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Abstract: For change detection in synthetic aperture radar (SAR) imagery, amplitude change
detection (ACD) and coherent change detection (CCD) are widely employed. However,
time-series SAR data often contain noise and variability introduced by system and envi-
ronmental factors, requiring mitigation. Additionally, the stability of SAR signals is pre-
served when calibration accounts for temporal and environmental variations. Although
ACD and CCD techniques can detect changes, spatial variability outside the primary target
area introduces complexity into the analysis. This study presents a robust change detection
methodology designed to identify urban changes using KOMPSAT-5 time-series data. A
comprehensive preprocessing framework—including coregistration, radiometric terrain cor-
rection, normalization, and speckle filtering—was implemented to ensure data consistency
and accuracy. Statistical homogeneous pixels (SHPs) were extracted to identify stable targets,
and coherence-based analysis was employed to quantify temporal decorrelation and detect
changes. Adaptive thresholding and morphological operations refined the detected changes,
while small-segment removal mitigated noise effects. Experimental results demonstrated high
reliability, with an overall accuracy of 92%, validated using confusion matrix analysis. The
methodology effectively identified urban changes, highlighting the potential of KOMPSAT-5
data for post-disaster monitoring and urban change detection. Future improvements are
suggested, focusing on the stability of INSAR orbits to further enhance detection precision. The
findings underscore the potential for broader applications of the developed SAR time-series
change detection technology, promoting increased utilization of KOMPSAT SAR data for both
domestic and international research and monitoring initiatives.

Keywords: change detection; statistical homogeneous pixels (SHP); KOMPSAT-5 amplitude
change detection

1. Background

Change detection is a methodical process that examines a pair of images captured from
the same scene at different times to identify and quantify changes that have occurred be-
tween the respective acquisition dates [1]. Synthetic aperture radar (SAR) change detection
techniques have gained increasing importance due to SAR’s unique capabilities, such as its
all-weather and day-and-night imaging capabilities, and its ability to penetrate through
vegetation and measure subtle ground displacements. Key areas of focus in SAR-based
change detection research include land cover change, urban expansion, natural disaster
monitoring, and ground deformation analysis. SAR-based change detection has proven
invaluable in assessing and managing natural disasters like earthquakes, landslides, and
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floods. For instance, InNSAR techniques have been widely applied to measure surface defor-
mations caused by seismic activities, allowing researchers to assess earthquake damage and
tectonic activity with high spatial accuracy. Following major flood events, SAR intensity
data enable rapid flood extent mapping due to SAR’s ability to penetrate cloud cover,
which is critical for timely disaster response. Research also emphasizes landslide detection
through SAR coherence loss mapping and multi-temporal analysis to identify areas with
increased landslide risk, especially in regions with rugged topography.

Although SAR change detection has achieved significant advances, challenges remain
in the form of high computational costs and limitations in accurately interpreting complex
environments. Recent research has focused on overcoming these limitations through
advanced pre-processing techniques, enhanced image segmentation, and deep learning
methods. Speckle noise reduction methods, including non-local means filters and adaptive
SAR despeckling techniques, are actively being studied to improve data quality. The fusion
of SAR data with optical imagery and other remote sensing data sources is another growing
trend, offering complementary information that enhances the reliability of change detection
results. Additionally, multi-platform SAR systems, incorporating data from different
satellites or different SAR sensors, are being explored to improve temporal resolution
and accuracy.

Several efforts have been made to develop innovative approaches to detecting change
using SAR data. The most common conventional SAR-based change detection approaches
involve image rationing [2], image differencing [3], principal component analysis [4], multi-
date image classification [5-7], and change vector analysis [8]. Similarly, several researchers
have focused on model-based change detection by exploiting SAR time-series images.
Yakoub Bazi et al. (2005) proposed an unsupervised approach based on a generalized
Gaussian model to detect change using multi-temporal SAR images [9]. Wen Yang et al.
(2016) employed Wishart mixture models for change detection in polarimetric SAR im-
ages. The proposed method was evaluated using datasets from RADARSAT-2 and ALOS
PALSAR. Both qualitative and quantitative assessments demonstrated the superiority of
the Wishart-mixture-model-based approach over conventional pixel-based techniques [9].
Jordi Inglada et al. (2007) utilized a new statistical similarity to perform multi-scale change
analysis on multi-temporal SAR images [10].

Very limited efforts have been made to utilize KOMPSAT-5 images for change detection
applications. Choi et al. (2022) proposed a scale-adaptive difference image (SADI) approach
combined with morphological filtering to enhance change detection in KOMPSAT-5 SAR
imagery. The method dynamically adjusts to different scales of change and refines results
through noise suppression and shape continuity improvement. Experimental results
demonstrate high accuracy in detecting diverse change targets, making it suitable for urban
monitoring and environmental analysis [11]. Chae et al. (2022) developed a prototype
program for automatic change detection by exploiting multi-temporal KOMPSAT-5 SAR
imagery. The program integrates pre-processing, feature extraction, and change detection
algorithms to automatically identify areas of significant change [2]. KOMPSAT-5 SAR data
were also utilized to detect urban changes caused by earthquakes, focusing on structural
damage and surface deformation. The proposed approach accurately identifies affected
areas, highlighting KOMPSAT-5 data’s effectiveness for post-disaster urban monitoring [12].

In this research, a statistical homogenous pixel selection algorithm is being utilized
along with a time-series coherence estimate to detect changes in the urban environment
in KOMPSAT-5 time-series images. A statistical homogenous pixel selection algorithm
is mainly being utilized for distributed scatterer target extraction for land deformation
mapping [13]. Mainly, there are two types of homogeneous pixel selection approaches:
non-parametric testing methods and parametric testing methods. Non-parametric testing
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methods primarily include the two-sample Kolmogorov—Smirnov (KS)/Anderson—Darling
test [14] and Baumgartner—Weiss—Schindler (BWS) test [15]. The Kolmogorov—-Smirnov
(KS) and AD test algorithms offer notable advantages, including a well-defined sampling
distribution for the test statistic and the ability to calculate the rejection region using an
analytical formula. However, the KS and AD tests are less sensitive to differences in
the tails of the sample distributions [16]. The SHP selection algorithm is mainly used in
time-series interferometric SAR (InNSAR) analysis for coherent phase detection over non-
urban regions [17,18]. In this research, the SHP selection algorithm is proposed for change
detection for the first time. Additionally, a comprehensive methodological framework is
introduced for KOMPSAT-5-based change detection in urban areas.

This paper is organized as follows: Section 2 mainly focused on the description of
the study site, SAR and ancillary dataset used in this research, and proposed methodolog-
ical framework adopted for change detection using KOMPSAT-5 time-series images. In
Section 3, obtained results are analyzed and discussed. In Section 4, study is concluded
along with future directions.

2. Materials and Methods
2.1. Statistical Homogeneous Pixels Selection Algorithm Implementation

The statistical homogenous pixel selection utilizes the Anderson-Darling (AD)
goodness-of-git test to select SHPs. Only pixels with the same class are tested by the
AD test. The procedure of a statistical homogeneous pixels selection algorithm is schemati-
cally described as follows:

1.  Compute the average of N temporal and spatial pixels to derive the amplitude image.
The normality of A is then evaluated over a homogeneous region using the Anderson-
Darling (AD) goodness-of-fit test.

2. Select a region presumed to be homogeneous to serve as a reference for analysis

3. Apply the Anderson-Darling (AD) goodness-of-fit test to A to determine whether the
data conforms to a normal distribution

4.  Define a significance level to classify pixels, accepting or rejecting them based on the
results of the AD test.

5. Identify and output the resultant SHPs, which represent statistically stable pixels
suitable for further analysis in time-series images.

2.2. Study Site

San Francisco, the fourth most populous city in California, United States, was selected
as the study site for this research. The city’s varied topography, encompassing urban
landscapes, hilly terrain, and coastal areas, provides a range of land cover types and
structural features, making it an ideal environment for synthetic aperture radar (SAR)-
based change detection studies. Figure 1 shows the geographical location of the study site
and KOMPSAT-5 time-series image footprints covering the study site.

2.3. SAR and Ancillary Datasets Used

Time-series data from KOMPSAT-5, acquired in single-polarization (HH) mode, were
obtained from the Korea Aerospace Research Institute (KARI) in single-look complex (SLC)
format. Specifications of the KOPMSAT-5 satellite data are shown in Table Al. A total of
36 images covering the study site were collected from January 2021 to December 2023. The
specifications of KOMPSAT-5 time-series acquisitions are listed in Table A2. The footprints
of KOMPSAT-5 imagery over the study site are shown in Figure 1.
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Figure 1. Location of study site along with KOMPSAT-5 time-series image footprints.

As can be seen from Figure 1, KOMPSAT-5 time-series images were acquired with
unstable orbit with perpendicular baseline ranging from 7291 m to —1392 m. To validate
change detection results, ground truth data were generated through visual inspection
of time-series KOMPSAT-5 images in a sequential manner. Figure 2 shows the optical
footprint, KOMPSAT-5 image, and generated ground truth of the study site.

Ground Truth [_120210424 120210717 [_]20211009 []20220129 [ 20220423 [ 202207 16 [ 2022120
720210227 []20210522 [_]20210814 20211106 []20220226 12022052 1 [ 202208 13 [ 2022123 1 [ 20230520 [ 20231007 [ 20
23022

03 [ 20230422 [ 20230715 [l 20231122
231202

120210327 [ 120210619 120210911 7120220101 777120220326 [0 202206 1 8 [ 20221008 [ 20230225 [l 20230617 [l 20231104
Figure 2. Dataset for change detection analysis: (a) optical footprint of the study site (source: Google
Earth; image acquisition date: 4 October 2024), (b) KOMPSAT-5 SAR imagery of the study site, and

(c) generated ground truth for accuracy assessment.

2.4. Methodological Framework

The preprocessing of KOMPSAT-5 time-series images follows a systematic workflow
to ensure data consistency and accuracy for change detection analysis. The process begins
with image coregistration, aligning each time-series image to a common reference to correct
for any spatial misalignments across the stack. The coregistration of images is implemented
using a cross-correlation technique. As this method can be computationally slow for very
large search windows, the process is typically divided into two main steps: coarse and fine
coregistration. In the coarse coregistration step, offsets are approximated using satellite
orbit and timing data as a reference and/or by identifying approximate common points
in the reference and secondary images. These points are then refined through correlation
matching using large search windows (128 x 128). The fine coregistration step follows,
employing an automated correlation technique to achieve sub-pixel alignment accuracy.
Once the coregistration offsets are determined, the coregistration polynomial model (CPM)
is estimated, and interferometric resampling is performed to align the secondary images
with the reference geometry [19].

This co-registered stack is then calibrated to 8, converting raw SAR data to a calibrated
backscatter coefficient representing surface reflectivity. The Lee Sigma temporal speckle
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filter, with a window size of 7 X 7 and a sigma value of 0.9, is applied to reduce inherent
SAR noise, thereby enhancing image clarity and improving interoperability within the time-
series stack. Radiometric calibration is performed to correct variations in radar reflectivity
due to changing topography, ensuring that backscatter values accurately represent the
surface properties across all images. Terrain correction is applied next to compensate for
distortions introduced by topographic variations, allowing each pixel to define a consistent
ground location. Additionally, local incidence angle normalization adjusts the variations
in radar incidence angles due to terrain slope, further standardizing backscatter values.
Contrast-limited adaptive histogram equalization (CLAHE) [20] stretch is then performed
to enhance the image contrast, making subtle features more discernible; CLAHE stretch
was applied to time-series acquisition with the same configuration to keep radiometric
homogeneity intact. Finally, data normalization is applied to normalize the processed data
between 0 and 1, ensuring uniform data distribution across the time-series images. Data
normalization ensures the standardization of time-series data and enhances the selection of
statistically homogeneous pixels. By normalizing the data, variations in intensity are more
effectively captured relative to the overall value range, facilitating the distinction between
homogeneous and heterogeneous regions.

These preprocessing steps are essential for producing a high-quality, consistent
KOMPSAT-5 dataset, ready for detailed change detection analysis. The KOMPSAT-5
time-series stack before preprocessing and after radiometric terrain correction and normal-
ization is shown in Figure 3. KOMPSAT-5 SAR data are also being utilized to detect urban
changes caused by earthquakes, focusing on structural damage and surface deformation.
The proposed approach accurately identifies affected areas, highlighting KOMPSAT-5
data’s effectiveness for post-disaster urban monitoring.

(@) ©

Figure 3. Preprocessing of KOMPSAT-5 time-series images: (a) KOMPSAT-5 time-series stack,
(b) KOMPSAT-5 radiometric terrain-corrected time-series stack, (c) KOMPSAT-5 radiometric terrain-

corrected normalized time-series stack.

Similarly, the selection of statistical homogeneous pixels (SHPs) is performed to iden-
tify stable reference points, which are critical for maintaining consistency and accuracy
in time-series analysis. This rigorous preprocessing pipeline ensures a high-quality, nor-
malized dataset suitable for reliable change detection. However, the resultant SHPs often
exhibit a salt-and-pepper effect due to their random distribution. To address this, a refined
Lee despeckle filter with a 7 x 7 window size was applied, further enhancing image quality
by reducing residual noise and producing a clean, coherent dataset.

To detect the change in the time-series stack, coherence was estimated, using the co-
registered stack to calculate coherence values, which serve as indicators of surface stability
or change over time. Temporal speckle filtering is applied to reduce noise, enhancing the
clarity of change patterns across the time-series KOMPSAT-5 images. Terrain correction ad-
justs for topographic distortions, ensuring that all detected changes correspond accurately
to their geographic locations. Local incidence angle normalization and contrast-limited
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adaptive histogram equalization (CLAHE) stretch were performed to enhance local details
and compensate for the difference in coherence due to the change in image acquisition
geometry. Sequential time-series decorrelation estimation is performed next, analyzing the
temporal evolution of coherence loss to identify potential changes. This step is followed
by adaptive thresholding, which dynamically adjusts detection sensitivity to highlight
changed pixels based on decorrelation patterns. Morphological operations, specifically
opening and closing, are then applied to refine the detected regions by smoothing and
connecting areas, improving shape accuracy and continuity. Small objects (£20 pixels),
which may represent noise or irrelevant features, are discarded to focus on significant
changes. Additionally, pixels identified as stable through statistical homogeneous pixel
analysis are excluded, ensuring that only true change areas are retained. The resultant
change map highlights significant change within the study area, providing an accurate
and noise-reduced output for further analysis. The detailed methodological framework
adopted for this research is shown in Figure 4.
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Figure 4. Detailed methodological framework adopted for change detection using KOMPSAT-
5 images.

3. Results and Discussions

By utilizing the Anderson—-Darling goodness-of-fit test, statistical homogeneous pixels
(SHPs) were selected. The key parameters for SHP selection are the significance level («)
and kernel size. To identify appropriate SHPs representing stable targets in KOMPSAT-5
images, the & value was varied from 0.01 to 0.8 in increments of 0.01, while the kernel size
(CalWin) ranged from 3 x 3 to 15 x 15 pixels, increasing by 2. The resultant SHPs are
shown in Figure 5. As can be observed in Figure 5, with a significance level of « = 0.8, kernel
sizesof 3 x 3,5 x 5,7 x 7,and 9 x 9 failed to detect stable targets precisely. However, at
« = 0.5, major urban segments were detected as stable targets. Similarly, at « = 0.1, both



Sensors 2025, 25, 583

7 of 12

major and small urban segments were identified as stable targets. Furthermore, at « = 0.01
and a kernel size of 3 x 3, individual urban areas, along with larger and smaller urban
segments, were effectively detected as stable targets.

By analyzing the resultant SHPs, those corresponding to & = 0.01 and a kernel size
of 3 x 3 were selected as stable targets. The experimental results for the SHPs are shown
in Figure 5. Figure 6b illustrates the selected SHPs over the urban segments. It is evident
from the comparison between Figure 6a,b that most urban segments in the study site are
relatively stable because major urban segments appeared as SHPs. However, the port area
appears to be unstable; for this reason, change detection primarily focuses on the port area
of San Francisco.

CalWin: [3 3]

CalWin: [55]

=
|l

-
£
3

[}
&)

)

Figure 6. Statistical homogeneous pixels (SHPs) selection: (a) KOMPSAT-5 image, (b) resultant SHPs
over urban segments. The San Francisco port area, highlighted within the red box, was selected for
time-series change detection using the proposed technique.

Figure 7 presents the following: (a) the preprocessed pre-KOMPSAT-5 image, (b) the
post-KOMPSAT-5 image utilized for change detection, (c) the correlation estimate between
the pre- and post-images, (d) the binary image derived through adaptive thresholding,
(e) the final change detection results highlighting the changed areas, and (f) the ground
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truth inventory data. As depicted in Figure 7, the changed areas between the pre- and post-
images are represented as dark regions in the correlation estimate. This correlation estimate
was subsequently refined through adaptive thresholding to delineate the changed areas.

pre-image

post-image

morphology

thresholding

ground truth

20220716_20220813 20211106_20211204 20210522_20210619 20210227_20210327

(@) (b) ©

Figure 7. Change detection results by utilizing KOMPSAT-5 time-series images: (a) pre-image,
(b) post-image, (c) de-correlation between pre- and post-image, (d) adaptive thresholding results,
(e) detected changed area, (f) ground truth data.

The unstable INSAR orbit of KOMPSAT-5, with a perpendicular baseline variation
between 7291 m and 1392 m, led to inconsistent projections of urban features across
images. This resulted in significant misalignments within the co-registered time-series stack,
which manifested as false changes in the adaptive thresholding process. Morphological
opening and closing operations were employed to mitigate these false detections, effectively
addressing most of the misalignments. Nevertheless, smaller false detections persisted,
producing a salt-and-pepper noise effect. To resolve this, segments smaller than 20 pixels
were eliminated after evaluating various segment size thresholds ranging from 5 to 30 pixels.
While this method successfully suppressed the salt-and-pepper effect, it also inadvertently
removed several minor changes within urban areas. To assess the reliability of the change
detection results, an accuracy assessment was performed using the confusion matrix
method. The overall accuracy (OA) of urban change detection was determined to be 92%.

A comparative analysis of the proposed technique with the method presented by Choi
et al. (2022) [11] demonstrates that the proposed technique enhances change detection
accuracy, increasing it from 90% to 92%. The improvement in accuracy is attributed
to the capability of the statistical homogeneous pixel selection algorithm to accurately
identify stable pixels, this prevents these pixels, which might otherwise be misclassified
as false alarms, from being included in the change detection results. If the proposed
technique is applied to SAR data acquired from satellites with stable orbits (e.g., TerraSAR-
X, COSMO-SkyMed, RADARSAT), the overall accuracy is expected to improve. The
stable orbital configurations of these satellites ensure consistent imaging geometry and
reduced temporal and spatial decorrelation, enhancing the reliability of change detection
results. A comparative performance evaluation of the proposed technique against the
prototype method developed by Chae et al. (2022) [2] demonstrated that the proposed
approach is much faster. While the method by Chae et al. (2022) requires approximately
40 min to generate a change map between two KOMPSAT-5 acquisitions, the proposed
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technique completes a time-series change map using 37 KOMPSAT-5 images in only 10 min.
A comparison of the experimental results obtained using the proposed technique with those
reported in the existing literature on KOMPSAT-5-based change detection is presented in
Table A3.

4. Conclusions

This study presents a novel change detection methodology aimed at identifying urban
changes using KOMPSAT-5 time-series data. The approach leverages the statistical ho-
mogeneous pixels (SHPs) selection method to extract stable targets and utilizes coherence
history to quantify de-correlation caused by changes between the pre- and post-images.
Misalignment artifacts introduced by the unstable INSAR orbit of KOMPSAT-5 were miti-
gated through the application of morphological opening and closing operations, along with
the removal of small segments (<20 pixels) to produce an accurate urban change map. The
performance of the proposed method was rigorously evaluated using the confusion matrix
technique, yielding an overall accuracy of 92%. The findings suggest that the accuracy of
the proposed change detection approach could be further improved with stable INSAR
orbit data. This methodology demonstrates significant potential for effective and reliable
change detection in urban environments.
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The following abbreviations are used in this manuscript:

AD Anderson-Darling

CLAHE Contrast-limited adaptive histogram equalization
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DEM Digital elevation model

KOMPSAT-5 Korea Multi-Purpose Satellite-5

OA Overall accuracy

SHPs Statistical homogenous pixels

SLC Single-look complex

SNAP Sentinel Application Platform

SRTM Shuttle Radar Topographic Mission
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Appendix A
Table A1l. Specifications of KOMPSAT-5 SAR satellite imagery utilized in this study.
Parameter KOMPSAT-5
Band X-band
Acquisition Mode Enhanced Standard
Multi-Beam ID ES-05
Orbit Direction Ascending
Look Direction Right
Mean Incidence Angle (deg) 30.27
Azimuth Pixel Spacing (m) 2.05
Ground Range Pixel Spacing (m) 1.94
Swath 30 km
Polarization HH
Positional Accuracy 6.22 m CE90 absolute

Table A2. KOMPSAT-5 data used in this study with incidence angle= 31.57°, range x azimuth
resolution (m) = 1.94 x 2.04, and mode of acquisition is Single Pol (HH).

Date of Acquisition (YYYYMMDD)

20210130
20210227
20210327
20210424
20210522
20210619
20210717
20210814
20210911
20211009
20211106
20211204
20220101
20220129
20220226
20220326
20220423
20220521
20220618
20220716
20220813
20221008
20221203
20221231
20230225
20230325
20230422
20230520
20230617
20230715
20231007
20231104
20231122
20231123
20231202
20231220
20231230
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Table A3. Comparison of experimental results with existing literature on KOMPSAT-5-based change
detection. The computer specifications used by [2] include an Intel®, Core™ i7-10700 CPU @
2.90 GHz with 32.0 GB of memory. The specifications of the computer used by [11] are not reported.
For processing KOMPSAT-5 time-series images with the proposed techniques, an Intel®, Xeon®,
Silver 4114 CPU @ 2.20 GHz with 256.0 GB of memory was utilized.

Input Image Size Processing Time Overall Accuracy

2500 x 2500 2 92%
Proposed Technique 5000 x 5000 4 92%
10,000 x 10,000 10 92%
2500 x 2500 3 Not reported
Chae et al. (2022) [2] 5000 x 5000 11 Not reported
10,000 x 10,000 40 Not reported
2500 x 2500 Not reported 90%
Choi et al. (2022) [11] 5000 x 5000 Not reported 90%
10,000 x 10,000 Not reported 90%
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