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Abstract: The focus of this study is to investigate the underexplored operational effects
of disengagements on the speed of an automated shuttle, providing novel insights into
their disruptive impact on performance metrics. For this purpose, global positioning sys-
tem data, disengagement records, weather reports, and roadway geometry data from an
automated shuttle pilot program, from July to December 2023, at the University of North
Carolina in Charlotte, were collected. The automated shuttle uses sensors for localization,
navigation, and obstacle detection. A multi-level mixed-effects Gaussian regression model
with a log-link function was employed to analyze the effect of disengagement events on the
automated shuttle speed, while accounting for control variables such as roadway geometry,
weather conditions, time-of-the-day, day-of-the-week, and number of intermediate stops.
When these variables are controlled, disengagements significantly reduce the automated
shuttle speed, with the expected log of speed decreasing by 0.803 units during such events.
This reduction underscores the disruptive impact of disengagements on the automated
shuttle’s performance. The analysis revealed substantial variability in the effect of dis-
engagements across different route segments, suggesting that certain segments, likely
due to varying traffic conditions, road geometries, and traffic control characteristics, pose
greater challenges for autonomous navigation. By employing a multi-level mixed-effects
model, this study provides a robust framework for quantifying the operational impact of
disengagements. The findings serve as vital insights for advancing the reliability and safety
of autonomous systems through targeted improvements in technology and infrastructure.

Keywords: automated shuttle; disengagement; speed; sensors

1. Introduction
Automated shuttles are significant additions to the future of autonomous public

transportation systems, offering the potential to revolutionize urban mobility. These
vehicles are particularly valuable in urban environments and campus settings, where they
can serve as seamless links between major transit hubs and final destinations. Their ability
to operate in dedicated lanes or mixed traffic conditions further underscores their versatility
and transformative potential in providing public transportation.

Over the past decade, more than 120 pilot deployments of automated shuttles have
been undertaken globally, demonstrating their utility in diverse settings such as university
campuses, airports, recreational parks, business parks, and high-pedestrian areas [1,2].
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These deployments were aimed at various purposes, including first-mile-last-mile con-
nectivity, mobility enhancement, and accessibility improvements. Automated shuttles
offer numerous benefits when integrated into public transportation systems, including
reduced congestion, enhanced accessibility, and lower environmental impact. Additionally,
they hold the promise of improving mobility and access for regular transportation system
users as well as transportation-disadvantaged groups, such as the elderly, people with
disabilities, and non-driving age groups, thereby bridging social inequities [3,4].

Automated shuttles embody Level 3 or Level 4 autonomous technology, character-
ized by the absence of traditional driving controls such as steering wheels and pedals.
This indicates complete reliance on autonomous systems for all driving-related tasks and
decision-making. This high level of automation enables shuttles to perform complex driv-
ing functions autonomously, such as navigation, obstacle detection, and collision avoidance.
However, despite these capabilities, there are situations where the automated system may
not be able to handle specific driving scenarios, leading to disengagements.

Disengagements involve a transfer of control from the automated system to a human
operator, typically due to interruptions in the shuttle’s decision-making process. Several
factors can cause these interruptions. Automated shuttles rely heavily on continuous
communication with Global Positioning Systems (GPS) satellites and other signal sources
to navigate accurately; signal loss or degradation can result in the autonomous system being
unable to determine its precise location, necessitating human intervention. Additionally,
vehicle-to-infrastructure (V2I) communication failures can disrupt the shuttle’s ability to
make informed driving decisions, as these shuttles use V2I communication to receive
real-time information from road infrastructure, such as traffic signals and road signs. The
behavior of other road users, such as pedestrians, cyclists, and other vehicles, can be
unpredictable. Sudden or erratic movements by these road users can present situations
that the autonomous system is not equipped to handle, requiring a safety operator to take
control. Moreover, adverse weather conditions such as heavy rain, snow, fog, or ice can
impair the sensors and cameras used by automated shuttles for navigation and obstacle
detection. Poor visibility and slippery roads can reduce the effectiveness of the autonomous
system, leading to disengagements [5]. These transfers of control, initiated by either the
shuttle (passive) or the operator (active), can significantly impact the shuttle’s operational
performance, particularly its speed.

Most related studies in the past focused on the disengagement of automated vehicles
from a safety perspective, examining the conditions under which they occur and how they
influence vehicle and road-user safety [6–11]. However, there is a gap in understanding
the effect of disengagements on operational efficiency. This gap is critical because frequent
disengagements can cause interruptions in service, reduce the shuttle’s average speed,
and affect overall travel time. Moreover, each disengagement event not only introduces
variability in the shuttle’s performance, which can have an impact on the scheduling
and reliability of shuttle services, but also poses challenges to cost-effectiveness, user
satisfaction, and public trust in autonomous technology. Addressing this gap is essential
for improving the operational performance and reliability of automated shuttles. This
study makes a novel contribution by addressing the underexplored operational effects of
disengagements in automated shuttles. By employing a mixed-effects model, this research
not only quantifies the effects of disengagements on the automated shuttle’s running
speed, but also identifies how roadway and environmental factors have an influence on
running speed. The findings provide actionable insights to improve operational efficiency
and reliability, with practical implications for the broader adoption of automated shuttle
systems in public transportation. With this motivation, the present study addresses the
following research questions.
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1. How do various factors, such as roadway geometry and operational settings, influence
the frequency of disengagements?

2. How do disengagement events affect the running speed of the automated shuttle?

The subsequent sections of this research paper are organized to systematically address
the study’s objectives and findings. Section 2 presents a review of the literature, synthe-
sizing existing studies on disengagements while identifying knowledge gaps. Section 3
provides an overview of the UNC Charlotte Autonomous Shuttle Program, detailing its
route characteristics and challenges. Section 4 focuses on data collection, outlining the
data used for the analysis. Section 5 explains data processing and integration, describing
the techniques employed to clean, integrate, and prepare the data for analysis. Section 6
presents the methodology, detailing the application of a mixed-effects model to analyze
the impact of disengagements on the automated shuttle’s performance, accounting for
variability across operational conditions. Section 8 concludes the study by summariz-
ing key findings, emphasizing the effects of disengagements and roadway factors on the
automated shuttle’s performance, discussing limitations, and providing suggestions for
future research.

2. Literature Review
The rapid development and testing of autonomous vehicles (AVs) on public roads have

led to significant insights into the cause and implications of disengagements, situations
where vehicle control must be transferred from the automated system to a human driver.
An analysis of disengagement data provides crucial information about the performance
and safety of AV technologies.

Favaro et al. [12] comprehensively analyzed disengagement data and observed trends
in disengagement reporting, including frequencies and average mileage before disengage-
ments occur. They emphasized the importance of understanding disengagements as a
safety measure, noting that while they are rare, they serve as critical indicators for improv-
ing AV systems and regulations [12]. Lv et al. [5] reviewed disengagement files from major
AV manufacturers and classified disengagement events into types, and identified software
issues as the most common cause. The research highlighted the need for enhanced takeover
mechanisms and time management to improve safety and efficiency [5]. Boggs et al. [13]
examined data from California’s AV testing program, focusing on 159,840 disengagements
and 124 crashes. They found that AV technology’s maturity and specific triggers, such as
hardware and software issues, influenced the likelihood of disengagements [13]. They also
emphasized the importance of distinguishing between disengagements initiated by AV
systems and those by human operators [13].

Favaro et al. [14] reported that higher speeds at the time of disengagement lead to
worse takeover performance, including increased vehicle drift. Dixit et al. [15] analyzed
disengagement data to assess the trust and reaction times of human drivers. They found
that reaction times to disengagements averaged 0.83 s and varied based on disengagement
types and roadway conditions [15]. The increased vehicle miles traveled with improved
trust and reaction times is crucial for understanding how driver behavior impacts safety
during transitions between automated and manual control [15].

Sinha et al. [16] assessed AV disengagement and crash data from 2014 to 2019 and
concluded that a decrease in the number of disengagements does not necessarily indicate
improved AV technology. They highlighted issues with current data reporting protocols
and recommended improvements to enhance the transparency and effectiveness of AV
testing [16]. Khattak et al. [17] analyzed AV disengagement and crash data using statistical
models. They identified software failures and planning issues as significant causes of
disengagement [17]. They also showed a decrease in the number of disengagements as
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technology matured [17]. The findings suggest that disengagement is part of AVs’ safety
performance and should be monitored closely to avoid potential failures [17]. Wang and
Li [18] identified planning issues and sensor limitations as major causes of disengagements.
They also highlighted how roadway characteristics and perception issues impact drivers’
response times during disengagements [18].

Zhang et al. [6] analyzed disengagement data using taxonomy, visualization, and
statistical tests. They found that (a) manufacturers tested AVs intensively during the Spring
and Winter months, (b) test drivers initiated more than 80% of disengagements, while more
than 75% of disengagements were because of errors in perception, localization, mapping,
planning, and control of the AV system, and (c) there was a significant relationship between
the initiator of AV disengagement and the cause category [6]. Houseal et al. [19] used
multiple statistical approaches and observed that the latent variables that could identify
an AV crash are operator involvement, incorrect maneuver decision, crash severity, and
environmental conditions. Based on the AV crash data, Ashraf et al. [7] reported that
driving mode (automated vs. non-automated driving conditions) significantly impacts the
safety performance of AVs.

Li et al. [8] analyzed the effect of age and disengagement on the takeover control
performance of drivers in highly automated vehicles. They revealed that 20 s was sufficient
time for drivers to take over control of the AVs after the disengagement [8]. They also
revealed that older drivers took longer to respond and make decisions than younger
drivers [8]. Wu et al. [9] validated the California DMV AV tester disengagement data and
found that disengagements are associated with crash risks. Guo and Zhang [10] reviewed
and revealed that by participating in the AV tester program, AV manufacturers showed a
trend toward improvement in their AV technologies (e.g., an 8% decrease in the number of
disengagements caused by hardware and software discrepancies and a 12% decrease in
the number of disengagements caused by perception discrepancies). Gershon et al. [11]
concluded that automation-initiated disengagements triggered substantial changes in
driver glance behavior, including shorter on-road glances and frequent transitions between
road and instrument cluster glance locations. Shirani et al. [20] investigated the driver’s
reaction to the disengagement of an advanced driver assistance system. They revealed
that disengagements and distraction significantly influence the mean response time of the
driver [20].

Overall, past studies have contributed to an understanding of the factors influencing
AV disengagements and their implications for safety, driver behavior, and technology
development. A notable gap exists in integrating the disengagement data with GPS
information to assess the effect of disengagements on the speed of AVs. The disengagement
data provide insights into when and why control is transferred from the automated system
to a human driver. However, they do not fully capture the vehicle’s performance dynamics
across different operational contexts. By integrating the GPS data with the disengagement
records, this study aims to bridge the gap, offering a more nuanced evaluation of automated
shuttle performance.

3. UNC Charlotte Autonomous Shuttle Program
The North Carolina Department of Transportation (NCDOT) partnered with UNC

Charlotte in 2023 to bring a novel-design, low-speed automated shuttle to campus through
the Connected Autonomous Shuttle Supporting Innovation (CASSI) program. As part of
the pilot, the automated shuttle operated from July to December 2023 on a dedicated 2.2-
mile (3.54 km) route servicing student housing and academic buildings at UNC Charlotte,
as shown in Figure 1a. The automated shuttle uses eight light-detection and ranging
(LiDAR) sensors, three cameras, one GPS sensor/global navigation satellite system (GNSS)
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antenna, and one inertial measurement unit (IMU) for localization, navigation, and obstacle
detection [21]. Furthermore, Kapsch RIS-9160 [22] with Mobile Mark 6 dB 5.9 Ghz antennas
were installed as roadside units to wirelessly communicate with the four traffic signal
controllers (2070 controllers retrofitted in June 2023 with 2070-1C CPU modules) along the
pilot route. The shuttle made stops at seven key locations: Greek Village 1 (GV1), Greek
Village 4 (GV4), Greek Village 8 (GV8), Science Building (SB), Student Union (SU), Student
Union Deck (SD), and the Light Rail Transit (LRT) main station.

Sensors 2025, 25, x FOR PEER REVIEW 5 of 19 
 

 

(LiDAR) sensors, three cameras, one GPS sensor/global navigation satellite system (GNSS) 
antenna, and one inertial measurement unit (IMU) for localization, navigation, and obsta-
cle detection [21]. Furthermore, Kapsch RIS-9160 [22] with Mobile Mark 6 dB 5.9 Ghz an-
tennas were installed as roadside units to wirelessly communicate with the four traffic 
signal controllers (2070 controllers retrofitted in June 2023 with 2070-1C CPU modules) 
along the pilot route. The shuttle made stops at seven key locations: Greek Village 1 (GV1), 
Greek Village 4 (GV4), Greek Village 8 (GV8), Science Building (SB), Student Union (SU), 
Student Union Deck (SD), and the Light Rail Transit (LRT) main station. 

 
(a) 

 
(b) 

Figure 1. UNC Charlotte automated shuttle program details. (a) Pilot route. (b) Setting up RSU at a 
signalized intersection near the LRT station. 

The selected 2.2-mile (3.54 km) route for the pilot is the most complex route on the 
campus. It navigates through heterogeneous traffic conditions, including private vehicles, 
buses, pedestrians, bicyclists, skateboard users, e-scooters, and carts. This route included 

Figure 1. UNC Charlotte automated shuttle program details. (a) Pilot route. (b) Setting up RSU at a
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The selected 2.2-mile (3.54 km) route for the pilot is the most complex route on the cam-
pus. It navigates through heterogeneous traffic conditions, including private vehicles, buses,
pedestrians, bicyclists, skateboard users, e-scooters, and carts. This route included various
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traffic control features, such as three signalized intersections, one signalized pedestrian
crosswalk, two stop-controlled intersections, and nine unsignalized pedestrian crosswalks.
This diverse and dynamic setting offered a robust testbed for evaluating the operational
performance of the automated shuttle in real-world conditions. During the pilot period,
the automated shuttle operated under various weather conditions, encompassing the hot
summer, cool fall, and early winter months, with dry weather and rain. Visibility con-
ditions varied from clear to cloudy and foggy days, providing a comprehensive range
of environmental scenarios. However, the automated shuttle was not operational under
inclement weather conditions, such as heavy rains or poor visibility.

The automated shuttle was programmed to execute only right turns at intersections,
to adhere to National Traffic Safety Administration (NHTSA) guidelines for AV operation.
This restriction necessitated a route optimization strategy for the GV4 to SB segment. A
signalized intersection near the Student Health Center presented a challenge, due to the left
turn required to reach SB directly. To address this, the shuttle turned right into Parking Lot
12, then safely merged onto the main roadway via another right turn, before proceeding
toward SB.

To ensure efficient communication with campus traffic signals, roadside units (RSUs)
were installed, facilitating the interaction between the automated shuttle and the traffic
signal infrastructure. Figure 1b depicts the installation of RSUs at traffic signal controls
near the LRT station.

4. Data Collection
Data from multiple sensors and sources were collected and integrated for a compre-

hensive operational performance evaluation of the automated shuttle.

4.1. GPS Data

A tablet equipped with the Passio GO App [23] was installed in the automated shuttle
to facilitate GPS data collection. The GPS data for the automated shuttle were collected
from 13 July 2023 to 15 December 2023. The GPS data were downloaded from the Passio
GO database.

The GPS data were obtained as stop-based data, i.e., data were only logged when
the automated shuttle stopped, rather than providing continuous data. The recorded data
included various parameters such as the start date and time at each stop, the type of activity
(always marked as ‘STOP’), the name of the location where the stop occurred, the route
being followed, the duration between the previous stop and the current one, the idle time
spent at each location, and trip miles. Additionally, the GPS data included the cumulative
elapsed time from the start of the pilot program. This comprehensive dataset provided a
detailed record of the automated shuttle operations throughout the pilot period. In addition
to GPS data, the distance between each official stop was measured to identify intermediate
and official stops.

4.2. Disengagement Data

The disengagement data for the automated shuttle from July 13 to December 21
were also collected. The operator [24] recorded this data whenever the automated shuttle
switched control from an automated mode to a manual mode. These data included detailed
incident information such as the incident date and time, the week of the year, the number
of weeks into the pilot program, the name of the site where the shuttle was operating, the
shuttle ID as per NCDOT records, the route, latitude, and longitude where the incident
occurred, weather condition, vehicle speed at the time of the incident, and the cause of the
disengagement. The causes of disengagements were fault code/error codes, signal loss,
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signalized intersection issues, interactions with other road users, station blockages, obstacle
detection, vegetation, objects in the priority zone, and manual deviations from the approved
path. These disengagement data were used to evaluate the effect of disengagements on the
operational performance of the automated shuttle.

4.3. Weather Data

Weather data were collected from Visual Crossing [25], an open-source weather data
provider, to assess the effect of weather on the operational performance of the automated
shuttle. This data were acquired using Visual Crossing’s inbuilt application programming
interface (API), ensuring precise and comprehensive coverage throughout the six-month
pilot period. The collected data encompassed critical weather parameters, including
precipitation, visibility, and overall weather conditions. The precipitation data detailed
the intensity and duration of rainfall. Additionally, the weather conditions data provided
information on temperature, humidity, and wind speed, which is vital to understand these
factors’ potential effects on the automated shuttle’s performance.

4.4. Roadway Characteristics Data

Roadway characteristics data along the pilot route were extracted from Google Earth.
This included recording each official stop’s latitude and longitude along the route, the
distance between each official stop to identify intermediate and official stops, the num-
ber of crosswalks, intersections, and access points, and the proportion of divided and
undivided segments.

5. Data Processing and Integration
5.1. Trajectory Construction Framework

The downloaded GPS data from the Passio GO database was processed to construct
trajectories of the automated shuttle. These trajectories capture the vehicle’s movement
over time and are used to compute performance metrics such as speed, travel time between
stops, stop time at each stop, and the number of intermediate stops. The framework for
constructing trajectories from the stop-based GPS data is explained next.

5.2. Estimation of Key Metrics

• Exit Time: The start time (T_start) for each stop was recorded when the shuttle entered
a stop and was provided in the GPS data. Idle time (T_idle) at each stop, available
in the GPS data, represents the dwell time or stop time at each stop, indicating how
long the automated shuttle remained stationary at each location. The exit time (T_exit)
for each stop was calculated by adding the idle time to the start time at each stop.
Specifically, the exit time is determined using the formula: T_exit = T_start + T_idle;

• Travel Time Between Stops: The travel time between stops was estimated by subtract-
ing the exit time of the previous stop (i) from the start time of the next stop (i + 1). This
is represented by the formula: T_traveltime = Tstart_i + 1 − Texit_i;

• Distance Between Stops: The distance between stops was estimated by subtracting the
trip miles (TM) at the previous stop (i) from the TM at the current stop (i + 1). This can
be expressed as: D = TM_i + 1 − TM_i.

These metrics were crucial for accurately mapping the automated shuttle’s trajectory
and assessing its operational performance.

5.3. Identification of Intermediate and Official Stops

Since the automated shuttle made intermediate stops between two official stops, it
was imperative to identify whether a stop was an intermediate stop or an official stop.
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This step was essential because the Passio GO activity data recorded the nearest stop’s
name whenever the automated shuttle stopped, making it necessary to distinguish between
official and intermediate stops. The computed distance was used to identify whether a stop
was an intermediate or official stop.

• Official Stops: If the estimated distance between the stops was equal to the field-
recorded distance between two official stops, the stop was treated as an official stop.

• Intermediate Stops: If the distance between stops was less than the field-measured
distance, the stop was treated as an intermediate stop. In the case of multiple interme-
diate stops, the cumulative traveled distance was compared with the field-measured
distance between the official stops. If the cumulative traveled distance was less than
the field-measured distance, the stops were identified as intermediate stops.

5.4. Construction of Shuttle Trajectories

Once the distance between stops, travel time between stops, start time, and exit time
were estimated, the automated shuttle trajectory was constructed by assuming an origin
point. Seven official stations were identified along the pilot route: GV1, GV8, GV4, SB, SU,
SD, and LRT. Due to its central location, the “SB” was chosen as the origin for constructing
the trajectories. After processing the trip time and distance, the stop-based data were used
to construct the trajectories for the automated shuttle, utilizing the timestamps and the
cumulative distance traveled between stops.

5.5. Pattern Recognition for Shuttle Routing

Following the construction of automated shuttle trajectories based on stop data, a
pattern recognition algorithm was employed to identify potential routing patterns utilized
by the automated shuttle. This algorithm was used to analyze the sequence of stops within
a trajectory and categorizes trips into distinct routing patterns by comparing these stop
sequences. This approach identifies recurring routes that the shuttles take, which can be
valuable for understanding operational strategies and potential optimization opportunities.

5.6. Integrating Disengagement, Weather, and Roadway Data with Constructed Trajectories

Disengagement data were initially processed to ensure that only disengagements
along the official pilot route were accounted for. To do this, a 50-foot (15.24 m) linear buffer
was created along the pilot route, and the location of the disengagements was overlaid on
this layer to eliminate any disengagements recorded outside this buffer. The processed
disengagements were then integrated with the constructed trajectories by matching the
timestamps in both the datasets. Given that the GPS data were stop-based, the entry time
and exit time for each stop and segment were used to match the disengagement data with
the GPS data, ensuring accurate alignment.

Similarly, a matching process was implemented to integrate the weather data with
the constructed trajectory. The GPS data included timestamps, while the weather data
from Visual Crossing had detailed hourly timestamps. By aligning these timestamps, each
GPS data point was matched with the corresponding weather condition at that specific
time. This allowed for a comprehensive analysis of how weather influenced the shuttle’s
operational performance.

Roadway characteristics data, including the number of crosswalks, intersections, and
other roadway features, were integrated with the constructed trajectories based on segment
names. This integration enabled the assessment of how different roadway characteristics
influenced the shuttle’s operational metrics.
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6. Methodology
A multi-level mixed-effects model was developed to assess the effects of various

factors on the speed of the automated shuttle. The multi-level mixed-effects model was
chosen for its ability to handle the nested structure of the data and provide robust estimates
by accounting for both fixed and random effects. Unlike standard linear regression models,
which assume independence among observations, the mixed-effects model incorporates
variability at multiple levels, which is critical for understanding the effect of disengage-
ments in this study. For example, time-of-the-day (TOD) may have a higher effect on the
automated shuttle speed in segments with frequent pedestrian activity during peak hours,
while road geometry factors such as intersections and crosswalks exert greater influence on
the automated shuttle speed in segments with complex layouts.

The dependent variable Y (speed) was assumed to follow a normal distribution and is
modeled as a function of several covariates Xi (number of intermediate stops; TOD; day-
of-the-week (DOW); disengagements; roadway characteristics; and weather). To ensure
positive speed, a log-link function was assumed. The general form of the fixed effects
model is expressed as follows:

log(E(Y)) = β0 + β1 X1 + β2 X2 . . .. . . + βn Xn + ϵi (1)

where E(Y) is the expected value of the dependent variable; β0 is the intercept; X1, . . ., Xn

are the covariates; and β1, . . ., βn are the coefficients associated with each covariate.
A multi-level mixed-effects Gaussian regression model with a log-link function ac-

counts for variability at different levels. This model includes both fixed effects and random
effects. The random effects account for variability specific to individual segments of the
route. The general form of the multi-level mixed-effects model is expressed as follows:

log(E(Yij)) = β0 + β1 X1ij + β2 X2ij . . .. . . + βn Xnij + uoi+u1i × Z1ij (2)

where E(Yij) is the expected value of the dependent variable for observation j within the
group i, β0 is the intercept, β1, . . ., βn are the coefficients associated with each covariate,
X1ij, . . . Xnij are the covariates for observation j within group i, uoi is the random intercept
for group i, and u1i is the random coefficient for covariate Z1ij within group i.

In this model, uoi and u1i have random effects that capture variability across different
groups. These random effects are assumed to follow a normal distribution, with mean zero
and variances σ2

uo and σ2
u1, respectively.

uoi ~ N(0, σ2
uo) (3)

u1i ~ N(0, σ2
u1) (4)

The multi-level mixed-effects model with a Gaussian distribution and log-link function
provides a more flexible framework that can capture the hierarchical structure of the data,
allowing for the effects of covariates to vary across different levels or groups. This is
particularly useful in accounting for the random variation in the effects of certain covariates,
such as the impact of disengagements, which may differ across segments.

To determine whether the multi-level mixed-effects model offers a significant improve-
ment over the fixed effect model, a Likelihood Ratio (LR) test was conducted. The LR test
compares the goodness-of-fit of the two models by evaluating whether the inclusion of
random effects significantly improves the model fit. A significant LR test result indicates
that the multi-level mixed-effects model better fits the data than the fixed effect model,
justifying the incorporation of random effects at the segment level.
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7. Results
7.1. Routing Patterns and Constructed Trajectory

The trajectory construction framework was applied to the stop-based GPS data of
the automated shuttle to generate vehicle trajectories. Three different routing patterns for
the automated shuttle were observed based on the developed trajectories and the pattern
recognition algorithm. In pattern 1, the automated shuttle traveled from the SB to LRT
station, then to Greek Village (GV1, GV4, and GV8), and returned to the SB. Pattern 2
involves a shorter route, where the shuttle traveled from the SB to LRT station, and then
directly back to the SB. Pattern 3 depicts a route where the shuttle traveled from the SB
to LRT station. Routing patterns 1 and 2 for the automated shuttle appear flexible and
adaptable, potentially changing based on passenger requests and demand. In contrast,
routing pattern 3 for the automated shuttle is consistently observed at the end of the shift
or day, likely involving a trip to the parking lot for charging before the next shift.

For routing pattern 1, the constructed trajectory for the automated shuttle on 5 Decem-
ber 2023 in the morning is illustrated in Figure 2. The constructed vehicle trajectory was
leveraged to estimate performance metrics such as speed/travel time between official stops,
number of intermediate stops between two official stops, stop time at each intermediate
stop, and stop time at the official stop.
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Figure 2. Constructed trajectory of automated shuttle from stop-based GPS data. Note: blue points:
official stops; orange points: intermediate stops.

7.2. Spatio-Temporal Variation in the Speeds of the Automated Shuttle

Figure 3 illustrates the spatio-temporal variation in speed for the automated shuttle.
Segments such as SB to SU, SU to SD, and GV4 to SB exhibit high volumes and

heterogeneous traffic conditions, characterized by significant pedestrian volumes and
vehicle interactions. In these segments, the automated shuttle’s speed is significantly lower
compared to in other segments. High pedestrian activity, especially in residential areas
like Greek Village (GV1, GV4, and GV8), further contributes to the automated shuttle
maintaining lower speeds to prevent crashes and respond effectively to sudden pedestrian
movements. This speed reduction is primarily due to the need for careful navigation
through crowded and dynamic environments to ensure safety and smooth operation.

The automated shuttle traveled at relatively higher speeds in segments without signal-
ized intersections or traffic signals (SD to LRT) than in those with signalized intersections.
This difference is attributed to the absence of frequent stops and signal-induced delays in
non-signalized segments, allowing for smoother and more continuous travel. Conversely,
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segments with signalized intersections required the shuttle to stop or slow down at traffic
signals, reducing the overall speed.
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Overall, the effect of traffic flow, heterogeneous conditions, and the presence or absence
of traffic signals on the speed of the automated shuttle is significant. Lower speeds were
observed in areas with high traffic volumes and pedestrian activity to prioritize safety and
maneuverability, while higher speeds were observed in less congested and non-signalized
areas. This adaptive behavior underscores the automated shuttle’s approach to balancing
efficiency with safety in varying traffic environments.

7.3. Spatial–Temporal Variation in Disengagements

Disengagements were categorized into four types: environmental factors, technical
and signal issues, safety and interaction with others, and navigation and path deviation
based on possible causes. Table 1 provides an in-depth analysis of spatio-temporal vari-
ation in disengagements by type. The data revealed critical insights into the operational
challenges and trends affecting the automated shuttle’s performance.

Disengagements due to environmental factors were prevalent in specific segments and
showed a strong temporal pattern. For instance, the segment from GV1 to GV8 recorded
22 disengagements in August, primarily attributed to environmental conditions such as
overgrown vegetation obstructing the automated shuttle’s sensors. Vegetation emerged
as a key cause of environmental disengagements, underscoring the effect of dynamic
seasonal changes on the automated shuttle’s operations. In response, the campus took
proactive measures in August to trim overgrown branches along the pilot route, resulting
in a significant reduction in vegetation-related disengagements in the subsequent months.
These findings highlight the importance of ongoing route maintenance and adaptive
strategies to mitigate environmental challenges.

Technical and signal-related disengagements were most frequent across all segments,
particularly between SU and SD and GV4 and SB, where signalized intersections posed
recurring challenges. These issues were often caused by interruptions in V2I communi-
cation, leading to the automated shuttle’s inability to respond to real-time traffic signals
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effectively. The data underscores the critical need for more reliable communication sys-
tems and infrastructure upgrades to ensure seamless interactions between the automated
shuttle and its environment. Future technological improvements, such as advanced signal
prioritization systems and redundant communication channels, could help address these
recurring challenges.

Table 1. Variation in disengagement type by space and time.

Segment Category July Aug. Sep. Oct. Nov. Dec.

SB–SU

Environmental factors 5 - - - - -

Safety and interaction with others 5 1 - 2 3 -

Technical and signal issues 1 - 1 - - -

Segment total 11 1 1 2 3 -

SU–SD

Environmental factors - - - 1 1 1

Navigation and path deviation - 1 - - - -

Safety and interaction with others 3 - 3 4 2 3

Technical and signal issues 13 8 9 6 3 24

Segment total 16 9 12 11 6 28

SD–LRT

Environmental factors - 3 - - - 1

Safety and interaction with others 1 1 - - - 1

Technical and signal issues - - - - - 3

Segment total 1 4 - - - 5

LRT–GV4

Environmental factors 1 - - - 1 -

Safety and interaction with others - - - 1 - -

Technical and signal issues 1 3 7 - 7 2

Segment total 2 3 7 1 8 2

GV1–GV8

Environmental factors 1 11 - 1 - -

Safety and interaction with others 1 11 - 2 1 -

Technical and signal issues 1 - 1 - - -

Segment total 3 22 1 3 1 -

GV8–GV4

Environmental factors - - - - 1 -

Safety and interaction with others - - - 1 - 1

Segment total - - - 1 1 1

GV4 SB

Environmental factors 5 2 - 2 1 -

Navigation and path deviation 5 - 3 1 - 1

Safety and interaction with others 2 3 3 7 4 3

Technical and signal issues 2 15 12 - 4 3

Segment total 14 20 18 10 9 7

Total 47 59 39 28 28 43
Note: SB—Science Building; SU—Student Union West; SD—Student Union Deck; LRT—Light Rail Transit Main
Station; GV4—Greek Village 4; GV1—Greek Village 1; and GV8—Greek Village 8.

Disengagements triggered by safety concerns and interactions with other road users
were most prominent in high-traffic segments like SU–SD and GV4–SB. Unpredictable
behaviors from pedestrians, cyclists, and other vehicles often required the safety operator
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to take control, particularly in areas with high pedestrian activity. These findings empha-
size the need for autonomous systems to adopt advanced predictive algorithms that can
anticipate and respond to dynamic road-user behaviors in real time, reducing the reliance
on manual interventions.

Navigation and path deviation disengagements were less frequent, but significant
in segments like GV4–SB and SU–SD. These events were often caused by unclear lane
markings or GPS inaccuracies that hindered the automated shuttle’s ability to maintain
its intended path. Improving localization accuracy through advanced GPS, redundant
positioning technologies, and better roadway markings could mitigate these occurrences,
enhancing the overall reliability of autonomous operations.

The segment between SU and SD consistently experienced the highest number of
disengagements, peaking in December with 28 incidents, largely due to technical and
signal issues at intersections and frequent safety-related interactions with road users.
Similarly, the segment from GV4 to SB exhibited high disengagement rates in the summer
months, highlighting the combined influence of technical challenges and safety concerns in
these critical areas.

7.4. Impact of Various Factors on Running Speed

A comparative analysis was conducted to evaluate the performance of the multi-level
mixed-effects Gaussian regression model against two alternative models: a standard linear
regression model and a generalized linear model (GLM). The results are summarized in
Table 2.

Table 2. Model comparison.

Model Likelihood AIC BIC

Gamma log −4599.08 9240.15 9361.16

Gaussian identity −4121.72 8291.44 8375.89

Gaussian log −4055.6 8155.2 8282

The comparative analysis demonstrated that the multi-level mixed-effects Gaussian
regression model had the best fit for the data, and the results are summarized in Table 3.
The R2 is 0.84. The results from this model offer a comprehensive understanding of how
various factors influence the speed of the automated shuttle.

Table 3. Model summary.

Fixed Effects

Predictor Estimate St. Error t-Statistic p-Value

(Intercept) 1.647 0.039 42.007 <2 × 10−16

Proportion of Divided Road 1.025 0.157 6.522 0.000

Number of Intermediate Stops_1 −0.398 0.029 −13.832 <2 × 10−16

Number of Intermediate Stops_2 −0.738 0.129 −5.703 0.000

Number of Intermediate Stops_3 −0.968 0.143 −6.786 0.000

Number of Crosswalks_1 −0.339 0.147 −3.358 0.001

Number of Crosswalks_2 −0.493 0.034 9.939 <2 × 10−16

Number of Intersections_1 −0.240 0.048 −4.963 0.000

Number of Intersections_3 −0.259 0.029 −8.975 <2 × 10−16
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Table 3. Cont.

Fixed Effects

Predictor Estimate St. Error t-Statistic p-Value

Number of Intersections_4 −0.494 0.099 −4.974 0.000

Disengagement −0.803 0.246 −3.259 0.001

Afternoon Period −0.008 0.009 −0.875 0.382

Evening Period 0.010 0.020 0.516 0.606

Visibility_High 0.009 0.015 0.586 0.558

Tuesday 0.015 0.014 1.067 0.286

Wednesday 0.036 0.013 2.741 0.006

Thursday −0.014 0.014 −0.976 0.329

Friday 0.023 0.014 1.671 0.095

Random Effects

Group Name Variance Std. Dev. Corr

Location/Segment (Intercept) 0.018 0.133

Location/Segment Disengagement 0.981 0.990 −1.000

Goodness-of-fit

AIC 8155.2

BIC 8282

Log Likelihood −4055.6

Deviance 8111.2

R2 0.84

Likelihood Ratio Test

Chi-square 82.782

p-value <2.2 × 10−16

7.4.1. Number of Intermediate Stops

The number of intermediate stops significantly influences the operational speed of the
automated shuttle. The analysis indicates that each additional intermediate stop reduces the
automated shuttle’s speed, with the magnitude of this reduction increasing as the number
of stops increases. For instance, having one intermediate stop decreases the expected
log of the automated shuttle’s speed by 0.398 units compared to having no intermediate
stops. This reduction is even more pronounced with two and three intermediate stops,
which decrease the expected log of the speed by 0.738 and 0.968 units, respectively. These
findings highlight the practical implications of intermediate stops, as each stop necessitates
deceleration, stopping, and subsequent acceleration, thereby reducing the average speed of
the shuttle.

7.4.2. Roadway Factors

The operational speed of the automated shuttle is influenced by several roadway
factors, including the proportion of divided roads, the number of crosswalks, and the
number of intersections. The positive coefficient of 1.025 indicates that an increase in the
proportion of divided roads significantly enhances the automated shuttle’s speed. For each
unit increase in the proportion of divided roads, the expected log of the speed increases by
1.025 units. Divided roads typically offer a safer and less obstructed environment, allowing
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for smoother and more continuous travel. The physical barrier between opposing lanes
reduces interruptions and potential collisions, enabling the automated shuttle to maintain
a higher average speed.

The negative coefficients for the number of crosswalks indicate that more crosswalks
reduce the automated shuttle speed. Specifically, one crosswalk decreases the expected
log of the speed by 0.339 units, and two crosswalks further decrease it by 0.493 units.
Crosswalks require the shuttle to reduce speed to ensure pedestrian safety, leading to lower
operational speeds.

The number of intersections also significantly influences the automated shuttle speed.
One intersection reduces the expected log of the speed by 0.240 units, three intersections
reduce the expected log of the speed by 0.259 units, and four intersections reduce the
expected log of the speed by 0.494 units. Intersections typically involve stops or slowdowns
due to traffic control devices and interactions with other vehicles, thereby reducing the
automated shuttle’s average speed.

7.4.3. Weather

The coefficient for high visibility is 0.009, indicating a very slight positive effect on
the automated shuttle speed. While the positive coefficient suggests a relatively higher
speed in high visibility conditions, the effect is minimal and not statistically significant.
This could imply that the automated shuttle’s navigation system is robust enough to
maintain consistent performance under different visibility conditions (as observed in this
study) or that the visibility variations during the study period were not severe enough to
affect speed substantially. Since the automated shuttle did not operate under inclement
weather conditions, such as heavy rainfall, the effect of weather-related parameters, like
visibility and precipitation, was insignificant. This limitation highlights the need for further
research under more varied and extreme weather conditions to understand their impact on
shuttle performance.

7.4.4. Temporal Factors

The analysis by TOD and DOW revealed that these variables have minimal impact on
the automated shuttle’s operational speed. The slight variations in speed across different
times of the day and days of the week suggest that the automated shuttle maintains a
consistent performance.

7.4.5. Disengagements

The negative coefficient of −0.803 indicates that disengagements significantly reduce
the automated shuttle’s speed. Specifically, when a disengagement event occurs, the
expected log of the speed decreases by 0.803 units. This substantial reduction highlights the
disruptive impact of disengagements on the automated shuttle performance. The perfect
negative correlation (−1.000) between the intercept and disengagement effects suggests that
segments with higher baseline speeds experience a more pronounced reduction in speed
when disengagements occur. The variance of the random effect for disengagements across
segments is 0.981, with a standard deviation of 0.990, indicating substantial variability in
how disengagements impact speed in different segments. Figure 4 illustrates the effect of
disengagements across different segments.

The histogram shows the distribution of coefficients for the impact of disengagements
on the automated shuttle speed across various segments. Most coefficients are negative,
indicating that disengagements generally reduce shuttle speed. The peak frequency of
coefficients falls between −1.0 and −0.5, suggesting that for most segments, disengage-
ments significantly reduce the expected log of speed by approximately 0.5 to 1.0 units.
The range of coefficients, from about −2.5 to 0.5, indicates variability in the effect, with
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some segments experiencing more severe speed reductions than others. The distribution
is skewed towards the negative, confirming that disengagements predominantly disrupt
shuttle operations by necessitating slowdowns or stops for safe manual control transitions.
This variability suggests that certain segments, likely due to different traffic conditions or
road geometries, are more challenging for autonomous navigation.
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In practical terms, disengagements often require the automated shuttle to switch
control from the automated system to a human operator. This transition typically involves
slowing down or stopping the vehicle to ensure safety, reducing the average speed. The
necessity for human intervention during disengagements underscores the challenges faced
by autonomous shuttles in maintaining consistent performance in dynamic environments.

8. Conclusions
This study provides a comprehensive analysis of the effect of disengagements on

the operational performance of automated shuttles, explicitly focusing on speed. The
study addresses a critical gap in understanding how disengagement events affect the
efficiency of automated shuttles, particularly in complex environments such as university
campuses. By employing a multi-level mixed-effects Gaussian regression model, the study
effectively quantifies the effect of disengagements while controlling covariates such as
roadway geometry, weather conditions, TOD, DOW, and the number of intermediate stops.
The following are some of the important conclusions drawn from the study:

• Signalized intersections, high pedestrian activity, and environmental factors like veg-
etation significantly affected the automated shuttle performance in terms of the fre-
quency of disengagements. Addressing technical issues, enhancing safety protocols,
and managing environmental factors are crucial for optimizing the automated shuttle’s
performance and reliability, reducing manual interventions, and improving overall
service reliability;

• Roadway geometry factors such as the number of crosswalks, the proportion of
divided roads, and the number of intersections significantly influence the speed of
the automated shuttle. An increase in the number of crosswalks and intersections
decreases the speed of the automated shuttle;

• Disengagements significantly reduce the automated shuttle speed, underscoring the
disruptive nature of disengagements on automated shuttle performance and emphasiz-
ing the need for improvements in autonomous systems to minimize these occurrences.
The effects of disengagements varied with location, highlighting the influence of
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segment-specific characteristics, such as traffic conditions and road geometries, on
automated shuttle performance.

While the findings from this study serve as valuable insights, the study has several
limitations that warrant future research. The analysis relied on stop-based GPS data, which
limited the ability to evaluate the immediate effect of disengagements on shuttle behavior
and the reaction time of the safety operator. Continuous GPS tracking and higher-resolution
data could provide a more granular understanding of disengagement dynamics. Addi-
tionally, the study focused on a specific university campus setting, which, while valuable,
may not fully represent operational conditions in larger urban areas or more diverse envi-
ronments. Extreme weather conditions, such as heavy rain or fog, were not encountered
during the study period, leaving gaps in understanding the automated shuttle’s perfor-
mance under such conditions. Finally, the study analyzed the effect of disengagements on
speed within the affected segment, but did not explore the potential propagation of these
effects to subsequent segments, nor account for the micro-level variability in human driver
behavior during disengagements.

In terms of real-world implementation, significant challenges remain. Scaling the
findings to more dynamic and unpredictable environments, such as urban centers with
heavy traffic and complex pedestrian interactions, requires addressing the current lim-
itations in autonomous system technologies. Robust sensor capabilities, improved V2I
communication, and the ability to handle unexpected situations in real time are essential
for broader deployment and a reduction in disengagements. Validation of these results in
diverse settings, including areas with varying traffic regulations, infrastructure, and user
demographics, is crucial for ensuring the reliability of automated shuttles in public trans-
portation networks. Strategies such as tailored driver training, advanced human–machine
interfaces, and predictive models to anticipate human responses could help mitigate the
variability of human driver intentions during disengagements.

Future research should prioritize these challenges by exploring the role of predic-
tive models and machine learning techniques in reducing disengagement occurrences
and enhancing shuttle decision-making. Investigating the effects of disengagements in
diverse operational and environmental conditions using continuous GPS-based and camera-
based natural driving datasets, modeling behaviors, assessing interactions with other users
(including vehicles), and developing real-time mitigation strategies will be critical. Addi-
tionally, pilot programs in varied real-world environments can offer practical insights into
overcoming these barriers.

By addressing these limitations and implementation challenges, this study provides
a foundation for advancing the practical application and scalability of automated shut-
tles, contributing to the development of safer, more reliable, and efficient autonomous
transportation systems.
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