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Abstract: Malaria remains a global health concern, with 249 million cases and 608,000 deaths
being reported by the WHO in 2022. Traditional diagnostic methods often struggle with
inconsistent stain quality, lighting variations, and limited resources in endemic regions,
making manual detection time-intensive and error-prone. This study introduces an auto-
mated system for analyzing Romanowsky-stained thick blood smears, focusing on image
quality evaluation, leukocyte detection, and malaria parasite classification. Using a dataset
of 1000 clinically diagnosed images, we applied feature extraction techniques, including
histogram bins and texture analysis with the gray level co-occurrence matrix (GLCM),
alongside support vector machines (SVMs), for image quality assessment. Leukocyte
detection employed optimal thresholding segmentation utility (OTSU) thresholding, bi-
nary masking, and erosion, followed by the connected components algorithm. Parasite
detection used high-intensity region selection and adaptive bounding boxes, followed by a
custom convolutional neural network (CNN) for candidate identification. A second CNN
classified parasites into trophozoites, schizonts, and gametocytes. The system achieved an
F1-score of 95% for image quality evaluation, 88.92% for leukocyte detection, and 82.10%
for parasite detection. The F1-score—a metric balancing precision (correctly identified
positives) and recall (correctly detected instances out of actual positives)—is especially
valuable for assessing models on imbalanced datasets. In parasite stage classification, CNN
achieved F1-scores of 85% for trophozoites, 88% for schizonts, and 83% for gametocytes.
This study introduces a robust and scalable automated system that addresses critical chal-
lenges in malaria diagnosis by integrating advanced image quality assessment and deep
learning techniques for parasite detection and classification. This system’s adaptability to
low-resource settings underscores its potential to improve malaria diagnostics globally.

Keywords: malaria diagnosis; thick blood smears; image processing; support vector
machines; convolutional neural networks; deep learning

1. Introduction
Malaria remains a significant global health concern, particularly affecting low-income

countries where resources are scarce and healthcare systems are overburdened. According
to the World Health Organization (WHO), an estimated 249 million malaria cases occurred
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in 2022, resulting in approximately 608,000 deaths worldwide [1]. The disease is caused
by the Plasmodium parasite and is transmitted to humans through the bite of the female
Anopheles mosquito. Among the various species, Plasmodium falciparum is the most prevalent
and lethal [2].

The current gold standard for malaria diagnosis involves manually counting parasites
in stained blood smears—a labor-intensive and highly subjective process [3,4]. This method
requires well-trained microscopists, which makes it impractical in many endemic regions
due to a shortage of skilled personnel [5]. Two primary methodologies are employed: thin
blood smears, which provide a single layer of red and white blood cells (WBCs), and thick
blood smears, which concentrate multiple layers of blood for higher sensitivity [6]. While
thick smears enhance parasite detection, they present challenges such as overlapping cells
and staining artifacts that complicate analysis. Standard staining methods include Giemsa
and Romanowsky dyes, with the latter being preferred for its stability in humid climates [5].
Maintaining staining quality is essential for accurate parasite visualization, yet it remains
problematic in resource-limited settings.

Manual microscopic examination for parasite detection, life stage differentiation, and
parasite counting is laborious and subjective [5]. Additionally, the WHO acknowledges that
microscopists often work in low-resource and isolated environments without systems to
ensure diagnostic quality. Heavy workloads and a lack of trained health personnel further
limit the effectiveness of microscopy in regions with a high disease burden [5]. These
challenges have prompted the development of computational image-processing methods to
support malaria diagnosis. Such tools improve the reliability of test interpretations, reduce
healthcare workers’ workload, and lower diagnostic costs [6].

Existing computational methods primarily focus on parasite detection but often fail to
address other critical aspects, such as smear quality assessment and leukocyte detection,
leaving a significant gap in comprehensive diagnostic solutions. Various machine learning
(ML) approaches have been employed to detect and quantify parasites in stained blood
smear images. For example, Rosado et al. [7] developed a method to detect Plasmodium falci-
parum trophozoites and WBCs in Giemsa-stained thick blood smears, achieving 80.5% recall,
93.8% specificity, and 91.8% accuracy at the patch level using adaptive thresholding and a
support vector machine (SVM) classifier. Dave et al. [8] applied histogram-based adaptive
thresholding and mathematical morphological operations for segmentation, achieving
86.34% recall and 96.60% specificity at the patch level with a cubic SVM for classifying par-
asites in different life stages. Delahunt et al. [9] described an automated malaria diagnosis
system for thick smears, achieving 95% specificity at the patient level using morphological,
color, and texture features with a linear SVM. However, classifying parasite stages in thick
blood smears remains particularly challenging, with limited studies reporting accuracies of
around 76%. Furthermore, many existing methods require high computational resources
and extended processing times, which are impractical in resource-limited environments.

Deep learning (DL) techniques have emerged as powerful tools for automatic feature
extraction and detection in thick blood smears. Quinn et al. [10] proposed a convolutional
neural network (CNN) model for parasite detection, reporting an average precision of 97%
using smartphone-captured images divided into patches. Mehanian et al. [11] utilized CNN
models for parasite detection and quantification, achieving recall, precision, and specificity
of 91.6%, 89.7%, and 94.1%, respectively, although with a processing time of 20 min. Yang
et al. [12] introduced smartphone-based algorithms employing customized CNN and Faster
R-CNN models for parasite detection, achieving detection rates of 96.84% and 96.81% at
the image and patient levels, respectively. Despite these advancements, challenges such
as classifying parasite stages in thick blood smears and evaluating staining quality for
parasite visualization still need to be explored. In our previous work, we developed an
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image-based approach using the HSV color space and an SVM, achieving an F1-score of
97% for classifying smear quality [13]. However, the detection of leukocytes and assessment
of staining quality still need to be explored.

Our research addresses these critical gaps by developing an integrated system that
detects and classifies malaria parasites, assesses image quality, and counts leukocytes
in Romanowsky-stained thick blood smears. This novel and comprehensive approach
can transform malaria diagnostics by providing a cost-effective and scalable solution
accessible to remote and resource-limited areas. Moreover, its ease of integration into
existing diagnostic workflows ensures that minimal additional training is required for
healthcare personnel.

In summary, this paper proposes a comprehensive system that (1) automatically
assesses image quality, (2) detects and counts leukocytes, and (3) detects and classifies
malaria parasites in images of Romanowsky-stained thick blood smears, a diagnostic
medium often overlooked despite its relevance in tropical regions. Our approach fills gaps
in malaria diagnostics by leveraging image processing, classical ML, and DL techniques.
Unlike previous studies focusing solely on parasite detection, our system offers a holistic
diagnostic tool for resource-limited settings. By integrating these components, we aim
to improve diagnostic accuracy, facilitate prompt treatment, and ultimately contribute to
reducing the global burden of malaria.

2. Materials and Methods
This section outlines the methodology for quality analysis, leukocyte detection, and

malaria parasite detection and classification in Romanowsky-stained thick blood smear
images of Plasmodium vivax. This study analyzed 1000 anonymized images previously
used for actual diagnoses and labeled them with information on color quality, diagnosis,
leukocyte location, parasite count, location, and stage.

Image quality was assessed using feature extraction techniques based on the HSV color
space and support vector machines (SVMs). Leukocyte detection involved experimental
designs leveraging distinct color spaces and image enhancement techniques. Parasite
detection was performed by classifying parasite candidates (cropped image segments)
using a custom convolutional neural network (CNN). The SVM and CNN methods were
further compared to classify parasite stages, as illustrated in Figure 1.
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Figure 1. Block diagram of the proposed method.

2.1. Image Dataset

This study utilized 1000 Romanowsky-stained thick blood smear images from the
National Institute of Health in Colombia. These images were derived from 100 slides, with
ten images captured per slide near the sample center to ensure uniformity. Each image
was taken with a Zeiss Scope A1 optical microscope at 100× magnification, resulting in
RGB color images with a resolution of 2452 × 2056 pixels. The images were annotated by
experts, using bounding boxes to label the life stages of each parasite (Figure 2). To the best
of our knowledge, no previous studies have used datasets of Romanowsky-stained thick
blood smears, a dye commonly employed in tropical climates due to its stability.
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(a) Good quality image sample. (b) Bad quality image sample.

The database expands on a previous dataset of 420 images created by one of the
authors, used initially to evaluate the coloration quality of thick blood smears (TBS) [13].
For this new project, the same methodology from the prior work was applied to collect and
annotate an additional 580 images, resulting in 1000 images.

The images were captured using a standardized methodology to ensure consistency
in color representation and image quality:

• The dataset was created using a 100× magnification Axio Zeiss Scope A1 optical
microscope (Carl Zeiss, Oberkochen, Germany). The LED-illuminated microscope
eliminated the need for a blue filter.

• Key microscope components, such as the reflector insert, field diaphragm, and aperture
diaphragm, were kept in fixed positions to standardize the lighting conditions. As
malaria diagnosis professionals at the National Health Institute of Colombia (INS)
recommended, the light intensity was calibrated at 22.4 lux using a light meter (Model
407026, Extech, Nashua, NH, USA).

• The images, each with a resolution of 2056 × 2452 pixels, were captured in PNG format
and stored with annotations of relevant biological features.
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The original 42 thick blood smear samples were collected from malaria cases caused
by Plasmodium vivax during 2017–2018 [13]. Each thick blood smear was photographed
in 10 central fields to ensure uniformity and avoid variability caused by peripheral blood
thickness. This methodology was replicated for additional slides to expand the dataset.

The images were annotated by personnel certified in malaria parasite stage identification
using the web-based tool Labelbox [14]. The annotations include bounding boxes identifying
parasite life stages (e.g., trophozoites, schizonts, gametocytes) and leukocyte locations.

Data Partitioning

The dataset consisted of 1000 Romanowsky-stained thick blood smear images, includ-
ing 217 classified as good and 783 as bad quality. Among these, 702 images contained
parasites, while 298 did not. A total of 6188 parasites were annotated, distributed as
5927 trophozoites, 114 schizonts, and 147 gametocytes, with sizes ranging from 13 to
138 pixels. Additionally, 12,712 leukocytes were identified, ranging in size from 15 to
222 pixels. Twelve images lacked leukocytes, while others contained up to 43, with an
average of 13 leukocytes per image.

The images were annotated by personnel certified in identifying malaria parasites,
including one of the authors, who also contributed to the previous work on the original
dataset [13]. The classification into “good” and “bad” quality was based on criteria defined
by the National Health Institute of Colombia (INS) and aligned with WHO protocols [15],
focusing on background coloration and staining quality.

The distribution of a higher proportion of low-quality images than high-quality ones
reflects the real-world conditions in resource-limited settings where malaria diagnoses are
commonly made. Low-quality images are more prevalent in these settings due to available
equipment and technology constraints. Prioritizing low-quality images in the training
dataset enables the model to develop greater resilience and effectiveness when processing
suboptimal images, ultimately improving its performance in actual field conditions. By
incorporating a more significant number of low-quality images, the model’s ability to
accurately identify and classify malaria cases is enhanced, even when image quality is less
than ideal, a situation often encountered in rural laboratories or areas with limited resources.
This strategy also addresses the challenge posed by the variability in image quality, a
common issue in malaria diagnosis in settings with limited technical resources [16].

The dataset was divided into training (70%), validation (15%), and testing (15%)
subsets using a stratified sampling approach. This split was conducted separately for
good and bad quality images, ensuring the same distribution of quality categories in each
subset. Although the dataset contained more bad quality images than good quality images,
balancing adjustments were not performed during partitioning. Instead, class balancing
was addressed during the detection and classification phases.

Data augmentation was applied to mitigate class imbalance during model training.
For parasite detection, augmentation techniques such as rotations, horizontal and vertical
flips, and combinations of flips were applied at the patch level, increasing the dataset
size. Similarly, data augmentation was applied to underrepresented classes (schizonts and
gametocytes) for parasite stage classification, while subsampling was performed on the
trophozoite class. Figure 3 shows example crops for each parasite stage: (a) trophozoites,
(b) schizonts, and (c) gametocytes.
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The dataset was split into training, validation, and testing subsets as a hold-out
validation approach. Table 1 summarizes the distribution of the dataset after partitioning.

Table 1. Data partitioning.

Good Quality
Images

Bad Quality
Images Leukocytes Parasites

Training 151 549 9286 4972

Validation 30 120 2020 673

Testing 36 114 1315 543

Total 217 783 12,621 6188

2.2. Image Quality Analysis

In the literature, red, green, and blue (RGB) have been the color space most frequently
used for malaria diagnosis [5,12,17,18]. Furthermore, hue, saturation, and brightness (HSV)
have been used for malaria parasite detection [5,19,20]. This methodology builds upon prior
work by Fong et al. [13], incorporating HSV-based feature extraction and SVM classification
to improve image quality assessment. This integration represents an advancement in
automating diagnostic processes tailored to Romanowsky-stained thick blood smears. The
authors also indicated that background thresholding allowed the separation of foreground
elements (leukocytes, platelets, parasites) from the background, explicitly using the H
and S components of the HSV color space. Alternatively, the data distribution in the
RGB color space did not differentiate the two background quality classes. After visually
analyzing the histograms, the usefulness of the H and S components in the HSV color space
was confirmed. Therefore, the H and S components were used in an HSV histogram to
remove the leukocytes and parasites (foreground elements). Then, the threshold image was
applied to the original image as a mask, resulting in an image that retained the background
information in the HSV color space, with the foreground elements in black.

Leukocyte and parasite detection were chosen as parameters for assessing image
quality due to their importance in ensuring the reliability of malaria diagnoses. Poor
staining directly affects the ability to identify these elements, leading to faint or distorted
appearances. Leukocytes are particularly valuable for evaluating staining consistency and
intensity as they are often the most evident elements in well-stained smears. Parasites
provided additional insight by assessing the visibility of their stages (trophozoites, sch-
izonts, gametocytes) and the differentiation from artifacts. These parameters align with
established guidelines and previous work [13].

Subsequently, the SVM method was employed to classify the images into good and
bad quality categories using histogram bins for feature extraction. The H and S components
from the HSV space were used to create histograms with 16 bins, removing the first bin
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to exclude noise from foreground elements. This process allowed for the identification of
optimal features for quality classification.

2.3. Leukocyte Detection

Previous studies have used various image-processing techniques for leukocyte detec-
tion and counting, typically involving a preprocessing stage followed by segmentation.
These methods include contrast stretching and adaptive thresholding on channel V [20],
low-pass filtering with contrast stretching and optimal thresholding segmentation util-
ity (OTSU) [21], and Gaussian low-pass filtering with adaptive histogram equalization
and adaptive thresholding [22]. Our dataset’s histogram analysis revealed that particles
(leukocytes, parasites, platelets) had low intensity while the background had high intensity,
resulting in a bi-modal intensity distribution (Figure 4). To address this, we used the OTSU
method [23] to generate a binary mask for segmenting stained particles and detecting white
blood cells (WBCs), removing the background to simplify the computational process.
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We conducted an experimental design to optimize preprocessing for effective leuko-
cyte segmentation. Various color spaces were evaluated, including grayscale, channels R, G,
and B from RGB, and channels S and V from HSV. The filters assessed included low-pass,
Gaussian low-pass, median filter, and no filter. The contrast enhancement techniques eval-
uated were contrast-limited adaptive histogram equalization (CLAHE), contrast stretching,
and no contrast enhancement. Using OTSU’s method, a binary mask was generated, fol-
lowed by noise removal with an erosion function to eliminate small white noises (platelets
and parasites) (Figure 5c). Finally, the connected components algorithm was applied to
develop a leukocyte detection and counting algorithm.

Building upon earlier studies focused on thin blood smears, we documented the use
of machine learning for leukocyte detection in thick blood smears. The features utilized
included geometric [20,24–27], statistical [20], textural [20,28], intensity [28], and spectrum-
based features [29]. The gray level co-occurrence matrix (GLCM) was used to extract
statistical and textural features, while pixel intensity was used to extract intensity features.
Three feature groups were created: one with four variations for each GLCM feature, another
with twelve variations, and a third consisting of the pixel intensity of a 50 × 50 pixels size
image (2500 features vector). Classic machine learning algorithms, including naive Bayes,
decision trees, support vector machines (SVM), and k-nearest neighbors (k-NNs), were
employed to classify leukocyte candidates as either leukocyte or noise.



Sensors 2025, 25, 390 8 of 18

Sensors 2025, 25, x FOR PEER REVIEW  8  of  18 
 

 

spectrum-based features [29]. The gray level co-occurrence matrix (GLCM) was used to 

extract statistical and textural features, while pixel intensity was used to extract intensity 

features. Three feature groups were created: one with four variations for each GLCM fea-

ture, another with twelve variations, and a third consisting of the pixel intensity of a 50 × 

50 pixels size image (2500 features vector). Classic machine learning algorithms, including 

naive Bayes, decision trees, support vector machines (SVM), and k-nearest neighbors (k-

NNs), were employed to classify leukocyte candidates as either leukocyte or noise. 

   
(a)  (b) 

   
(c)  (d) 

Figure 5. Example of WBC segmentation process. (a) Grayscale image; (b) OTSU’s segmentation; (c) 

erosion function; (d) mask candidates. 

2.4. Parasite Detection 

We  began  parasite  detection  by  selecting  candidates  from  high-intensity  regions 

within the image. These candidates were used to train a custom convolutional neural net-

work (CNN) to distinguish parasites from background elements. This approach was com-

putationally efficient as  it reduced the data processing size compared with the original 

image, as outlined by Feng et al. [30]. Unlike the SVM approach for image quality assess-

ment, CNNs were more suitable for complex tasks such as feature extraction and classifi-

cation, both essential for parasite detection. 

Variations in staining or illumination during blood smear preparation can cause seg-

mentation and classification challenges [31]. To address these challenges, we optimized 

preprocessing using an experimental design similar to that for detecting WBCs, minimiz-

ing parasite exclusion during segmentation (Figure 5b). The parameters used were based 

on prior malaria parasite detection methods to ensure consistency, as documented in re-

view articles [22,32]. 

Figure 5. Example of WBC segmentation process. (a) Grayscale image; (b) OTSU’s segmentation;
(c) erosion function; (d) mask candidates.

2.4. Parasite Detection

We began parasite detection by selecting candidates from high-intensity regions within
the image. These candidates were used to train a custom convolutional neural network
(CNN) to distinguish parasites from background elements. This approach was computa-
tionally efficient as it reduced the data processing size compared with the original image,
as outlined by Feng et al. [30]. Unlike the SVM approach for image quality assessment,
CNNs were more suitable for complex tasks such as feature extraction and classification,
both essential for parasite detection.

Variations in staining or illumination during blood smear preparation can cause
segmentation and classification challenges [31]. To address these challenges, we optimized
preprocessing using an experimental design similar to that for detecting WBCs, minimizing
parasite exclusion during segmentation (Figure 5b). The parameters used were based on
prior malaria parasite detection methods to ensure consistency, as documented in review
articles [22,32].

Using the WBC mask from the previous step, we removed leukocytes from the seg-
mentation mask, retaining candidates predominantly corresponding to parasites, platelets,
and some background noise. The segmentation process, illustrated in Figure 5, included
identifying each image segment’s center coordinates. An adaptive bounding box was
created around these coordinates, starting at 40 × 40 pixels and dynamically expanding to
encompass the entire candidate region until no white pixels were found along the edges.
The maximum size of the bounding box was capped at 90 × 90 pixels. Once the bounding
box was appropriately sized and positioned, the image was cropped based on the iden-
tified contours, retaining only the relevant portion containing the parasite candidate for
further analysis.
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The model’s performance was evaluated using accuracy, precision, recall, and F1-score.
These metrics were calculated at multiple stages: image quality assessment, leukocyte
detection, and parasite classification. The F1-score was chosen as the primary metric due
to its robustness in handling imbalanced datasets. At the same time, precision and recall
highlighted the model’s ability to minimize false positives and false negatives.

Training

The model training process involved using the images of parasites within bounding
boxes provided by experts. There were 4364 parasites. These parasites were removed from
the candidate mask for images with parasites, and the resulting clippings were obtained.
Due to class imbalance, data augmentation was applied to the parasite images, including
rotations of 90 and 180 degrees, horizontal and vertical flips, and combinations of flips,
resulting in 26,184 images. Additionally, subsampling was performed on the non-parasite
class to balance the training data.

The CNN model architecture comprised eleven convolutional layers and five max-
pooling layers interspersed between each convolutional layer. A normalization batch
layer was utilized to facilitate a higher learning rate [33], followed by rectified linear units
(ReLUs) as the activation function [34]. Subsequently, three fully connected layers were
included, with 1024, 512, and 2 hidden units, respectively, followed by a SoftMax layer.
Two dropout layers with a dropout ratio of 0.5 were inserted between the fully connected
layers to mitigate overfitting [35]. The output of the CNN model was a vector indicating
the likelihood of the input image patch being a parasite or non-parasite.

Furthermore, pre-trained networks such as VGG-19 [36], MobileNetV2 [37], and
ResNet-50 [38] were utilized to compare the developed model’s performance.

2.5. Parasite Stage Classification

The CN For the SVM model design, features extracted from histograms in the red
and saturation channels were found to be more variable across different parasite stages.
Sixteen bins were chosen for each histogram to reduce the dimensionality of the feature
vector. Additionally, the number of nuclei was included as a feature, particularly since it
exhibits significant variation in schizonts. The presence of parasites and coloration quality
were also considered during feature selection. A factorial experiment was conducted to
determine the optimal SVM classifier based on factors such as kernel type, gamma, and
learning ratio.

Subsequently, various neural network configurations were evaluated for CNN. Ini-
tially, different image sizes were evaluated, including [25 × 25], [50 × 50], [100 × 100],
and [150 × 150]. After identifying the most suitable layer and convolution distribution,
a factorial experiment was conducted, varying parameters such as image scale, learning
ratio (ranging from 1 × 10−4 to 1), batch size (ranging from 20 to 100), and the number of
epochs (ranging from 50 to 150). Multiple networks were implemented, including VGG-16,
MobileNetV2, and ResNet-50 architectures, with fixed batch sizes of either 50 or 100 and a
number of epochs set to either 50 or 100. No frozen layers were utilized for these networks,
and an image size of [50 × 50] was employed for evaluation. The evaluation of these
models aimed to determine the best-performing network for classifying parasite stages
based on their size, shape, and internal structures.

3. Results and Discussion
3.1. Image Quality Analysis Performance

Table 2 shows the implementation results of quality analysis performance. The cubic
kernel has the best performance, with a precision of 95%, an F1-score of 95%, an accuracy of
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95%, a true negative rate of 96%, and a true positive rate of 93%. These results suggest that
the system is effective at predicting the negative class, which has positive implications as it
allows for generating a better warning number and provides more control over the cases.

Table 2. Results of the quality analysis performance.

Kernel Quality Precision Recall F1

Lineal
Bad 91% 91% 91%

Good 91% 91% 91%

Quadratic
Bad 94% 94% 94%

Good 94% 94% 94%

Cubic
Bad 94% 97% 96%

Good 97% 94% 95%

Gaussian
Bad 89% 94% 91%

Good 94% 88% 91%

The methodology employed in this study closely follows that of Fong Amaris et al. [13],
which proposes automating coloration quality estimation in thick blood smears (TBSs). This
technique has not been deeply explored before, making it a novel contribution to malaria
diagnosis. Given that the accurate assessment of image quality is crucial for automated
TBS analysis, which has not been widely studied, this study focuses on a new approach
that enhances diagnostic accuracy by integrating image quality evaluation directly into
the process.

3.2. Leukocyte Detection Performance
3.2.1. Image Processing

In the experimental design, seventy-two masks were used to detect leukocytes (Table 3).
The best results were obtained using the blue channel, no filter, and CLAHE for contrast
enhancement, followed by optimal thresholding segmentation utility (OTSU) segmentation
and connected components.

Table 3. Detection leukocytes mask (experimental design validation).

Treatment Color Space Filtering Contrast Enhancement Precision (%) Recall (%) F1-Score (%)

1 Blue no filter CLAHE 87.52% 93.09% 89.3%

2 Saturation no filter CLAHE 85.28% 94.42% 88.57%

3 Gray no filter CLAHE 83.14% 95.71% 87.93%

4 Red no filter CLAHE 83.24% 95.55% 87.81%

Using the testing set, the blue channel method (no filter with CLAHE using OTSU
segmentation followed by mask noise removal and connected components) yielded an
average precision of 86.27%, recall of 93.82%, and F1-score of 88.52%.

3.2.2. Machine Learning

The results showed (Table 4) that the best combination for the leukocyte detection
mask using Romanowsky dye involved the blue channel, with no filter, employing CLAHE
for contrast enhancement, followed by OTSU segmentation, mask noise removal, and the
connected components algorithm. This combination applied to the testing set resulted in
an average precision of 86.27%, an F1-score of 88.52%, and an accuracy of 88.52%.
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Table 4. Best results for the gray, RGB, and SV scales.

Color Scale Feature Groups Algorithm Accuracy (%) Precision (%) Recall (%) Specificity (%) F1-Score (%)

Gray GLCM 72 SVM 89.00% 88.68% 88.82% 89.17% 88.75%

Green GLCM 72 SVM 90.06% 90.06% 89.52% 90.56% 89.79%

Saturation GLCM 72 SVM 89.92% 89.36% 88.92% 89.95% 88.66%

Different image processing techniques exist for detecting and counting leukocytes,
including several techniques using various color spaces such as grayscale [12,21,22,39] and
HSV [8,20,22]. However, neither the RGB color space nor its channels have been used.
Therefore, the experimental design implemented each color space as a variable. Addition-
ally, different image preprocessing techniques, such as filtering, and contrast enhancement
methods, such as contrast stretching [20], low-pass filter with contrast stretching [18],
Gaussian low-pass filter with adaptive histogram equalization [22], and low-pass filter
with contrast stretching [22, 23], were tested using a specific color space; however, not all
possible combinations were implemented. According to our experimental design, the best
combination of filtering and contrast enhancement for the detection leukocytes mask was
using no filter with contrast-limited adaptive histogram equalization (CLAHE) on the blue
channel, obtaining an average precision, recall, and F1-score of 86.26%, 93.82%, and 88.52%,
respectively, using the test set.

There is no documentation about implementing machine learning to detect and count
leukocytes in thick blood smears. For that reason, different features like statistical fea-
tures [26] and textural features [27,28] were analyzed using the gray level co-occurrence
matrix (GLCM) and intensity features [27] using the pixel intensity of the image, all of
which were used for classification. As a result, the support vector machine (SVM) algo-
rithm distinguished between leukocyte and noise in terms of accuracy (88.92%), precision
(89.36%), sensibility (88.92%), specificity (89.95%), and F1-score (88.69%). Compared with
the machine learning results in the previous phase (image processing), it is possible to
notice that the increased performance between both phases is minimal compared with the
computational resources and speed of the entire algorithm, with a 3.1% precision and a
0.16% F1-score.

While prior works like Quinn et al. [10] have explored CNN-based approaches for
leukocyte detection, these methods often require more computational resources. Our
approach demonstrates that traditional machine learning algorithms remain competitive,
particularly in resource-limited settings.

3.3. Parasite Detection Performance
3.3.1. Performance of Candidate Identification

The algorithm’s performance in detecting parasite candidates was evaluated, consid-
ering that a parasite is correctly identified if the center of the annotation created by the
expert is between a radius of thirty-five pixels to the center of the contour obtained with
the segmentation of the algorithm. A radius of thirty-five pixels was selected by varying
its values between 20 and 120 pixels and selecting the radius that identified the highest
number of parasites. Subsequently, the algorithm’s recall was evaluated at the image level,
the slides’ level, and the entire dataset (the relationship between the number of indeed
identified parasites and the total number of annotated parasites). The results achieved a
recall of 93.29% at the image level and 93.35% at the slide level.

The proposed IGMS by Yang et al. [12] achieves a recall of 97.49% ± 5.40% on an image
level and 96.59% ± 5.52% on a patient level, respectively. They used Giemsa-stained thick
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blood smear slides from 150 P. Falciparum; however, our model used both bad and good
quality Romanowsky-stained images, and the bounding boxes did not have a standard size.

3.3.2. CNN Model

The performance of the custom CNN model was evaluated using the test dataset,
which consists of fifteen slides for a total of 150 images, 543 parasites, and 9.580 background
noise. Our model achieved an accuracy of 98.65%, an F1-score of 82.10%, a specificity
of 99.10%, sensitivity of 86.55%, and precision of 78.07%, a false positive rate of 0.90%,
and a false negative rate of 13.44%. The precision curve was also calculated as it is more
informative when evaluating classifiers with an unbalanced dataset in an ROC graph [40].
The AUC was 0.912, showing the effectiveness of the CNN model. The corresponding
precision curve and confusion matrix are shown in Figure 6 and Tables 5 and 6.
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Table 5. Confusion matrix CNN model on a patch level.

Predicted Negative Predicted Positive

Non-parasites 95.6% 0.9%

Parasites 0.5% 3.1%

Table 6. Performance for SVM on different kernels.

F1-Score

Classifier Trophozoite Schizont Gametocyte

Linear 70% 70% 55%

Quadratic 54% 58% 48%

Cube 58% 51% 52%

Yang et al. [12] obtained the following performance metrics on patch level: accuracy
97.26%, AUC 97.34%, recall 82.73%, specificity 98.39%, precision 78.98%, and F1-score
80.81%. These results are similar to those obtained with our customized CNN model,
demonstrating consistent performance across different approaches.

Quinn et al. [10] proposed a convolutional neural network (CNN) model for parasite
detection, reporting an average precision of 97% using smartphone-captured images di-
vided into patches. Their approach achieved impressive precision, indicating the potential
of mobile-based systems for malaria detection. Our results align with theirs, but we also
focus on improving the robustness of our model in dealing with image quality variations.
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Mehanian et al. [11] utilized CNN models for parasite detection and quantification,
achieving recall, precision, and specificity of 91.6%, 89.7%, and 94.1%, respectively, although
their method took 20 min to process. While their model showed strong performance, our
model offers a more efficient solution with faster processing times, further enhancing its
practicality for real-world use.

Rahman et al. [18] proposed a deep learning model for malaria detection in red blood
cell smears, achieving an accuracy of 97.77% using a deep convolutional neural network
(CNN). Their method differs from ours in that they directly use raw segmented red blood
smear patches, avoiding hand-engineered feature extraction. While Rahman et al. achieved
very high accuracy with a dataset from the NIH malaria dataset, their model was trained
and tested using preprocessed images. In contrast, our approach accounts for non-ideal
images, offering a more robust solution in varied real-world conditions.

Kaewkamnerd et al. [19] focused on parasite detection and classification using thick
blood films, reporting a classification success rate of 90% for Plasmodium falciparum (Pf) and
75% for Plasmodium vivax (Pv). Their work highlights the importance of thick blood films
in detecting parasitic presence, especially when parasite concentration is low in thin films.
Our results in parasite detection align with their findings, supporting the use of thick blood
films in malaria diagnosis.

3.4. Parasite Stage Classification Results
3.4.1. Machine Learning SVM Model

For the model’s design based on SVM, changing the gamma and learning rate hy-
perparameters did not affect the model’s performance. Therefore, only the kernel was
analyzed. Accuracies of 65%, 52%, and 54% were obtained for the linear, quadratic, and
cubic kernels. Furthermore, the system was more effective in all models when classifying
the schizonts class, followed by the trophozoites class, as shown in Table 6.

3.4.2. Deep Learning

When conducting a preliminary analysis, it was found that the best composition con-
sisted of three convolutional layers and two hidden layers of the neural network with 512
and 256 neurons, respectively, with an accuracy of 84%. After performing hyperparameter
tuning, 87% accuracy was reached using the test set. The trophozoites class was the best
classified in this model, followed by the schizonts class. Table 7 shows the performance of
the four best results of the experiments for multiple configurations with the CNN model.

Table 7. Experiments for multiple CNN configurations.

Classifier
F1-Score

Accuracy
Trophozoite Schizont Gametocyte

1 89% 83% 73% 81%

2 87% 81% 75% 80%

3 81% 79% 78% 79%

4 87% 76% 74% 78%

Afterward, the best configuration was used, and hyperparameters were adjusted
to improve the network’s performance. Table 8 shows the performance by varying
hyperparameters.
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Table 8. CNN configurations vary from hyperparameters.

F1-Score
Accuracy

Batch Size Epochs Learning Rate Trophozoite Schizont Gametocyte

70 100 0.00001 85% 88% 83% 86%

80 150 0.001 84% 76% 71% 76%

50 100 0.001 85% 82% 76% 80%

50 50 0.00001 92% 84% 74% 84%

Finally, multiple networks (Table 9) were implemented with default values without
frozen layers. The architectures that were evaluated were VGG-16 [36], MobileNetV2 [37],
and ResNet-50 [38]. They had a fixed batch size [50; 100] and number of epochs [50; 100].
No frozen layers were used for these networks, and an image size of [50 × 50] was used.

Table 9. Transfer learning performance.

Classifier
F1-Score

Accuracy
Trophozoite Schizont Gametocyte

Mobile Net 64% 75% 74% 72%

InceptionResNetV2 82% 74% 75% 76%

ResNet50 64% 75% 74% 72%

VGG16 82% 74% 75% 76%

Identifying some descriptive characteristics that allowed the different stages to be
classified was possible. Various characteristics that do not present graphically separable
patterns were also explored. It was also possible to conduct a good class balance approach
and reduce the differences with trophozoites. When multiple values were applied to the
gamma and C parameters of the classifier, it was evident that they did not represent a
change in the classifier’s performance, so its default value was left. Also, in all tests, the
linear classifier had the highest performance.

Dave et al. [8] used Giemsa-stained images to classify all parasite stages (ring, tropho-
zoite, schizont, and gametocyte) in thick blood smears. Unlike other methods that only classify
the ring stage, their system can classify the complete parasite lifecycle, which is crucial for
accurate diagnosis and treatment.

The algorithm showed a 7.14% discrepancy compared with expert microscopists,
indicating reliable performance. Additionally, the system can estimate parasite density,
providing valuable information for malaria severity assessment.

While this study is one of the few to address stage classification in thick blood smears,
it highlights a significant gap in the field, as parasite stage classification in thick blood
smears is an opportunity for further research.

4. Conclusions
In this paper, we presented an automated system for assessing image quality, detecting

leukocytes, and detecting and classifying malaria parasites in Romanowsky-stained thick
blood smears of Plasmodium vivax. The proposed pipeline integrates feature extraction
techniques based on HSV color space and support vector machines (SVMs) for image quality
assessment and a custom convolutional neural network (CNN) for parasite detection
and classification. These components collectively address key aspects of the malaria
diagnostic process.
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This study introduces a novel approach by automating image quality estimation and
parasite stage classification, areas that have been insufficiently explored in previous re-
search. Integrating image quality analysis in the diagnostic pipeline significantly enhances
the accuracy and reliability of malaria detection, even in cases where images may have
varied quality.

The results indicate that the SVM achieved a precision of 95% for image quality
assessment, while the leukocyte detection yielded an accuracy of 88.92%. For malaria
parasite detection, the custom CNN model attained an accuracy of 98.65% and effectively
classified parasite stages, with F1-scores of 85% for trophozoites, 88% for schizonts, and
83% for gametocytes.

These findings demonstrate the effectiveness of our system in automating various
stages of the malaria diagnostic process, even when working with images of heterogeneous
quality. The balance between accuracy and computational efficiency makes it particularly
suitable for deployment in resource-constrained environments, where access to advanced
computational infrastructure may be limited. This work could reduce the diagnostic burden
in malaria-endemic regions, streamline laboratory workflows, and minimize human error
in detecting and classifying malaria parasites.

Future work will refine the system to automate all diagnostic steps, enabling more
accurate and scalable malaria diagnosis in low-resource settings. This includes integrating
smartphone imaging technologies to enhance accessibility in remote areas, expanding the
dataset to cover additional Plasmodium species, and improving generalizability across
varying staining protocols to further broaden the system’s applicability.
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