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Abstract: The objective identification of depression using physiological data has emerged
as a significant research focus within the field of psychiatry. The advancement of wear-
able physiological measurement devices has opened new avenues for the identification of
individuals with depression in everyday-life contexts. Compared to other objective mea-
surement methods, wearables offer the potential for continuous, unobtrusive monitoring,
which can capture subtle physiological changes indicative of depressive states. The present
study leverages multimodal wristband devices to collect data from fifty-eight participants
clinically diagnosed with depression during their normal daytime activities over six hours.
Data collected include pulse wave, skin conductance, and triaxial acceleration. For com-
parison, we also utilized data from fifty-eight matched healthy controls from a publicly
available dataset, collected using the same devices over equivalent durations. Our aim
was to identify depressive individuals through the analysis of multimodal physiological
measurements derived from wearable devices in daily life scenarios. We extracted static
features such as the mean, variance, skewness, and kurtosis of physiological indicators like
heart rate, skin conductance, and acceleration, as well as autoregressive coefficients of these
signals reflecting the temporal dynamics. Utilizing a Random Forest algorithm, we distin-
guished depressive and non-depressive individuals with varying classification accuracies
on data aggregated over 6 h, 2 h, 30 min, and 5 min segments, as 90.0%, 84.7%, 80.1%, and
76.0%, respectively. Our results demonstrate the feasibility of using daily wearable-derived
physiological data for depression recognition. The achieved classification accuracies sug-
gest that this approach could be integrated into clinical settings for the early detection
and monitoring of depressive symptoms. Future work will explore the potential of these
methods for personalized interventions and real-time monitoring, offering a promising
avenue for enhancing mental health care through the integration of wearable technology.

Keywords: depression; wearable device; multimodal; dynamic; autoregressive

1. Introduction
Depression is a common and serious mental disorder leading to continuous effects on

patients’ emotional states and daily activities. According to the World Health Organization,
over 300 million people are suffering from major depression disorder [1], making it a
leading cause of disability and largely aggravating the global disease burden. To handle
this worldwide issue, global researchers have introduced technological innovations in
the assessment, diagnosis, and management of depression disorders for better mental
healthcare. Specifically, providing objective and quantitative information from depression
patients was important for improving the accuracy of diagnosis [2,3].
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The objective identification of depression using physiological data has emerged as
a promising research focus within the field of psychiatry. Researchers have started using
brain imaging techniques like fMRI and EEG in resting-state studies and have found
the possible neural signatures of depression [4,5]. Task-based studies further extend the
paradigm by regarding lab-based tasks, such as video watching, audio listening, etc., as
a simplified daily life scenario [6–8]. These advancements highlight the significance of
exploring the underlying depression-related biomarkers for a more accurate and reliable
depression diagnosis. However, the relatively expensive cost and complex settings largely
limited the application of current methods. Therefore, a more convenient and low-cost
alternative is needed to promote personalized interventions and real-time monitoring in
large populations.

Recently, the wide use of wearable devices has opened new possibilities for objective
depression diagnosis. About 21% of Americans reported using a smartwatch or fitness
tracker in daily life, and the number continues to grow [9]. Usually designed to be low-
burden for users, wearable devices can non-invasively measure long-period, real-life data
and, therefore, achieve higher ecological validity to monitor mental states compared with
lab-based brain imaging techniques [10–12]. Using commercial smartwatches, previous
research has explored the feasibility of individual trait assessment based on daily heart rate
recordings, including personality, mental stress, etc. [13,14]. Furthermore, measurements
from wearable devices can provide insights into individuals’ daily states, offering a more
comprehensive view of the daily states of depression patients [15]. The latest studies
have extended the wearable computing method to clinical use to distinguish patients
with depression from those with other diseases [16]. These research studies usually focus
on one major physiological indicator such as daily steps [17,18], activity at night (from
acceleration) [19], pulse rate variability (from photoplethysmogram, PPG) [20], etc.

Integrating multimodal physiological signals could use the differential information
of signals and improve the result of depression assessment [21]. Specifically, multimodal
studies bring extra dimensions for insight-enhancing analysis and diversity in proportion
to the increase in unique modalities because they are believed to provide related but
differential information about mental health [22]. The latest research further highlights the
combination of heart rate, skin conductance, and acceleration in depression classification
analysis based on daily wearable data [22]. The cardiac responses such as heart rate, as
well as skin conductance, are influenced by the autonomic nervous system (ANS) activity
stimulated by depression-related emotions, acute stress, etc. [23,24]. The empirical study
describes how bodily balance and posture quality degrade with depressive symptoms
getting worse and shows the relation between mental health and motion during daily
activities [25].

The present study aims to explore the feasibility of depression recognition by extract-
ing multimodal physiological signals derived from wearable devices in daily life scenarios.
We hypothesize that individuals’ depression disorder is correlated with their multimodal
physiological features. Three major objectives of the present study are summarized as fol-
lows: first, to promote the clinical application of objective depression detection, we included
clinically diagnosed depressed participants, which was one important step further as com-
pared with previous research mainly with the healthy population [22]; second, to evaluate
the feasibility of rapid detection based on low-burden wrist-worn devices, we explored clas-
sifications using data with varied durations. Considering the constraints of measurement
duration and complexity in settings such as outpatient clinics, this is expected to enhance
the potential applicability of the proposed method in clinical scenarios [26,27]. Last, to fully
exploit the temporal dynamics of physiological features in depression detection [28], we
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investigated the effectiveness of dynamic features for classification and compared it to
classical static features.

To this end, a daily wearable-derived experiment via a multimodal wristband was con-
ducted to investigate the physiological representation of depression. A custom-designed
wristband was used to record physiological data over six-hour daily activities from
fifty-eight depression patients. Fifty-eight healthy individuals from a published dataset
were selected as healthy controls, with a matched recording length, modality, and gender
ratio. To compare the physiological changes between the two groups, we extracted static
features such as the mean, variance, skewness, and kurtosis of physiological indicators
including heart rate, skin conductance, and acceleration, as well as dynamic features in-
cluding the autoregressive coefficients reflecting the temporal dynamic of these signals [28].
We adopted representative pattern recognition algorithms frequently used in the previous
literature to construct discriminative models for identifying depressed individuals. Fur-
thermore, to demonstrate the application potential of our method in clinical assessment
scenarios, we explored shorter data segments by distinguishing depressive individuals on
data aggregated over 6 h, 2 h, 30 min, and 5 min segments.

2. Materials and Methods
2.1. Data Preparation

Our data were composed of 58 depression patients and 58 healthy controls. The
patients in our experiment were from the Beijing Huilongguan Hospital’s outpatient de-
partment between 2021 and 2022. These patients, aged from 18 to 50 years, were diagnosed
by professional psychiatrists at Beijing Huilongguan Hospital based on comprehensive
clinical assessments. The physiological data of healthy controls were from a published
DAPPER dataset [29], with the same wearable device, group size, and gender ratio matched
to the patient group. Specifically, the DAPPER dataset included a five-day recording, and
we adopted data from the first day to avoid confounding factors such as device familiarity
differing from the patient group.

Each participant was instructed to conduct multimodal physiological measurements
during their normal daytime activities from 9:00 to 15:00 for one day by wearing a custom-
designed wristband (Psychorus, HuiXin, Beijing, China), as shown in Figure 1a. The
wristband, which has been used in several previous studies with daily contexts [29–33],
was able to record the signals of acceleration (ACC), skin conductance (SC), and PPG at
sampling rates of 20 Hz, 40 Hz, and 20 Hz, respectively, as determined by the device’s
built-in hardware. The recorded PPGs were then computed to obtain heart rate (HR) at a
1 Hz sampling rate by an implemented HuiXin software package (version 201708) based
on a joint sparse spectrum reconstruction algorithm, which has robust performance against
daily activity artifacts [32,33]. Missing data (e.g., unreliable contact) were recognized by
the wristband built-in function and marked as a low HR value (HR = 40) [29].

2.2. Feature Extraction

Four static features—mean, variance, skewness, and kurtosis—were extracted from
each participant to characterize the statistical properties of the physiological indicators,
including HR, SC, and ACC across a given data segment. We did not further decompose
the SC signal into its tonic and phasic components, mainly for the consideration of the
reliability of the decomposition of noisy wearable SC signals in daily contexts [34]. The
mean and variance provided insights into the average level and variability of physiological
data segments. Skewness quantified the asymmetry of the probability distribution of
these features, while kurtosis described the “tailedness” of the distribution or the degree
of outliers relative to the central tendency [35]. The inclusion of these higher-order sta-
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tistical features aligns with previous studies on human emotion recognition and disease
diagnosis [36,37]. Prior to the static feature extraction, to ensure relative uniformity among
different signal modalities, the SC and ACC signals were down-sampled to match the 1 Hz
sampling rate of the HR signal from the wristband [38]. Feature extraction was applied to
each data segment, such as the whole 6 h experiment or shorter durations (see Section 2.3).
The data segments with more than 50% missing data were excluded in feature extraction
and further analysis.
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include Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and
Linear Discriminant Analysis (LDA).

Dynamic features were further extracted to characterize the temporal dynamics of
the data segments. To this end, the autoregressive (AR) coefficients of the signals were
employed [34]. Specifically, the coefficients were derived from AR models, as depicted
in (1), where Xt denotes the signal at time t, ai denotes the coefficient at time lag i, and εt

denotes the random error.

Xt =
k

∑
i=1

aiXt−i + εt (1)

The order k of the AR models represented the number of immediately preceding
signals used to predict the present physiological signals. We determined an optimal
order by calculating the Akaike Information Criterion (AIC) via “aic” function in MATLAB
R2022a, which could minimize predicting errors. Specifically, a lower AIC value represented
a better fit for the AR model [39]. The AR models were separately computed for ACC,
SC, and HR data, as well as for segments of different durations. The AIC values with
model orders from 2 to 8 (corresponding to 2 to 8 s at 1 Hz sampling rate) were calculated
separately for each participant and averaged across participants to explore the optimal
model while controlling the number of features. The model coefficients ai from the optimal
k-order per AR model were extracted as the dynamic features.

2.3. Statistical Analysis and Classification

The statistical differences of physiological features between the two groups were
first computed. Specifically, independent sample t-tests were conducted to assess the
gender differences for each physiological dimension. The p-values in these multiple com-
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parisons were then re-calculated by the false discovery rate (FDR) method [40], and the
corrected p-values (pFDR) were used as the indicator of statistical significance in t-tests.
Then, we analyzed the statistical differences in physiological features across demographic
variables. Independent sample t-tests were also conducted between two gender groups
(FDR corrected). Additionally, Spearman correlation analyses were performed to assess the
relationship between the age of patients and their physiological features (FDR corrected).

Representative classification models were employed to discriminate the participants’
depression results based on these features. Specifically, the following classification models
were used according to their promising performance in previous studies focusing on
depression recognition, as reported in the existing literature [41], including Random Forest
(RF), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Linear Discriminant
Analysis (LDA). The Random Forest method was employed with the tree number set to
100; the Support Vector Machine method was used with a Gaussian kernel; the K-Nearest
Neighbors method was used with the number of nearest neighbors set to 1; the standard
Linear Discriminant Analysis was employed with no required hyperparameters. A five-fold
cross-participant validation procedure was conducted by circularly splitting the training
and testing set, with an equal number of patients and normal people in each set. Each
model was trained based on a random 4 out of 5 selection of all participants (92 participants)
and tested on the remaining 20% (24 participants) for five-time iterations. The training
and test processes were conducted 1000 times. To obtain the final classification accuracies,
the predicted accuracies of all iterations were averaged. All the classification models were
implemented by using the Statistic and Machine Learning Toolbox in MATLAB R2022a.

To explore the feature contributions in classification models, we adopted different
combinations of physiological features in Section 2.2, including (1) all features, including
static and dynamic features of three modalities (denoted as ALL); (2) the non-acceleration
signal, including static and dynamic features of HR and SC signals (Non-ACC); (3) static
features of three modalities (Static); (4) dynamic features of three modalities (Dynamic);
(5) dynamic features of non-acceleration signal (Non-ACC Dynamic). To quantificationally
explore the statistical significance of the classification results, we compared their classifica-
tion accuracies with those from random models. The random model was trained with the
same feature sets but tested with randomly shuffled depression labels for 1000 times.

To further explore the model stability with shorter data lengths for better clinical
applications, we explored the classification models on data aggregated over 6 h, 2 h, 30 min,
and 5 min segments, respectively. For the latter three conditions, segments of 2 h, 30 min,
and 5 min were randomly selected from the 6 h recording data of each participant in order
to avoid potential biases that might be introduced by selecting specific moments. The
randomized selections were conducted 1000 times to obtain a distribution of accuracies.
We performed feature extraction on all the time segments, including the calculation of both
the static and dynamic features. The participants without valid data segments for a specific
data duration were excluded from the corresponding classification analysis. For instance, if
one participant did not have a valid 2 h data segment after the missing data operation, this
participant was excluded from the 2 h classification; however, the same participant may be
included for the 5 min classification if he or she had valid 5 min segments.

3. Results
In this study, we conducted 6 h recordings from 116 participants, adding up to 696 h

recordings (116 participants × 6 h per participant). There were 488.4 h of valid data retained
after excluding missing data, with each participant’s valid data proportion ranging from
2.5 (41.7%) to 6.0 (100%) hours. After excluding participants without enough valid data,
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there were 116, 116, 116, and 112 participants retained in 5 min, 30 min, 2 h, and 6 h
conditions in the subsequent individual-level classification analysis.

The across-participant-averaged AIC values for fitting physiological signals with AR
models are presented in Figure 2. Based on a comprehensive evaluation of the results from
all AR models, order 3 has been empirically selected for feature extraction as it represents a
balanced trade-off between the number of features and model performance. Therefore, the
following analysis adopts a three-order autoregressive model in the AR feature extractions,
and the three-dimensional AR features are denoted as AR1, AR2, and AR3, respectively.
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Figure 2. The overall AIC criterion of all participants across AR models with different indexes.
Three subplots, respectively, represented the AIC in AR models based on HR, SC, and ACC signals.

By conducting a Spearman correlation analysis between the age of patients and all
physiological features, only one feature (the standard deviation of heart rate) shows a
significant correlation (r = 0.41, p = 0.016) after FDR correction. The independent sample
t-test of each physiological feature between gender groups is not significant (lowest p = 0.39,
FDR corrected).

As shown in Table 1, the recording samples from depression patients have signifi-
cantly lower AR1 (t(115) = −2.89, p = 0.022, FDR corrected) and higher AR2 (t(115) = 2.78,
p = 0.030) out of HR features than healthy controls. This was identified by conducting
independent sample t-test, as well as lower kurtosis (t(115) = −3.17, p = 0.001) and lower
AR1 (t(115) = −3.69, p < 0.001), of SC features. The depression samples also showed signifi-
cantly lower mean value (t(115) = −3.10, p = 0.007), higher skewness value (t(115) = 2.75,
p = 0.021), and lower AR coefficients (AR1: t(115) = −5.82, p = 0.001; AR2: t(115) = −9.15,
p < 0.001; AR3: t(115) = −5.99, p = 0.001) of the acceleration signal.

Table 1. Independent t-test results between depression patients and healthy controls.

Features
Heart Rate Skin Conductance Acceleration

t(115) pFDR t(115) pFDR t(115) pFDR

Static

Mean −0.05 0.963 −0.59 0.673 −3.10 0.007
SD −1.43 0.298 −1.11 0.408 0.14 0.932

Skew −0.68 0.655 0.56 0.673 2.75 0.021
Kurt −0.68 0.655 −3.17 0.001 −1.10 0.408

Dynamic
AR1 −2.89 0.022 −3.69 <0.001 −5.82 0.001
AR2 2.78 0.030 −1.24 0.383 −9.15 <0.001
AR3 −2.09 0.082 −0.16 0.932 −5.99 0.001

The p-value has been corrected by the FDR method.

Table 2 shows the binary classification accuracies from common pattern recognition
models. The RF model finally reports the highest accuracy (90.0 ± 1.7%) with the input
of 6 h physiological data, significantly higher than the Random condition (49.7 ± 5.1%).
As the input data length decreases from 6 h to 5 min, the classification accuracy declines
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from 90.0 ± 1.7% to 76.0 ± 3.5%. The other three models also obtain significantly higher
results (SVM: 74.1 ± 2.2%; LDA: 81.5 ± 2.3%; KNN: 76.1 ± 2.0%) than corresponding
Random conditions.

Table 2. Classification accuracy based on different models across distinct data segments.

Models 5 min 30 min 2 h 6 h Random

RF 76.0 (3.5) 80.1 (3.2) 84.7 (2.5) 90.0 (1.7) 49.7 (5.1)
SVM 67.4 (4.4) 67.0 (4.0) 73.2 (3.5) 74.1 (2.2) 49.2 (4.5)
LDA 64.6 (5.1) 69.2 (4.7) 77.0 (3.4) 81.5 (2.3) 52.1 (3.7)
KNN 60.8 (4.9) 64.6 (5.5) 71.6 (3.7) 76.1 (2.0) 53.4 (2.6)

Each column showed the classification accuracy denoted by mean (SD) % of models based on specific data lengths,
such as 5 min, 30 min, 2 h, and 6 h physiological data segments. The “Random” column showed a random
accuracy level obtained by randomly shuffling participants’ depression labels based on corresponding 6 h models.
The classification models include Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbors
(KNN), and Linear Discriminant Analysis (LDA).

Table 3 depicts the classification accuracies of the RF model when adopting different
input features. The result of the Dynamic feature condition with the 6 h data input is
close to the All-feature (ALL) condition, which combines Dynamic and Static features
(90.0 ± 1.7% vs. 89.3 ± 1.2%, p > 0.05), and is significantly higher than the Static condition
(p < 0.05). The prediction results of Non-ACC models are lower than ALL condition but
significantly higher than Random condition (Non-ACC: 80.5 ± 2.4%; Non-ACC Dynamic:
78.1 ± 2.3%). Figure 3 depicts the distribution of classification accuracies in the ALL-feature
condition. While the models with 6 h data achieved the highest accuracy (p < 0.05), the
models based on 5 min data could also significantly distinguish depressive individuals
from healthy controls.

Table 3. Classification accuracies based on Random Forest models across distinct feature sets.

Selected Features 5-min 30-min 2-h 6-h Random

ALL 76.0 (3.5) 80.1 (3.2) 84.7 (2.5) 90.0 (1.7) 49.7 (5.1)
Non-ACC 70.4 (4.8) 74.6 (4.4) 77.0 (3.8) 80.5 (2.4) 50.4 (2.0)

Static 75.8 (3.2) 78.1 (3.1) 80.6 (3.3) 85.7 (1.5) 49.9 (2.4)
Dynamic 74.5 (3.7) 77.3 (3.5) 82.5 (2.9) 89.3 (1.2) 51.2 (2.3)

Non-ACC Dynamic 68.4 (4.6) 71.5 (4.3) 74.5 (3.8) 78.1 (2.3) 52.3 (4.0)
Each column showed the classification accuracy denoted by mean (SD) % of models based on specific data lengths,
such as 5 min, 30 min, 2 h, and 6 h physiological data segments. “Random” column showed a random level of
accuracy by shuffling participants’ depression labels. The selected features from row 1 to row 5 represent (1) all
features (ALL); (2) the non-acceleration signal, including HR and SC signals (Non-ACC); (3) static features (Static);
(4) dynamic features (Dynamic); (5) dynamic features of non-acceleration signals (Non-ACC Dynamic).

Sensors 2025, 25, x FOR PEER REVIEW 8 of 13 
 

 

showed a random level of accuracy by shuffling participants’ depression labels. The selected fea-
tures from row 1 to row 5 represent (1) all features (ALL); (2) the non-acceleration signal, including 
HR and SC signals (Non-ACC); (3) static features (Static); (4) dynamic features (Dynamic); (5) dy-
namic features of non-acceleration signals (Non-ACC Dynamic). 

 

Figure 3. The violin plot shows the distribution of classification accuracies based on bootstrapped 
RF models in the ALL-feature condition. In each bootstrap process, data segments were randomly 
selected and split (of training and test sets) in the 5 min, 30 min, 2 h, and 6 h conditions. Each dot 
showed the averaged 5-fold accuracy from one out of 1000 bootstrap steps. The dotted line repre-
sented the 95% interval of the Random condition results. 

4. Discussion 
In the present study, we conducted a single-day wearable-derived recording via a 

multimodal wristband to investigate the physiological representation of depression for 
objective depression recognition. Our statistical analysis obtained significant correlations 
between depression and multiple physiological features. By extracting static and dynamic 
features from three modalities (ACC, SC, and HR), our classification results reported sig-
nificant accuracy (90.0 ± 1.7%) based on machine learning models in the prediction of 
whether individuals were depression patients or healthy individuals, demonstrating the 
feasibility of introducing daily wearable recording to assist clinical depression diagnosis. 

The findings that dynamic features obtained superior performance over static fea-
tures extended the application values of conducting temporal feature extraction in daily 
recordings. While existing studies have explored the association between mental health 
and the temporal dynamic of human emotion states [42], our results further demonstrated 
that the dynamic feature of physiological signals can also make sense in mental health 
studies, which was not only supported by more significant between-group statistical dif-
ferences but also by the higher accuracy of dynamic feature-based models in the classifi-
cation analysis. Additionally, the effect of demographic factors such as age and gender 
was preliminarily investigated because older adults may exhibit distinct clinical charac-
teristics and biological manifestations of depression from younger individuals [43,44]. 
However, our statistical analysis did not observe significant variations in physiological 
features across age and gender variables; therefore, we adopted the whole group into clas-
sification models. Nevertheless, considering the limited sample size, future research 
should conduct quantitative analyses with larger-scale samples to address these potential 
confounding factors. 

The classification results based on distinct combinations of wearable physiological 
features further indicate that using multimodal measurement data could better reflect the 
daily representation of depression. Firstly, the subset of physiological modalities was also 

Figure 3. The violin plot shows the distribution of classification accuracies based on bootstrapped
RF models in the ALL-feature condition. In each bootstrap process, data segments were randomly
selected and split (of training and test sets) in the 5 min, 30 min, 2 h, and 6 h conditions. Each
dot showed the averaged 5-fold accuracy from one out of 1000 bootstrap steps. The dotted line
represented the 95% interval of the Random condition results.
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4. Discussion
In the present study, we conducted a single-day wearable-derived recording via a

multimodal wristband to investigate the physiological representation of depression for
objective depression recognition. Our statistical analysis obtained significant correlations
between depression and multiple physiological features. By extracting static and dynamic
features from three modalities (ACC, SC, and HR), our classification results reported
significant accuracy (90.0 ± 1.7%) based on machine learning models in the prediction of
whether individuals were depression patients or healthy individuals, demonstrating the
feasibility of introducing daily wearable recording to assist clinical depression diagnosis.

The findings that dynamic features obtained superior performance over static features
extended the application values of conducting temporal feature extraction in daily record-
ings. While existing studies have explored the association between mental health and the
temporal dynamic of human emotion states [42], our results further demonstrated that
the dynamic feature of physiological signals can also make sense in mental health studies,
which was not only supported by more significant between-group statistical differences but
also by the higher accuracy of dynamic feature-based models in the classification analysis.
Additionally, the effect of demographic factors such as age and gender was preliminarily
investigated because older adults may exhibit distinct clinical characteristics and biological
manifestations of depression from younger individuals [43,44]. However, our statistical
analysis did not observe significant variations in physiological features across age and
gender variables; therefore, we adopted the whole group into classification models. Never-
theless, considering the limited sample size, future research should conduct quantitative
analyses with larger-scale samples to address these potential confounding factors.

The classification results based on distinct combinations of wearable physiological
features further indicate that using multimodal measurement data could better reflect the
daily representation of depression. Firstly, the subset of physiological modalities was also
correlated with depression. While previous research studies have reported that individuals’
daily activity patterns represented by the fluctuation of acceleration were associated with
depression symptoms [45,46], the statistical test reports significant differences not only in
the acceleration modal but also in the Non-ACC signals (including PPG and SC), corre-
sponding with the fact that Non-ACC models could also obtain significant results in the
binary classification. This is possibly due to the less effective control of cognitive function
in the depression condition, which reflects the top-down effect from the pre-frontal cortex
to the ANS system [47], while it is also possible that depressed states are associated with
distinct emotional experience (such as negative emotionality and lower emotional arousal)
and corresponding physiological changes in the cardiovascular system [48]. Secondly, as
proven by previous research [22], using multimodal data could significantly improve the
performance of depression recognition, supported by the highest accuracy obtained in the
ALL condition. This result may inspire further exploration of more advanced devices with
more physiological modalities in depression recognition studies [49].

Our results across machine learning models and data durations further demonstrated
that our approach is promising to be extended to clinical application scenarios. Firstly,
while four machine learning models have obtained significant predictive results, the RF
model achieves the highest accuracy in our results, which is higher than other EEG-based
recognition results [50,51] and peripheral physiological studies in laboratory settings [52].
Considering the widespread use and predictive performance of RF in existing research [53],
future studies could explore more advanced forms of RF models to achieve better recogni-
tion accuracy, such as applying Weighed Random Forest, Random Forest Artificial Neural
Network (RF-ANN), etc. [41,54]. Moreover, while existing studies embracing machine
learning algorithm ensembles have reported superior results than single algorithms [55,56],
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it is preferable to investigate the combination of multiple models in classification analysis.
Secondly, the classification accuracy of 76.0% based on a 5 min short-duration measurement
showed great clinical potential for fast and reliable depression diagnosis, significantly
reducing the burden on both patients and healthcare providers. This finding highlights the
feasibility of using short recordings for objective assessments. One possible explanation
is the long-term influence of a depressed mood, which may create lasting physiological
signatures detectable within a brief measurement. Another explanation is that individuals
with depression exhibit distinct activity patterns compared to healthy controls. Future
research should delve into these underlying factors to further advance wearable technolo-
gies for depression recognition. This result could be due to the long-term influence of the
depressed mood; another explanation is that individuals diagnosed with depression share
distinct activity patterns from normal healthy people. Further studies should explore the
underlying factors of the significant result from short-duration recordings to better promote
wearable depression recognition.

There are some limitations that should be noted for further studies besides the sample
size and machine learning models. Firstly, the generalizability of this method may be
limited by one-day measurement. Since individuals’ depression states could fluctuate in
daily life [57], it is more appropriate to collect longitudinal wearable data to investigate the
temporal association between mental health and physiological indicators that contributes
to daily mental health monitoring. Secondly, individuals’ physiological signals have
been known to vary substantially across time [58], which might influence the accuracy
of classification models. While our findings have demonstrated the robustness of the
proposed method for the classification of randomly selected time segments, it is necessary
to conduct a multi-day recording to further evaluate the long-term stability of the proposed
method across days, weeks, or longer. Thirdly, the feature extraction strategy in this study
was relatively conservative, focusing on classical features from these physiological signals.
A further exploration of feature extraction could be beneficial for depression recognition,
including the analysis of the raw PPG signals [59], the decomposition of skin conductance
components [60], and more advanced neural-network-based analyses [61,62]. Another
limitation is that the result was restricted to the binary classification of depression or health.
Considering the current experience of digital phenotype in depression studies [63], this
method could be similarly extended further and output more detailed information, such as
the degree of depression.

In sum, our results demonstrate the feasibility of using wearable devices for depression
recognition through a lightweight wristband that is representative of the capability of state-
of-the-art lightweight devices. The continuous recording of physiological data throughout
the daily events allows for a more comprehensive understanding of individual variations
in depression-specific representations [57], which could further contribute to more suitable
mental health care through the integration of wearable technology, such as personalized
intervention, real-time monitoring, etc.
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