43.5 46.1 50.3 29.1
Instance (Qt3) 29.0 42.3 2.4 25.1 29.3

Numbers in bold represent the best performance in each metric.

4.4.3. Ablation Studies on Cross-Modality Alignment

In our Adaptive Feature Alignment (AFA) module, we extract class-specific means
from the largest image feature map generated by the pixel decoder. To investigate how the
resolution of feature maps affects the AFA performance, we replace the largest feature map
with the smallest one and conducted an experiment. This configuration is designated as
AFA v0.1, and the corresponding results are presented in Table 6. The findings reveal that
AFA v0.1 underperforms compared to our baseline model [5], highlighting the importance
of generating class-specific means from a detailed, high-resolution image feature map for
optimal effectiveness.

Table 6. Ablation on modality alignment.

PQ mIoU AP

Baseline [5] 43.6 49.2 29.3
AFA v0.1 43.0 49.3 28.8
AFA v0.2 43.7 48.9 29.3

AFA (Our model) 44.4 50.1 29.3
Numbers in bold represent the best performance in each metric.

Furthermore, considering that object queries are linked to text queries through the
query–text contrastive loss in our meta-architecture [5], we explore an alternative alignment
strategy. This approach aims to bridge the image–text gap by computing the contrastive loss
between object queries and class-specific means, referred to as AFA v0.2. The objective is to
indirectly connect text queries with image features via object queries since both are involved
in contrastive learning with object queries in this scenario. As demonstrated in Table 6, AFA
v0.2 exhibits inferior performance compared to our model, particularly in semantic and
panoptic segmentation tasks. These results suggest that direct alignment is more effective
than indirect alignment, as the latter requires object queries to simultaneously align with
both modalities. This dual alignment complicates the contrastive learning process and
negatively impacts overall performance.

4.4.4. Ablation Studies on Image–Text Contrastive Loss’s Weight

We analyze how varying the weight λmclass↔Qtext of the image–text contrastive loss
affects prediction accuracy. The experimental results are presented in Table 7, indicating
that λmclass↔Qtext = 0.5 yields the best overall performance.
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Table 7. Ablation on image–text contrastive loss’s weight.

PQ mIoU AP

λmclass↔Qtext = 0.0 43.6 50.4 29.1
λmclass↔Qtext = 0.2 43.3 50.3 28.8
λmclass↔Qtext = 0.5 44.4 50.1 29.3

Numbers in bold represent the best performance in each metric.

5. Limitations
Our proposed Adaptive Feature Alignment (AFA) significantly enhances the model’s

performance on the ADE20K [10] dataset. However, the improvements observed on the
Cityscapes [11] dataset are comparatively smaller. This difference is attributed to the higher
image resolution and the greater average number of instances in the Cityscapes dataset,
indicating that our efficient Adaptive Feature Alignment experiences diminishing returns
as the data complexity increases. Additionally, our universal image segmentation model
currently requires separate training for each dataset, which limits its adaptability and
flexibility in diverse applications. In future work, we aim to extend our model to support
cross-dataset and cross-task image segmentation, thereby enhancing its versatility and
broadening its applicability.

6. Conclusions
We presented Adaptive Feature Alignment (AFA) with a learnable task token to en-

hance universal image segmentation. By effectively capturing inter-task differences and
efficiently aligning visual and textual modalities using class-specific means, our model im-
proves performance while achieving complexity reductions. Experiments on ADE20K and
Cityscapes demonstrate that AFA outperforms baselines in both efficiency and effectiveness,
achieving state-of-the-art results among models with comparable parameters.
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