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Abstract: This paper presents the outcomes of a feasibility study on the manufacturing of D-
band horn antennas through the Low Power Bed Fusion process. Different prototypes have
been realized and tested, showing nice results in terms of the co-polarization component.
On the other hand, a spurious cross-polarization component is present in the radiation
pattern even in the principal planes, limiting the device to single-polarization applications.
A mechanical study of the realized devices has been conducted on the horn internal channel
to understand the reasons for this issue, and, subsequently, to address where to improve
the manufacturing process.
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1. Introduction
The scientific community is showing, nowadays, an increasing interest in the sub-

terahertz frequency band for climate monitoring and astrophysical observation [1,2]. Sub-
terahertz remote sensing offers a unique capability for improving climate-change and
weather monitoring from space thanks to its higher sensitivity to fundamental observable
parameters, such as columnar water vapor distribution. This parameter is an indicator
of a proxy of extreme phenomena that often hit the Mediterranean countries. On the
other hand, astrophysical research increasingly quests for the realization of focal planes
populated by receivers with tens or even hundreds of feed horns. The QUBIC (Q&U
Bolometric Interferometer for Cosmology) observation mission is a significant example. The
QUBIC experiment is based on bolometric interferometry in order to measure the B-mode
polarization anisotropies of the Cosmic Microwave Background (CMB). The experiment
consists of ground-based observations of the sky in two main spectral bands centered at
150 and 220 GHz [3]. The instrument, which is already operative in a reduced version
with 64 horns, known as TD (Technological Demonstrator), will be composed by a rotating
half-wave plate and a polarization grid exploited to modulate the measured polarization
of the incoming signal from the sky. In the final version, an array of 400 corrugated horns
collects the radiation and subsequently suitably detects it.

In both cited application domains, for the horns’ realization, electroforming [4] rep-
resents, nowadays, the best manufacturing technique to guarantee a good accordance
between simulated and measured performance in terms of both radiation pattern and
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insertion loss. Its cost is the main drawback of this technique that, indeed, prevents its use
for horn arrays larger than a few elements.

An affordable alternative, already implemented in radio-astronomical instrumentation,
is the metallic platelet technique [5]. This approach makes use of packs of metal sheets
(platelets) holed to reproduce the feed horn profile [6–9]. Unfortunately, at frequencies
higher than ~100 GHz, even the metallic platelets show some limitations due to the dis-
continuities/air gaps among the plates that can compromise electromagnetic and thermal
performances. It is worth mentioning that the front ends of these instruments are, in most
cases, cooled at cryogenic temperatures. Therefore, this drawback is particularly critical
for the study of the Cosmic Microwave Background, where the control of the instrumental
systematic effects is fundamental in the polarized B-modes’ detection [10–12].

A viable solution to the cited problems can be represented by Additive Manufacturing
(AM) processes [13], whose employment in the microwave/antenna community has in-
creasing exponentially in the last ten years thanks to their features such as net shapes and
free-form capabilities. An interesting overview on the advantages of these and the other
AM features is reported in Ref. [14].

In the case of all metal devices, such as horn antennas and relevant feed-chains, the
most suitable process is Low Power Bed Fusion with an aluminum-based alloy (PBF-
LB/M/AlSi10Mg). Its usual application domain is in the realization of devices operating
in K/Ka bands (i.e., from 10 to 30 GHz) [15–17]. The manufacturing of complex waveg-
uide channels at a higher frequency, indeed, suffers on some process limits in terms of
accuracy and surface roughness. However, considering the manufacturing of horn an-
tennas, quite interesting examples can be found even at higher frequencies (such as in
Q/V and W bands [18–22]). In the cited papers, different horn geometries have been
considered, from the classical conical one [19], to a corrugated solution [21] and smooth
wall architectures [22].

Stereo-lithography is a quite interesting option in the panorama of AM processes
thanks to its superior surface finishing and accuracy, but the metallization of the inner
channels is, in general, not an easy task [23–25]. Binder Jetting [26] or Fused Deposition
modeling (FDM) [27] have also been employed in the realization of horn antennas, thanks
to the lower-cost production, but, in general, its performances are worse.

Starting from the nice outcomes from Ref. [22] in terms of measured cross-polarization
and return loss, here, we discuss the results of a feasibility study on the applicability of a
PBF-LB/M process to manufacture feed horns in the D band (110–170 GHz). In particular,
as a significant benchmark, we have considered the design of a feed horn operating in the
frequency range of 130–160 GHz with radiation performance compatible with the feed horn
of the QUBIC experiment.

We have manufactured and fully electromagnetic characterized three AM prototypes
with different external profiles. Despite the high-frequency operative band, we have
observed a nice accordance with the predicted performance in the co-polar component. The
radiation patterns present, unfortunately, an undesired cross-polarization term, putting
in evidence that the actual technological readiness of this manufacturing process is not
sufficient for the realization of a dual-polarization system in the D-band. Through a
mechanical analysis of the realized part and elaboration of the relevant data, we have
focused on the issues that can have generated the measured problem. These outcomes can
be used as starting points to improve the manufacturing process.

The article is divided in the following way. Section 2 deals with the choice of the horn
architecture and its design. Section 3 discusses the manufacturing of the prototypes and the
antenna measurements. Finally, Section 4 is devoted to mechanical nondestructive testing,
through tomography, and the relevant data elaboration.
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2. Feed Horn Design
In the present study, we consider the requirements of QUBIC feed in terms of its

operative band, return loss, cross-polarization level, and field taper at the reflector illu-
mination angle. Although corrugated horn architecture is the most suitable in terms of
cross-polarization performance, its manufacturing through the AM process is particularly
cumbersome, since the internal corrugations are not self-supporting, and the device can be
realized only considering an inclination of the part in the building machine. This usually
translates into worse performance of the antenna. On the other hand, smooth wall solutions
do not present this problem since their structure is fully self-supporting, so the part can be
oriented in the building machine parallel to the laser axis assuring better manufacturing
accuracy [22]. For this reason, we have adopted this architecture in the present study. The
input and radiating circular waveguide diameters have been selected identically to the
QUBIC horn i.e., Di = 2 mm and Dext = 10.92 mm, respectively. According to the design
technique presented in Ref. [28], we have obtained the horn geometry by optimizing its
generatrix profile with 14 control nodes. We have chosen such high value to cover the large
(around 21%) operative bandwidth, i.e., from 130 GHz to 160 GHz. Figure 1 reports a 2D
section of the final horn profile. According to the reference system shown in the plot, the
radial and longitudinal coordinates of the horn generatrix are (in millimeters):
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Figure 1. Geometry of the designed feed horn.

ρi = {1 1.09 2.107 2.279 2.454 2.531 2.542 2.667 2.798 3.470 3.608 3.755 4.824 5.46 5.46};
zi = {0 6.42 11.3 12.06 12.97 13.69 20.63 22.22 22.96 25.23 26.05 27.37 32.39 32.67 33.65};
Figure 2 reports the simulated performance of the horn in terms of return loss and

maximum cross-polarization level within the angle θ∗ = 60◦. The plot shows a quite nice
level of return loss and cross-polarization, both better than −35 dB in a wider frequency band.
The design has been carried out using an in-house numerical code. This code is based on
the mode-matching and Coupled Integral Equation Technique (CIET) [29,30]. To this end,
first, the horn profile is discretized using a discretization step equal to λ/30, where λ is the
free-space wavelength at the highest operative frequency (i.e., 160 GHz). The profile staircase
approximation is, then, interpreted as a cascade of step discontinuities in circular waveguide.
The electromagnetic behavior of the antenna is computed applying the Equivalence Theorem,
i.e., closing each discontinuity with a perfect electric conductor and introducing unknown
magnetic equivalent currents. A system of coupled integral equations is then formally obtained
by relating the unknown equivalent current on the i-th discontinuity with the relevant currents
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on the (i − 1)-th and (i + 1)-th discontinuities. By expanding these currents on the basis of the
apertures modes, this system is converted into a tridiagonal-blocks system that is effectively
solved by using the Gauss elimination method.
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Figure 2. Simulated performance of the smooth wall horn shown in Figure 1.

The horn external profile (shown in Figure 3) has been designed to minimize the
envelope but at the same time to guarantee sufficient rigidity of the antenna. According to
previous experience in the manufacturing of feed horns [22], we have employed a constant
metal thickness of 1 mm along the central part of the antenna following the internal profile.
The radiating aperture presents instead a corona of around 17 mm diameter to reduce the
effect of the radiation of the external currents. The connection between the central and
radiating external parts has been realized by a smooth conical external transition. Finally,
the input circular waveguide has a larger cross-section, with holes for pins and screws, for
the connection of the horn to the measurement setup. An input circular waveguide length
of 5 mm has been included to simplify the mounting with the measurement setup.
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3. Antenna Manufacturing and Testing
As discussed in the introduction, our intention is to understand the feasibility of PBF-

LB/M process to realize microwave devices, and, in particular, feed horns, operating in the
D-band. Using the EOSINT M270 Dual Mode, three prototypes have been manufactured
exploiting the classical AlSi10Mg alloy. Figure 4 reports a picture of the three antennas.
From the CAD model shown in Figure 3, these horns present some differences from a
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mechanical point of view. The first two (horn A and horn B), indeed, are quite similar
to the CAD model, except for a small difference related to a conic loft in the connection
region between the input flanges and the central body of the horn. We have applied
this expedient to guarantee more robustness to the part. The almost conical shape of a
smooth-wall horn permits, indeed, quite a neat shape solution, but some trade-offs on
the external shape are necessary to avoid warp/collapse during the manufacturing and
post-processing procedure. In the case of Horn C, we have considered a bulky solution to
understand if it could improve the manufacturing quality of the part. We have applied
a stress relieving heat treatment of 2 h at 300 deg for all the prototypes as well as a shot
peening with glass microsphere using a pressure of six bar [31]. This is an essential step
to reduce the roughness (from around 20 µm to around 3–8 µm) that translates into better
conductivity of the internal channels and, therefore, lower metallic loss.

Sensors 2025, 25, x FOR PEER REVIEW 6 of 14

Figure 4. Pictures of the realized feed horns prototypes in PBF-LB/M/AlSi10Mg.

The measurement setup for the electromagnetic characterization of the feed horns is 
composed by a Vector Network Analyzer (VNA) (PNA-X N5245B) connected to a com-
mercial transition from square to circular waveguide where the Antenna Under Test 
(AUT) is joined. For the beam pattern measurement, a launcher antenna (RPG Corrugated 
Feed Horn WR6 Type FH-CG-140) is mounted on an optical bench and connected to the 
VNA. Absorber material (ECCOSORB HR-10) is used to cover all the possible reflecting 
surfaces in the lab.

Both the launcher and the AUT are placed on proper support to guarantee the far 
field approximation and the reciprocal alignment in the case of boresight direction. In 
particular, the launcher has fixed support with a lab-jack. The AUT is mounted on a rotat-
ing platform that allows us a proper beam pattern characterization for each incidence an-
gle. The propagation distance from the launcher aperture to the receiver aperture is 147 
cm, that is much more of the Rayleigh distance (2𝐷ଶ/ 𝜆) at 160 GHz, to ensure an almost 
plane illumination of the AUT in the operative bandwidth. We have used waveguide 
twists to perform measurements on the different planes, compensating their presence us-
ing straight waveguide if necessary. Figure 5 reports a picture of the overall measurement 
setup.

Figure 4. Pictures of the realized feed horns prototypes in PBF-LB/M/AlSi10Mg.

The measurement setup for the electromagnetic characterization of the feed horns is
composed by a Vector Network Analyzer (VNA) (PNA-X N5245B) connected to a commer-
cial transition from square to circular waveguide where the Antenna Under Test (AUT)
is joined. For the beam pattern measurement, a launcher antenna (RPG Corrugated Feed
Horn WR6 Type FH-CG-140) is mounted on an optical bench and connected to the VNA.
Absorber material (ECCOSORB HR-10) is used to cover all the possible reflecting surfaces
in the lab.

Both the launcher and the AUT are placed on proper support to guarantee the far
field approximation and the reciprocal alignment in the case of boresight direction. In
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particular, the launcher has fixed support with a lab-jack. The AUT is mounted on a rotating
platform that allows us a proper beam pattern characterization for each incidence angle.
The propagation distance from the launcher aperture to the receiver aperture is 147 cm,
that is much more of the Rayleigh distance (2D2/ λ) at 160 GHz, to ensure an almost plane
illumination of the AUT in the operative bandwidth. We have used waveguide twists to
perform measurements on the different planes, compensating their presence using straight
waveguide if necessary. Figure 5 reports a picture of the overall measurement setup.
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Figure 5. Picture of the measurement setup.

The measurements of the normalized co-polar radiation patterns in the E, H, and D
planes for the three prototypes are shown in Figures 6–9, considering a 5 GHz step in the
frequency range 125–160 GHz. In all the plots, the theoretical radiation pattern is reported,
showing a very good accordance between simulations and measurements. In particular, the
plots show an excellent fitting with the predicted one up to the angular range ±40

◦
; worse

results can be observed at larger angles. This can be partially attributable to the accuracy of
the measurement setup in terms of spurious reflections.
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Figure 6. Comparison between theoretical (in black) and measured (in blue and red) co-polar and
cross-polar normalized radiation patterns in the E-, H-, and D-planes at 125 GHz (left) and 130 GHz
(right). The plot reports the measurements on the three prototypes Horn A (continuous lines), Horn
B (dashed lines) and Horn C (dashed dot lines).
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Figure 8. Comparison between theoretical (in black) and measured (in blue and red) co-polar and
cross-polar normalized radiation patterns in the E-, H-, and D-planes at 145 GHz (left) and 150 GHz
(right). The plot reports the measurements on the three prototypes Horn A (continuous lines), Horn
B (dashed lines) and Horn C (dashed dot lines).

Unfortunately, as shown in the figures, all the three prototypes show a spurious cross-
polarization level in the radiation pattern even on the principal planes where it should be
nominally zero. This behavior is asymmetric in θ and not uniform in frequency with worse
performances at lower ones. This cross-polarization component is surely the result of a
spurious modal combination at the horn aperture. This combination should be composed
by both circular waveguide modes with azimuthal index m ̸= 1 and those (TE1n and
TM1n) related to the horizontal polarization of TE11 mode. Note that the rectangular to
circular transition is connected to the horn to excite, namely, only the vertical polarization
of the TE11 mode. The modes with azimuthal index m ̸= 1 can be excited if the perfect
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azimuthal symmetry of the horn is not maintained along the structure. These modes are
below cut-off at the input waveguide, but, as the diameter increases, gradually become
above cut-off and can propagate, if excited. The modes related to the other polarization
of the TE11 mode, i.e., the horizontal one, can be present along the structure for different
reasons. The first one is the imperfect connection between the horn and the transition
from the rectangular and circular waveguide due to small backslash in both the screws
and pins in the realized horn flange. The same polarization purity in transmission of the
rectangular to circular transition can play a role on this problem by exciting a non-negligible
component of the horizontal TE11 mode. Finally, another possible concause is the imperfect
concentricity of the different cross-sections along the internal channel. The verification of
the first two hypotheses is quite cumbersome, while it is possible to control the last point
through a mechanical nondestructive analysis on the prototypes. We discuss the details
and results of this investigation in the next section.
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We have measured the metallic losses of the three horn prototypes by closing the
radiating aperture with a metallic sheet and measuring the reflection coefficient at the horn
input port. The mean measured losses are around 0.3 dB compatible with an equivalent
surface resistivity of 16–18 µΩcm. As proved in different published articles [32,33], A silver
plating can be applied, if necessary, to improve this value.

Figure 10 reports the measured gain of horn B as a function of the frequency. We have
observed a similar behavior for the other horns. Finally, the measured reflection coefficient
of the horn connected to the rectangular to circular transition is lower than −27 dB in all
the frequency range 130–160 GHz.
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4. Mechanical Measurements of the Horn Prototype
We have carried out a deep investigation for better understanding the reason for

the measured cross-polarization levels. To this end, we have preferred a non-invasive
inspection through tomographic analysis on the horns using the instrument GE Phoenix
v|tome|x s. In particular, we have applied this inspection on horn A and B. In the following,
we report the analysis for horn B, since similar results and conclusions were maintained for
horn A.

During the acquisition, the tomographic scanner has acquired a set of around 470,000
3D-points. Figure 11 shows the 3D model generated from this acquired data.

Starting from this dataset, the idea is to re-construct, section by section, the realized
internal channel of the horn and then compare these sections with the nominal ones. In
order to maintain the highest flexibility and generality, we have exploited a numerical
algorithm to deduce, for each section of the internal channel, the best fitting ellipse Y. Since
the data are not uniform along the longitudinal z-axis of the horn, a discretization in steps
of 0.05 mm have been applied. Note that, as is well known, at least six points are necessary
to define an ellipse in a plane.

The effectiveness of this numerical reconstruction is shown in Figure 12 where the
comparison between the acquired points (in blue) and the best fitting ellipse Y (in red) is
reported, as an example, in four z-sections of the horn: the input one, two centrals, and one
close to the radiating aperture. The good fitting shown in the plots confirms the choice of
this mathematical model. From the analytical expression of Y, we have derived, for each
longitudinal section, the center position and the major (Ra) and minor (Rb) semi-axes of Y
as well as the tilt of the main directions of the ellipse with respect a fixed ( x, y) reference
system centered at the horn input waveguide. A summary of this analysis is reported in
Figure 13. In the plot is evident a deviation of the centers of the various Y with respect to
the longitudinal axis of the horn leading to an overall drift of around 0.1 mm along the
structure. At the same time, a non-negligible tilting of the main axes is present. These
two aspects represent surely a significant concause of the measured cross-polarization
component on the radiation patterns reported in Figures 6–9. As far as the shape of the
cross-section is concerned, the analysis shows a good circularity with semi-axes Ra and
Rb quite close (with a difference almost everywhere lower than 0.05 mm) to the nominal
radius Rnom except in the radiating region where it is around 0.07 mm.
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5. Conclusions
Despite the not excellent agreement with the desired results in terms of the cross-

polarization component, the nice outcome in the measured co-polar component proves
that PBF-LB/M is an interesting manufacturing technique still in the D-band, and it can
be effectively employed for the manufacturing of single linear-polarization devices. The
mechanical analysis of the horn shows the necessity of better control, in the manufacturing
process, over the absolute center position of the cross-section to reduce the observed drift.
Future work will focus on both improving the manufacturing in this aspect and reducing
the electromagnetic noise in the measurement setup for better characterizing these antennas
in a wider angular region. Finally, the realization of an integrated version of the horn with
an orthomode transducer can be a future step to minimize the uncertainty in the multimodal
connection of the horn with the transition from a rectangular to a circular waveguide.
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