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Abstract: The advancement of neural radiance fields (NeRFs) has facilitated the high-
quality 3D reconstruction of complex scenes. However, for most NeRFs, reconstructing
3D tissues from endoscopy images poses significant challenges due to the occlusion of
soft tissue regions by invalid pixels, deformations in soft tissue, and poor image quality,
which severely limits their application in endoscopic scenarios. To address the above
issues, we propose a novel framework to reconstruct high-fidelity soft tissue scenes from
low-quality endoscopic images. We first construct an EndoTissue dataset of soft tissue
regions in endoscopic images and fine-tune the Segment Anything Model (SAM) based
on EndoTissue to obtain a potent segmentation network. Given a sequence of monocular
endoscopic images, this segmentation network can quickly obtain the tissue mask images.
Additionally, we incorporate tissue masks into a dynamic scene reconstruction method
called Tensor4D to effectively guide the reconstruction of 3D deformable soft tissues. Finally,
we propose adopting the image enhancement model EDAU-Net to improve the quality of
the rendered views. The experimental results show that our method can effectively focus
on the soft tissue regions in the image, achieving higher fidelity in detail and geometric
structural integrity in reconstruction compared to state-of-the-art algorithms. Feedback
from the user study indicates high participant scores for our method.

Keywords: endoscopic image; 3D reconstruction; neural radiance fields; soft tissue dynamics;
image segmentation

1. Introduction
Endoscopy is an essential tool in the diagnosis and treatment of gastrointestinal

diseases [1]. However, monocular endoscopes based on 2D imaging may compromise
surgical and diagnostic tasks due to the lack of depth perception and detailed spatial
information. Detailed 3D surgical scene reconstruction technology with enhanced depth
perception can not only improve the accuracy and quality of surgery, but also play an
important role in downstream tasks such as medical education and training, and surgical
planning. However, robust algorithms are severely lacking in medical environments, where
capturing high-fidelity diseased tissue is of the utmost importance. Therefore, developing
a new method for reconstructing deformable tissue scenes is a pivotal technological and
intellectual challenge in the field of Computer-Aided Diagnosis (CAD).

In early research on medical image reconstruction, discrete representation methods
(such as point clouds and grids) were often used to model and reconstruct three-dimensional
structures. The advent of deep learning has shown great promise in many other fields.
Researchers have attempted to directly apply deep learning methods to discrete 3D data
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representations and have developed end-to-end 3D depth reconstruction algorithms [2–4]
based on point clouds and grids, which can be used for various types of medical imag-
ing data. However, in endoscopic scenes, traditional 3D discrete representation methods
struggle to reconstruct relatively complete geometric structures of scenes. With the great
success of NeRFs in scene reconstruction using continuous representations [5–7], several
research works are gradually introducing NeRF-based implicit modeling methods into the
3D reconstruction of endoscopic images. For example, the development of EndoNeRF [8]
and Endosurf [9] has attracted widespread attention due to their significant progress in
enhancing the accuracy and detail fidelity of endoscopic image reconstruction. However,
these methods primarily handle stereo endoscopic image sequences with a fixed viewpoint,
which limits their applicability to monocular endoscopes with varying perspectives.

As shown in Figure 1, reconstructing high-fidelity deformable tissue from endoscopic
images is a challenging and arduous task due to three key issues: First, the endoscopic
images exhibit invalid occlusions caused by non-soft tissue regions, such as surgical tools,
surrounding black and green pixels, and metadata information. The green pixels typically
represent regions used for displaying navigation information or providing localization
references during endoscopic surgeries. These pixels may overlay the endoscopic image
to aid in guiding the surgeon. The surrounding black pixels arise from areas outside the
endoscope’s field of view. These black areas are inherent to the imaging setup and do not
provide useful information for 3D reconstruction. On the other hand, metadata refers to
additional information overlaid on the image, such as real-time metrics (e.g., video bitrate,
dropped frames) or textual annotations like video identifiers. Occlusion of invalid regions
can interfere with the model’s reconstruction of geometric information, resulting in mis-
alignment or artifacts in the reconstructed scenes. Manually drawing masks to accurately
identify soft tissue regions is time-consuming and complex, increasing both the algorithm’s
time cost and the operational burden on doctors. At present, there is no dataset specifically
distinguishing between soft tissue regions and non-soft tissue regions (i.e., invalid regions).
Second, soft tissues have non-rigid properties, and accurately capturing their dynamic
deformation over time and with changing viewpoints is a critical challenge in reconstruc-
tion. Third, due to lighting limitations and the inherent characteristics of NeRFs, rendered
endoscopic images often suffer from poor quality, including uneven lighting, low contrast,
and blurry textures, which affect the reconstruction quality of endoscopic scenes.

Figure 1. The challenge of monocular endoscopic image reconstruction. The regions marked by red
lines in the figure are invalid pixels.

To address the above issues, we propose a novel high-fidelity deformable soft tissue
reconstruction framework based on neural radiance fields. First, to resolve the issue
of invalid pixel occlusion in endoscopic images, we constructed a dataset specifically
for segmenting soft tissue regions. Based on this dataset, we fine-tune SAM [10] and
develop an enhanced version of the model, called SAM-EndoTissue. SAM-EndoTissue
enables automatic and robust segmentation and generates soft tissue masks by excluding
invalid regions from endoscopic images. Then, we propose a novel tissue mask-guided
ray sampling strategy by incorporating tissue masks into the efficient dynamic neural
radiance field, Tensor4D [7]. This strategy selectively reconstructs deformable tissue regions,
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while excluding invalid regions. Additionally, to address blurred textures in rendered
views, we incorporate the previously proposed EDAU-Net (Encoder Dual Attention U-Net
Network) to enhance the rendered views. The view optimization pipeline is seamlessly
integrated with the reconstruction framework to build an end-to-end solution for high-
fidelity reconstruction of 3D endoscopic scenes.

2. Related Work
Endoscopic imaging typically relies on discrete representation methods such as point

clouds [2,3] and mesh grids [4]. These methods use sparse structures to efficiently generate
surface models of simple scenes while utilizing additional warp fields to adapt to the
dynamic changes of soft tissues. However, discrete representation methods face significant
limitations and challenges in complex and dynamic endoscopic scenes. Endoscopic images
captured within the human intestine often contain low-texture or no-texture areas that
lack matching features. This sparse characteristic may lead to the loss of tissue details
during the reconstruction process, thereby reducing reconstruction accuracy. In addition,
discrete methods are difficult to adapt to irregular topological structures when dealing
with dynamic soft tissues.

The continuous representation methods model 3D scenes through implicit or con-
tinuous functions, which can capture the fine details and complex dynamic structures
in the scene. Neural radiance fields (NeRFs) [5] have become a typical representative of
continuous representation methods due to their efficient reconstruction capability and
excellent detail performance. With the development of NeRFs and their extensions [6,11],
there is enormous potential for novel view generation and 3D reconstruction in dynamic
real-world scenarios to support downstream applications such as telemedicine, surgical
path planning and simulation, medical education, and surgical training. In medical image
processing of CT scans or MRI, NeRFs can reconstruct complex anatomical structures
with rich details, potentially reducing patients’ exposure to multiple high-level ionizing
radiation or high-resolution scans [12]. For example, MedNeRF [13] and UMedNeRF [14]
have successfully achieved the rendering of high-quality CT projections from a given few or
even a single-view X-ray using a NeRF-based architecture. Iddrisu et al. [15] reconstructed
the 3D geometry and appearance of brain structures from 2D brain MRI images, aiding
doctors to more intuitively understand the morphology and location of the lesions. In
X-ray image processing, Maas et al. [16] achieved 3D reconstruction of blood vessels from
2D X-ray angiography images with sparse views and limited angles. Although NeRFs
have brought revolutionary progress to the reproduction of 3D scenes in CT, MRIs, and
X-ray images, the above methods usually deal with static scenes. For endoscopic images,
dynamic soft tissue structures need to be captured and reconstructed. Therefore, these
methods still face certain limitations in the 3D reconstruction of endoscopic images.

Currently, research in this field focuses on adapting NeRFs to better fit the unique
requirements of endoscopy data. Some research works have achieved significant success
in reconstructing single-viewpoint stereoscopic endoscopic images by using variants of
deformable radiation fields. For example, Wang et al. [8] proposed EndoNeRF, which first
applied D-NeRF [6] to the 3D reconstruction of binocular endoscopic images, restoring
high-quality details of surgical scenes. Considering the constant changes in surgical scenes
caused by instrument movement, Endosurf [9] designed a novel NeRF-based method to
reconstruct accurate 3D information from single-viewpoint RGBD images. These models
are capable of reconstructing deformable tissue scenes within the human body. However,
they are limited to input views with a single viewpoint and require paired binocular
endoscopic image data to obtain stereo-depth information. Moreover, these methods
are usually time-consuming during both training and rendering. EndoGaussian [17]
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utilized the emerging 3D Gaussian Splatting [11] to improve the efficiency of soft tissue
reconstruction in stereoscopic endoscopic videos. However, this method relies on local
data points to estimate the overall structure and requires high-quality data to reconstruct
accurate 3D models effectively. Soft tissues with limited viewpoints and poor surface
features may lead to significant holes or errors in the reconstructed images. Currently,
there are few reports on the reconstruction of monocular endoscopic images. Recent
advancements demonstrate that modified NeRFs can reconstruct 3D scenes with different
objectives, including dynamic scene representation [7], modeling for sparse views [18–20],
and optimizing the performance of scene reconstruction or rendering [21–23]. Due to the
unique characteristics of endoscopic images, existing methods are not fully applicable to the
3D reconstruction of such images. Based on the framework of NeRFs, new reconstruction
methods are designed for complex scenarios within human cavities and are expected to
promote the further development of medical-assisted diagnosis technology.

3. Methods
Figure 2 shows the framework of our proposed method for high-fidelity deformable

soft tissue reconstruction based on NeRFs, which consists of three main modules: tissue
region acquisition, deformable soft tissue reconstruction, and view optimization.

Figure 2. The framework of the proposed method.

(1) The tissue region acquisition module mainly utilizes the constructed dataset Endo-
Tissue to fine-tune and retrain SAM to obtain an extended version, named SAM-
EndoTissue. SAM-EndoTissue can quickly predict the tissue masks from input views,
which directly contributes to the accuracy and efficiency of the deformable soft tissue
reconstruction module.

(2) The deformable soft tissue reconstruction module uses tissue masks to perform tissue
mask-guided ray sampling on Tensor4D to ensure that the trained NeRFs only recon-
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struct valid dynamic soft tissue scenes. This targeted sampling improves the accuracy
and quality of 3D reconstruction in deformable endoscopic scenes.

(3) The view optimization module introduces the endoscopic image enhancement network
EDAU-Net to enhance the rendered views of the dynamic implicit field. This module
improves contrast, detail richness, and visual clarity, making the rendered images
more interpretable and clinically applicable. Finally, we can obtain enhanced views.

3.1. Tissue Region Acquisition

Currently, there is no dataset used to segment soft tissue regions other than the invalid
areas in endoscopic images. The SAM is a state-of-the-art segmentation model designed to
segment objects in images with high precision. SAM performs automatic and interactive
segmentation, guided by prompts such as points, boxes, or text, enabling flexible applica-
tion to various scenarios. Unlike standard image processing techniques, SAM benefits from
its rich feature representation, trained on a massive dataset of over 1 billion segmentation
masks across diverse image domains, which provides robust generalization capabilities.
Standard image processing methods can be sensitive to noise, lighting changes, and oc-
clusions. These factors are common in endoscopic environments. SAM’s architecture is
specifically designed to generalize well to such complex scenes, maintaining segmentation
accuracy even under challenging conditions. SAM is robust and stable for complex scenar-
ios, making it an ideal choice for segmenting specific regions in minimally invasive surgical
environments. Moreover, SAM’s fully automatic segmentation mode effectively reduces
labor costs. However, SAM is not suitable for most medical image segmentation tasks [24].
In order to train a deep learning network that can accurately and automatically segment
soft tissues, this paper constructs the first dataset, EndoTissue, specifically designed for
the segmentation of soft tissue regions from endoscopic images. Additionally, a simple
fine-tuning strategy is designed to apply SAM to the segmentation task of soft tissue regions
of medical images. This ensures that the method does not require additional operations by
doctors during the surgical process, thereby avoiding any extra burden.

As illustrated in Figure 1, the invalid regions primarily consist of surgical tools, sur-
rounding black and green areas, and metadata information. For surgical tools, some
scholars have constructed datasets specifically for surgical tool segmentation. As shown
in Figure 3a, the dataset includes 10,360 real endoscopic images and corresponding sur-
gical tool segmentation masks (ground truth, GT) selected from the open-source med-
ical imaging datasets: AnnotatedImages [25], ART-Net Dataset [26], CholecSeg8k [27],
kvasir-instrument [28], EndoVis15 [29], and RoboTool [30]. The images in these datasets
are all from endoscopic surgery scenes with invalid regions occluded by surgical tools.
Therefore, we no longer need to manually annotate the regions where surgical tools
are located. For the surrounding black and green regions, as well as metadata content,
the dataset EndoTissue includes a total of 16209 real endoscopic images collected from the
following open-source medical imaging dataset, including PolypGen [31–33], Nerthus [34],
kvasir [35], Hyper-Kvasir [36], Gastrolab [37], Gastrointestinal-Bleeding [38], FPPD-13 [39],
ETIS-LaribPolypDB [40], CVC-EndoSceneStill [41], CholecSeg8k [27], and BKAI-IGH
NeoPolyp [42]. The images in these datasets are obscured by invalid pixels, such as large
green areas and black regions surrounding the image. We invited four experts majoring in
digital media technology from universities to manually annotate the soft tissue regions of
these endoscopic images using labelme to obtain the corresponding segmentation masks
(GT). All ground truths in the dataset EndoTissue are black-and-white binary images. Pixels
in the soft tissue regions are set to black, while those in invalid regions are set to white.
By observing the endoscopic images, we can see that the sequence images of each scene
have the same invalid regions, meaning only one GT needs to be manually annotated by
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experts for each scene. The labeling process followed strict annotation guidelines, including
detailed instructions for the precise labeling of soft tissue regions using the labelme tool
and clear definitions of invalid areas in endoscopic images to ensure consistency and accu-
racy. Selecting images from multiple datasets with different scenes provides rich training
samples for the segmentation of soft tissue regions, ensuring that the EndoTissue dataset
can adapt to a wide range of medical image segmentation tasks. As shown in Figure 3b,
the invalid regions in endoscopic images consist of two main types. The first type consists
of areas occluded by surgical tools. The second type includes surrounding black and green
regions as well as metadata information. These two types of datasets are used to fine-tune
and retrain the SAM model, respectively, to improve the accuracy of segmenting soft tissue
regions, resulting in two specialized models: SAM-EndoTissue1 and SAM-EndoTissue2 (for
simplicity, they are collectively referred to as SAM-EndoTissue). To predict the region of
interest (ROI) of endoscopic image sequences, we input the images into SAM-EndoTissue1
and SAM-EndoTissue2. The outputs from these two models are then merged to generate
the final soft tissue masks that comprehensively represent the valid regions of the endo-
scopic images. SAM-EndoTissue not only removes black pixels but also excludes green
areas, surgical tools, and metadata information, thereby achieving accurate reconstruction
of valid soft tissue regions in endoscopic images. SAM-EndoTissue selects SAM’s fully
automatic segmentation mode and fine-tunes the mask decoder, freezing the image encoder
and prompt encoder. This mode does not require manually adding a bounding box for
the selected ROI. Instead, the model automatically generates bounding box prompts of the
same size as the original image to achieve segmentation. The fully automatic segmentation
mode can improve the segmentation performance and reduce the cost of manual labeling.
The tissue masks are automatically obtained by feeding the endoscopic images into the
trained SAM-EndoTissue model.

3.2. Deformable Soft Tissue Reconstruction

The structures and morphologies in endoscopic image sequences usually change to
varying degrees due to factors such as organ peristalsis, respiration, and changes in the
force applied by surgical tools. This increases the challenge of reconstructing deformable
tissues from endoscopic images. Tensor4D is an advanced method for reconstructing
dynamic scenes efficiently and effectively. It is specifically designed to improve compu-
tational efficiency compared to the traditional NeRFs. It adopts 4D decomposition for
D-NeRF in monocular dynamic scenarios, efficiently capturing the dynamic scenes inside
the human body. By adopting hierarchical tri-projection decomposition, Tensor4D reduces
memory consumption and achieves a compact representation of 4D spatio-temporal fields.
The coarse-to-fine strategy also balances the efficiency of training and the quality of re-
construction, ensuring rapid convergence in the early training stages while preserving
fine-grained details in the final output. However, occlusion of invalid regions may limit
Tensor4D’s depth perception of objects in the scene. To further improve the accuracy
of Tensor4D for endoscopic scene reconstruction, we propose a tissue mask-guided ray
sampling strategy. This strategy enhances the reconstructed details and accuracy of the
dynamic implicit field by focusing on the sampling of specific soft tissue regions in en-
doscopic images and further reduces computational overhead by avoiding unnecessary
computations in invalid regions. The overall flow of deformable soft tissue reconstruction
is shown in Figure 4.
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Figure 3. Endoscopic images and their mask images. (a) Source of endoscopic images for dataset
EndoTissue. (b) The training process of fine-tuning SAM using the constructed dataset EndoTissue.

Figure 4. The overall flow of deformable soft tissue reconstruction.

Scene Representation: Tensor4D uses multilayer perceptron (MLP) network E f , Eg,
and Ec to encode a dynamic 3D scene. For a point X = (x, y, z) in the scene at time t, we first
decompose the 4D tensor into three feature volumes: fz, fy, and fx. These feature volumes
are further decomposed into nine flow feature planes, which are input into the flow MLP
E f to predict the position offset ∆X = (∆x, ∆y, ∆z) from the starting time to the specified
input time t. Then, the position offset is decomposed into three LR and HR feature planes.
These feature planes and ∆X = (∆x, ∆y, ∆z) are fed into the geometry MLP Eg to obtain
the high-dimensional feature H and the volume density σ. Finally, the high-dimensional
feature H and the perspective d = (θ, φ) are input into the color MLP Ec to generate the
reconstructed color c = (r, g, b).
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Tissue Mask-Guided Ray Sampling: The ray casting of Tensor4D is applied to any
pixel p in the entire image (i.e., the entire image scene participates in the reconstruction
process), with the direction of the ray emitted from the camera center o passing through
that pixel denoted as d. The point on the imaging ray corresponding to this pixel is
defined as X(h) = o + d · h, where h represents the positional parameter of the sampling
point along the ray. This method of directly reconstructing the entire image will affect the
accuracy of reconstructing the region where the soft tissue is located. The binary mask can
locate specific regions of the image, preventing them from participating in the subsequent
reconstruction of implicit NeRFs [8]. To overcome the redundant sampling problem in the
original Tensor4D reconstruction, this paper proposes a tissue mask-guided ray sampling
strategy to optimize the ray sampling process of Tensor4D. Specifically, assuming n images
I are input, we first cast rays from pixels randomly selected from these images. The tissue
mask Imask = 1 acquired by the SAM-EndoTissue model can efficiently distinguish the soft
tissue regions and invalid regions of the image. Based on the tissue mask, we determine
whether a pixel is located in an invalid region or a valid soft tissue region. If Ii

mask = 0,
the i-th pixel ray is sampled. If Ii

mask = 1, the i-th pixel ray is not sampled. In the ray casting
process, each ray is defined as X(h) = o + ω′ · d · h, where ω′ represents the weighting
factors that guide the rays. The formula for ω′ is given below:

ω′ = ω
∥ω∥F

ω =

(
1 + ∑n

i=1 Ii
mask

∥∑n
i=1 Ii

mask ∥F

)
×

(
1 − Ii

mask
) (1)

where ∥ • ∥F represents the Frobenius normalization.
Volume Rendering: Tensor4D predicts the color value C(p, t) of the corresponding

pixel p in the 2D image based on the color c and density σ of the sampled points in the
scene at time t by using the volume rendering Equation (2):

C(p, t) =
∫ h f

hn
τ(h, t)σ(p(h, t))c(p(h, t), d)dh, (2)

where p(h, t) = X(h) + Ψθt(X(h), t), (3)

[c(p(h, t), d), σ(p(h, t))] = Ψθx (p(h, t), d), (4)

and τ(h, t) = exp
(
−
∫ h

hn
σ(p(s, t))ds

)
. (5)

where τ(h, t) is the cumulative transmittance of the ray from the nearest point hn to the
farthest point h f . p(h, t) represents the 3D point on the camera ray X(h) transformed to the
canonical space using the deformation network Ψθt .

Network Training: To train the dynamic NeRF network for the target scene, this paper
uses three loss functions to evaluate the difference between the output and GT: feature
regularization loss Lr, surface constraint loss Le, and color loss Lrgb. The total loss function
is expressed as follows:

Lm = λ1Lr + λ2Le + λ3Lrgb (6)

where the coefficients λ1, λ2, and λ3 are set to 0.01, 0.2, and 1.0, respectively.
Lrgb is used to calculate the mean squared error between the pixel values of the

rendered image and those of the original image, thereby completing the training of the
dynamic NeRFs for the target scene in a self-supervised manner. The loss function Lrgb is
formulated as follows:

Lrgb =
1

Ns

Ns

∑
i=1

∥∥C(p, t)− Cgt(p, t)
∥∥2

2 (7)
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where C(p, t) is the RGB color value of the image rendered by the canonical network.
Cgt(p, t) is the RGB color value of the input image. Ns represents the set of sampling rays
in the input view.

By minimizing the difference between adjacent elements in the same feature plane,
Lr can preserve the sparse structural characteristic of the feature plane. The equation is
defined below:

Lr = ∑
T

∑
i,j

√
(Ti+1,j − Ti,j)2 + (Ti,j+1 − Ti,j)2 (8)

Le can optimize the geometric representation by enhancing the smoothness of the
surface. It can be represented by Equation (9):

Le = ∥∥∇S(x, y, z, t)∥2 − 1∥2 (9)

where ∇S denotes the gradient of the surface at position (x, y, z, t), which measures how
much a surface varies in space.

3.3. Render View Optimization

Although the dynamic NeRFs learned in Section 3.2 can effectively reconstruct 3D
scenes from endoscopic images, the input endoscopic images usually suffer from issues
such as uneven illumination and low contrast due to the unique characteristics of the
endoscopic imaging environment and equipment [43]. In addition, NeRFs rely on op-
timizing the shape and appearance of each 3D spatial location along a light ray solely
based on individual pixel RGB values. This inherent limitation may result in the loss of
edge details in the rendered views [44]. Therefore, images directly rendered using fully
trained NeRFs can sometimes not meet the clinical needs. To further improve the fidelity
of rendering views on the inner walls of human body cavities, this paper introduces our
previous research work, the Encoder Dual Attention U-Net Network (EDAU-Net) [43],
to enhance the rendered views. EDAU-Net is a novel deep learning-based global image
enhancement network specifically designed to enhance endoscopic images. It improves
the overall quality of the images by incorporating two innovative components into the
U-Net framework: the Detail Attention Map module and the Luminance Attention Map
module. The Detail Attention Map module is used to restore fine-grained details, while
the Luminance Attention Map module is used to enhance the illumination of endoscopic
images. EDAU-Net not only stably improves image texture and detail information but also
effectively eliminates non-uniform luminance through supervised training on the large-
scale endoscopic image enhancement dataset. The trained dynamic NeRFs generate the
rendered image IRendered by using the aforementioned volume rendering equation. Then,
IRendered is input into EDAU-Net to generate the enhanced image IEnhanced:

IEnhanced = EDAU-Net(IRendered; θ) (10)

where θ is the network parameter of EDAU-Net. Figure 5 illustrates the comparison results
of rendering views before and after optimization. For the rendered views, the invalid
regions excluded during the deformable soft tissue reconstruction phase are reintegrated
into the image to provide a comprehensive representation of the surgical scene. After
processing by EDAU-Net, the enhanced rendering view shows significant improvements in
details, brightness, and contrast, while effectively suppressing noise and artifacts, as shown
in Figure 5. Therefore, the view optimization module not only improves the quality of
rendered endoscopic images, but also further optimizes the reconstruction performance of
the dynamic NeRFs.
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Figure 5. Effect comparison before and after the image enhancement model EDAU-Net.

4. Results and Discussions
The experiments were performed in the following computing environment: Windows 10,

CPU Intel(R) Xeon(R) E5-2620, CUDA 10.2, Python 3.7, PyTorch 1.5.0, and GPU Nvidia
Titan Xp. In our implementation, we train our model using the Adam optimizer and set the
iteration number to 200K. The batch size of rays is set to 512, and each is sampled 64 times
along the ray.

In this paper, we select four different scenes (A, B, C, and D) from the publicly available
open-source endoscopic imaging datasets, the Nerthus dataset [34] and the Gastrolab Image
Gallery [37], for qualitative and quantitative evaluation. Each scene has the characteristics
of being obscured by invalid regions and dynamically changing in soft tissues. Moreover,
each scene contains 37 to 48 sequential frames, with the size of either 720 × 576 or 640 × 480.
Figure 6 illustrates the camera positions corresponding to the images of scenes A-D in 3D
space obtained using COLMAP. In this figure, red markers represent the camera positions of
the sequence frames used for training. The blue rectangular markers specifically highlight
the camera positions of the sequence frames used for testing. We follow community
standards [5] by holding out every eighth image as a test set for evaluating the effectiveness
of the reconstruction. Additionally, we can observe the number of images captured from
each scene and the spatial trajectory of the camera in Figure 6.

Figure 6. Camera positions of all scenes in 3D space. The blue boxes mark the cameras corresponding
to the test images.

4.1. Qualitative Evaluation

To verify the effectiveness of our proposed method, we qualitatively compare it with
state-of-the-art reconstruction methods, including NeRF [5], D-NeRF [6], DietNeRF [18],
DS-NeRF [19], TiNeuVox [21], NRFF [22], 4D-GS [23], and Tensor4D [7].

Figure 7 shows the reconstruction results of various methods for Scene A at
two different time points, which further verifies their performance in solving the prob-
lems of invalid region occlusion and soft tissue deformation in endoscopic images. The
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reconstruction results of NeRF reveal noticeable blurring and artifacts when dealing with
complex dynamic soft tissue scenes. Similarly, D-NeRF exhibits prominent blurring and
artifacts, with minimal improvement compared to NeRF. This is because D-NeRF relies on
dense temporal sampling to learn the continuity of dynamic changes. In the endoscopy
scenarios, the non-rigid deformation of soft tissues and the interference of invalid pixels
make it difficult to accurately capture subtle dynamic changes. DietNeRF struggles to
effectively handle the interference caused by black boundaries and surgical tools, resulting
in multiple artifacts in the image and blurring in the soft tissue regions, making it difficult
to accurately reconstruct the structures of the soft tissues. DS-NeRF incorporates depth
information, which helps alleviate the issue of being obstructed by invalid regions to some
extent. However, it still produces blurred structures and textures in the synthesized views
when handling soft tissue deformations in the scene. TiNeuVox and NRFF struggle to
handle the issue of being occluded by complex invalid pixels and cannot accurately recon-
struct the geometric structure of the scene, resulting in significant misalignment. Although
4D-GS demonstrates some advantages in handling dynamic scenes, it exhibits a prominent
“hollow” phenomenon in the synthesized views at both time points. This limitation arises
because the 4D-GS model has sparse Gaussians in regions with few feature points. Ten-
sor4D performs well in handling soft tissue deformation but still cannot avoid the loss of
detailed information. In addition, 4D-GS and Tensor4D exhibit pixel misalignment across
the rendered image, meaning that noticeable shifts in overall pixel positions are observed
in some areas. Our proposed method significantly improves the reconstruction quality of
the soft tissue regions. Meanwhile, the proposed method can capture the dynamic changes
in the soft tissues and achieve high-fidelity reconstruction of dynamic scenes.

Figure 7. Visual comparison with state-of-the-art 3D reconstruction methods for the endoscopic
image of Scene A.

Figure 8 shows the reconstructed results of our method and state-of-the-art compar-
ative methods at different viewpoints in scene B. From Figure 8, we can observe that the
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soft tissue surfaces reconstructed by NeRF and NRFF exhibit varying degrees of blurring,
indicating their limited adaptability to deformations. D-NeRF and TiNeuVox struggle to
reconstruct the complete structural information of scene B, resulting in poor visual effects.
4D-GS still cannot reconstruct geometric structures with rich details due to its inherent
limitations. The reconstructed soft tissue surfaces by DietNeRF and Tensor4D lack texture
details. On the other hand, Tensor4D occasionally produces artifacts in regions undergoing
rapid changes. Although DietNeRF performs relatively well in Scene B, it still has limi-
tations in endoscopic scenes with non-rigid deformation of soft tissues and invalid pixel
occlusion. Our proposed method achieves superior performance across all viewpoints
compared with other reconstruction methods. Specifically, our method demonstrates sig-
nificant advantages in the visual quality of rendered views, especially in generating texture
details on the inner wall surface of the cavity. Moreover, our method can more accurately
reconstruct the shape and appearance of the scene.

Figure 8. Visual comparison with state-of-the-art 3D reconstruction methods for the endoscopic
image of Scene B.

To evaluate the effectiveness of EDAU-Net used in this paper, we compared EDAU-Net
with classical 2D image enhancement methods, namely HE [45], AGCWD [46], SRIE [47],
and EndoMLE [48]. We designed two experimental setups for comparison. In the first
step, 2D enhancement methods were used to pre-process the dataset, followed by using
Tensor4D to reconstruct endoscopic tissues, referred to as “* + Tensor4D”. In the second step,
Tensor4D was used to reconstruct the endoscopic tissues, and then the 2D enhancement
methods were used for post-processing the rendered views, named “Tensor4D + *”. All
comparative experiments were conducted with the same parameters such as training
epochs, batch size, and learning rate. The synthesized results of novel views for different
2D image enhancement methods are shown in Figure 9. From Figure 9, we observe
that using image enhancement methods to process endoscopic images can improve the
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visual quality of images. Different enhancement methods have different applicability to
endoscopic images. Notably, HE led to substantial color distortions in the images. SRIE
improved the brightness of the image, but lost some detail information. AGCWD and
EndoMLE improved the brightness of the image, but EndoMLE produced blurred textures.
Compared with other image enhancement methods, EDAU-Net can significantly improve
the brightness and contrast of endoscopic images, and obtain the clearest details visually.

Figure 9. Visual comparison with state-of-the-art image enhancement methods for the endoscopic
image of Scenes C and D.

4.2. Quantitative Evaluation

To comprehensively validate the performance of our proposed method, we used
different evaluation metrics tailored to the specific goals of the comparisons.

To further validate that our proposed method has excellent reconstruction capability,
we evaluated the quality of the rendered views of all methods using three widely used
reconstruction image quality assessment metrics: Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index Measurement (SSIM), and Learned Perceptual Image Patch
Similarity (LPIPS) [49]. PSNR measures the pixel-level fidelity between reconstructed
images and target images, indicating the effect of noise reduction. A higher PSNR indicates
better reconstruction accuracy, as it reflects a lower level of noise and distortion. SSIM
is designed to mimic the human visual perception of image quality in the context of
structural fidelity, where higher values (closer to 1) indicate greater similarity to the target
image structure. LPIPS assesses perceptual differences between the reconstructed images
and the target images by leveraging deep feature representations. Lower LPIPS values
indicate higher perceptual similarity and better preservation of the original scene’s visual
integrity. As shown in Table 1, the evaluation metric values of TiNeuVox and NRFF are
significantly worse than those of other methods. This is because these methods of improving
computational efficiency have a certain impact on the quality of the reconstructed scene,
resulting in distortion and blurring of the reconstructed results. Among the compared
methods, Tensor4D achieved the highest PSNR value of 26.3423 and SSIM value of 0.8152,
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and 4D-GS achieved the lowest LPIPS value of 0.2166 averaged across the test scenes
A-D. In contrast, our proposed method outperformed all other methods with an average
PSNR of 29.6029, SSIM of 0.8596, and LPIPS of 0.1866. Compared to the best-performing
baseline methods, the proposed method achieved a 12.38% improvement in PSNR, a 5.44%
improvement in SSIM, and a 13.86% reduction in LPIPS. This indicates that our method
produces novel views with a higher degree of similarity to the GT, accurately reconstructing
the intricate structures of soft tissues within the human body.

Table 1. PSNR, SSIM, and LPIPS metrics of each method on test images of Scenes A-D. ↑ means that the
larger the value of the corresponding objective index, the better the reconstruction result. ↓ means that
the smaller the value of the corresponding objective index, the better the reconstruction result.

Scenes Metrics NeRF D-NeRF DietNeRF DS-NeRF TiNeuVox NRFF 4D-GS Tensor4D Our Method[5] [6] [18] [19] [21] [22] [23] [7]

Scene A
PSNR ↑ 17.9609 20.4655 16.1259 21.0403 15.6641 16.8385 24.6080 28.0054 31.4408
SSIM ↑ 0.6875 0.7181 0.6223 0.6704 0.6253 0.6439 0.8582 0.8678 0.9108
LPIPS ↓ 0.4645 0.4436 0.5459 0.5712 0.5240 0.4119 0.1695 0.2034 0.1221

Scene B
PSNR ↑ 25.2728 14.9028 23.5709 26.5093 10.4034 18.9101 23.0859 25.0928 27.3171
SSIM ↑ 0.7062 0.4070 0.6705 0.7399 0.2569 0.5941 0.7369 0.6850 0.7507
LPIPS ↓ 0.2842 0.6353 0.2468 0.2048 0.7028 0.3809 0.1726 0.3515 0.1688

Scene C
PSNR ↑ 22.0996 22.9206 15.0100 21.5059 14.9503 20.5088 19.4483 25.2044 28.4696
SSIM ↑ 0.7902 0.7670 0.5479 0.6618 0.5396 0.7161 0.7640 0.8325 0.8739
LPIPS ↓ 0.2764 0.3545 0.5956 0.5729 0.5614 0.3202 0.2977 0.2742 0.2557

Scene D
PSNR ↑ 25.9646 25.1803 18.9113 19.7004 17.7257 21.8376 22.9236 27.0666 31.1840
SSIM ↑ 0.8612 0.7998 0.6413 0.5165 0.5516 0.7104 0.8547 0.8755 0.9029
LPIPS ↓ 0.2074 0.3113 0.5100 0.7193 0.5513 0.3450 0.2266 0.2616 0.1997

Bold values denote the best performance value across all methods.

The real endoscopic images do not have corresponding high-quality images (i.e., GT)
of the same scene. In order to effectively and objectively evaluate the performance of the
EDAU-Net selected in this paper, three no-reference image quality assessment metrics
specifically designed for enhancement tasks, namely Entropy, Contrast Improvement
Index (CII), and Average Gradient (AG), were used to assess the quality of the enhanced
views. Entropy quantifies the richness of image information, indicating the level of detail
preserved or enhanced. CII measures the degree of contrast enhancement relative to the
original image. AG reflects the sharpness and clarity of edges, which are critical factors
for image enhancement. The comparison results are shown in Table 2. As observed,
the performance of “* + Tensor4D” methods was generally inferior to that of “Tensor4D + *”
methods. This may be because image enhancement techniques change the original color
information and dynamic range of the image, which causes Tensor4D to learn the wrong
scene information. In Scene C, Tensor4D + EDAU-Net outperformed all other methods,
achieving improvements of 7.39% in Entropy, 4.89% in CII, and 1.30% in AG. In Scene D,
Tensor4D + EDAU-Net demonstrated even greater gains, with improvements of 8.60% in
Entropy and 29.66% in CII compared to the optimal values of these comparison methods.
Although the AG was slightly lower than that of Tensor4D + HE in Scene D, the overall
enhanced quality remained superior due to significant improvements in other metrics.
Tensor4D + EDAU-Net achieved optimal comprehensive performance. Therefore, in this
paper, we first improved Tensor4D to reconstruct the 3D scenes of endoscopic images,
and then used EDAU-Net to post-process and enhance the rendered views.
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Table 2. Entropy, CII, and AG metrics of each method on test images of Scenes C and D. ↑ means that
the larger the value of the corresponding objective index, the better the reconstruction result.

Image Enhancement Methods + Tensor4D

Method
Scene C Scene D

Entropy ↑ CII ↑ AG ↑ Entropy ↑ CII ↑ AG ↑

HE [45] + Tensor4D 5.7582 0.4599 2.0523 5.8502 0.6969 2.6216
AGCWD [46] + Tensor4D 5.9596 0.4922 1.8587 5.8409 0.6388 2.1458

SRIE [47] + Tensor4D 5.5899 0.3471 1.6020 5.0860 0.3381 1.5625
Wang [48] + Tensor4D 5.8431 0.4532 1.7864 5.5116 0.4263 1.7616

EDAU-Net [43] + Tensor4D 5.8211 0.6396 2.1708 5.5740 0.5308 2.0507

Tensor4D + Image Enhancement Methods

Method
Scene C Scene D

Entropy ↑ CII ↑ AG ↑ Entropy ↑ CII ↑ AG ↑

Tensor4D + HE [45] 6.0615 0.7951 2.6484 5.9550 0.8631 3.5562
Tensor4D + AGCWD [46] 6.0028 0.6930 2.0965 5.7180 0.7641 2.2183

Tensor4D + SRIE [47] 6.0309 0.6532 1.8780 5.5070 0.7346 1.8288
Tensor4D + Wang [48] 6.8084 0.6027 1.9921 6.5969 0.5398 1.9688

Tensor4D + EDAU-Net [43] 7.3108 0.8340 2.6828 7.1648 1.1190 3.2933

Bold values denote the best performance value across all methods.

4.3. Ablation Study

The tissue mask-guided ray sampling strategy in Section 3.2 utilizes the masks pre-
dicted by the SAM-EndoTissue model to reconstruct the deformable soft tissue regions
while preventing ray sampling of invalid regions in endoscopic images. To evaluate its
impact, we conducted ablation experiments comparing the reconstructed results with and
without this module. The reconstruction pipeline was initially executed by removing the
tissue mask-guided ray sampling strategy, allowing rays to be sampled uniformly across
the entire scene. Next, the same reconstruction pipeline was achieved using the tissue
mask-guided ray sampling, restricting sampling to deformable soft tissue regions predicted
by the SAM-EndoTissue model. The qualitative and quantitative results are shown in
Figure 10 and Table 3. Figure 10a shows the reconstructed result after removing the tissue
mask-guided ray sampling. Figure 10b is the reconstructed result by using the tissue
mask-guided ray sampling. Figure 10b obviously has richer details and higher clarity than
Figure 10a. Moreover, we can see that the PSNR, SSIM, and LPIPS metrics of the rendered
view by adopting tissue mask-guided ray sampling are significantly improved, as shown in
Table 3. This demonstrates that the quality and structural integrity of the generated images
are enhanced.

In Section 3.3, the EDAU-Net is introduced to enhance the quality of rendered views.
Its effectiveness was evaluated through an ablation study that compared the results with
and without EDAU-Net processing. The rendered views generated by the reconstruction
pipeline were directly compared in two scenarios: (1) without applying EDAU-Net, leaving
the rendered views unprocessed, and (2) adopting the EDAU-Net to enhance the rendered
views. Figure 11 shows the reconstructed results without and with EDAU-Net processing,
respectively. Compared with Figure 11a,b, it can be seen that after EDAU-Net processing,
the structure of the submucosal blood vessels in the dark region of the image is clearer,
and the texture information is richer. Moreover, there is no over-enhancement problem in
the highlight region. To objectively assess the quality of generated images before and after
being processed by EDAU-Net, we use Entropy, AG, and Average Brightness (AB) to evalu-
ate the effect of image enhancement. AB measures the mean pixel intensity of an image,
providing an objective indication of overall brightness and illumination. Although higher
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AB values indicate improved brightness in underexposed regions, excessively high AB
values can lead to visual discomfort and loss of detail due to overexposure. Typically, an AB
value close to 128 (in the range of 0–255) is considered optimal. The quantitative results
are displayed in Table 4. The values of Entropy and AG are significantly improved after
using EDAU-Net as shown in Table 4. This indicates that EDAU-Net effectively improves
the details and clarity of the images, making the generated images contain richer details.
The proposed method improves AB values compared to the original images. This im-
provement improves the brightness of the images and effectively addresses underexposed
regions, making them more visually interpretable.

Figure 10. Ablation experiment results on tissue mask-guided ray sampling. (a) Without tissue
mask-guided ray sampling; (b) our method; (c) ground truth.

Table 3. Objective index results in terms of PSNR, SSIM, and LPIPS across all scenes. ↑ means
that the larger the value of the corresponding objective index, the better the reconstruction
result. ↓ means that the smaller the value of the corresponding objective index, the better the
reconstruction result.

Scenes Model PSNR ↑ SSIM ↑ LPIPS ↓

Scene A Without mask 28.0054 0.8678 0.2034
Our method 31.4408 0.9108 0.1221

Scene B Without mask 25.0928 0.6850 0.3515
Our method 27.3171 0.7507 0.1688

Scene C Without mask 25.2044 0.8325 0.2742
Our method 28.4696 0.8739 0.2557

Scene D Without mask 27.0666 0.8755 0.2616
Our method 31.1840 0.9029 0.1997

Bold values denote the best performance value across all methods.

Figure 11. Ablation experiment results on EDAU-Net. (a) Without EDAU-Net; (b) our method;
(c) ground truth.
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Table 4. Objective index results in terms of Entropy, AG, and AB across all scenes. ↑ means that the
larger the value of the corresponding objective index, the better the reconstruction result.

Scenes Model Entropy ↑ AG ↑ AB

Scene A Without EDAU-Net 6.2674 1.7278 83.8247
Our method 6.3132 2.9253 97.9863

Scene B Without EDAU-Net 6.6485 2.3685 81.1413
Our method 7.3614 3.7225 103.9284

Scene C Without EDAU-Net 6.9906 1.6466 69.6059
Our method 7.3108 3.3874 103.1466

Scene D Without EDAU-Net 6.7120 1.7364 58.1496
Our method 7.1648 4.0675 82.9822

Bold values denote the best performance value across all methods.

4.4. User Study

We also conducted a user study involving two experienced clinicians and three senior
medical students who had received training in endoscopy-related courses. They mainly
evaluated the reconstructed results of NeRF, D-NeRF, DietNeRF, DS-NeRF, TiNeuVox,
NRFF, 4D-GS, Tensor4D, and our proposed method on two randomly selected test images.
To avoid bias, the images shown to participants were anonymized and the algorithms
were typically labeled as Algorithm A, Algorithm B, etc. The experiment was conducted
in a quiet and comfortable room to create an optimal environment for evaluation. All
participants were assessed on the same high-resolution monitor, ensuring uniform viewing
conditions across all sessions. To minimize potential distractions and allow for focused
judgment, only one participant was present during each evaluation session. They took no
less than 20 min each time. We used a Likert scale (1–5 points, where 1 indicates abysmal
performance and 5 indicates excellent performance) and asked participants to rate the
reconstructed results of these reconstruction algorithms based on image texture and the
detail fidelity, structural integrity, and clinical applicability of the generated images. Before
scoring, the three assessment criteria were briefly explained to these participants, and the
output examples were presented to standardize their understanding of the scoring process.
After completing the scoring, we immediately engaged each participant in a follow-up
conversation to collect the qualitative feedback through open-ended questions. Each
participant spent approximately 7–14 min participating in these conversations. Participants
were encouraged to share specific thoughts on the strengths, weaknesses, and potential
areas for improvement of these algorithms. Feedback was collected from five participants.
The results of the user study are shown in Figure 12.

Figure 12. Results of user study.
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Figure 12 shows the average values of different test cases scored by different par-
ticipants considering different aspects. As can be seen from Figure 12, both clinicians
and medical students evaluated our proposed method as significantly superior to these
comparative algorithms in terms of the fidelity of texture and details of the reconstructed
images. Earlier proposed NeRFs such as NeRF and D-NeRF had lower scores. In particular,
D-NeRF only scored 1.3 points, indicating that it performed poorly in terms of fidelity
of textures and details. In terms of restoring structural integrity, our proposed method
received the highest average score (4.7). Compared with other comparison methods, Ten-
sor4D performed better (reaching 4.2 points), but it was still inferior to our reconstruction
method. TiNeuVox performed poorly in terms of structural integrity, with an average score
of only 1.1. In this paper, our proposed 3D reconstruction method received the highest
average score in terms of clinical applicability. The evaluation of the participants shows
the potential of our method to be applied in clinical settings. However, other comparative
algorithms such as NeRF, D-NeRF, DietNeRF, DS-NeRF, TiNeuVox, and NRFF had lower
scores, indicating that their clinical application value is limited. Observing the line graph, it
can be seen that the overall values of these algorithms show a trend of gradually increasing.
This is because with the continuous development of NeRFs, the effect of such methods on
scene reconstruction is constantly improving.

In addition to the Likert scale ratings, we collected qualitative feedback from the five
participants through open-ended questions. Their comments provided valuable insights
into the clinical applicability and potential limitations of the proposed 3D reconstruction
method. Several participants emphasized the potential advantages of the framework for
surgical planning and diagnostics. For example, the second participant noted “The recon-
struction models effectively capture structural integrity, which is critical for pre-surgical
evaluation”. Similarly, the fourth participant commented that “The texture fidelity and
spatial consistency of the reconstructed results are promising for training and educational
purposes”. Furthermore, three participants, including experienced clinicians, emphasized
the importance of optimizing both computational speed and system usability to enhance
the framework’s feasibility for real-time clinical use. For example, the third participant
highlighted that “A simplified user interface would be beneficial to improve workflow effi-
ciency during routine clinical tasks”. The first participant raised a concern about “Whether
the reconstruction speed could meet the demands of a live surgery scenario”. The fifth
participant suggested that “Further optimization is needed to ensure the method can effec-
tively reconstruct dynamic soft tissues”. This feedback highlights both the clinical potential
of our method and the importance of addressing practical challenges. Feedback from
participants provides valuable guidance for future research directions.

5. Conclusions and Future Works
In this paper, we constructed a dataset EndoTissue for soft tissue segmentation of

endoscopic images for the first time. The EndoTissue dataset addresses the challenge of
automatically segmenting soft tissue regions in endoscopic images, facilitating the effective
and stable reconstruction of 3D scenes from endoscopic images. To achieve high-quality
3D reconstruction of deformable soft tissues in endoscopic images, a novel high-fidelity
soft tissue reconstruction method is proposed in this paper. Our proposed method not
only accounts for deformation factors but also introduces tissue mask-guided ray sampling
and the EDAU-Net to improve the accuracy and stability of reconstruction, enabling the
high-fidelity reconstruction of soft tissue structures from endoscopic image sequences.
Experimental results show that compared with the state-of-the-art reconstruction methods,
our proposed method has significant advantages in handling invalid region occlusion and
dynamic changes in soft tissues in different scenes. It has also been highly praised by
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doctors and medical students. Therefore, the proposed method has important scientific
research and application value in the field of endoscopic image processing.

In the future, we plan to focus on the automatic and accurate segmentation of lesion
regions in reconstructed endoscopic scenes. We are committed to providing reliable solu-
tions for identifying and analyzing pathological areas. Additionally, based on the feedback
from participants, we will focus on optimizing computational pipelines and developing
user-friendly interfaces. This exploration is expected to improve diagnostic accuracy while
providing valuable support for preoperative planning and intraoperative decision-making.
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