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Abstract: Lock-in amplifiers (LIAs) are critical tools in precision measurement, particularly
for applications involving weak signals obscured by noise. Advances in signal process-
ing algorithms and hardware synthesis have enabled accurate signal extraction, even in
extremely noisy environments, making LIAs indispensable in sensor applications for health-
care, industry, and other services. For instance, the electrical impedance measurement of
the human body, organs, tissues, and cells, known as bioelectrical impedance, is commonly
used in biomedical and healthcare applications because it is non-invasive and relatively in-
expensive. Also, due to its portability and miniaturization capabilities, it has great potential
for the development of new point-of-care and portable testing devices. In this document,
we highlight existing techniques for high-frequency resolution and precise phase detection
in LIA reference signals from field-programmable gate array (FPGA) designs. A compre-
hensive review is presented under the key requirements and techniques for single- and
dual-phase digital LIA architectures, where relevant insights are provided to address the
LIAs’ digital precision in measurement system configurations. Furthermore, the document
highlights a novel method to enhance the spurious-free dynamic range (SFDR), thereby
advancing the precision and effectiveness of LIAs in complex measurement environments.
Finally, we summarize the diverse applications of impedance measurement, highlighting
the wide range of fields that can benefit from the design of high performance in modern
measurement technologies.

Keywords: additive white Gaussian noise (AWGN); lock-in amplifiers (LIAs);
field-programmable gate array (FPGA); phase sensitive detector (PSD); spurious-free
dynamic range (SFDR)

1. Introduction
In many scientific and industrial applications, there is a need to measure or extract

a signal with an amplitude that is much smaller than the noise component present in the
environment [1–3]. The development in the design and manufacturing of sensors has led
to a significant increase in their electronic sensitivity, such as that needed in integrated
solutions based on lock-in amplifiers (LIAs), which is a rigorous yet practical framework
for electronic measurements, considered fundamental for instrumentation, design applica-
tions, and characterization in modern physical environments. Field-programmable gate
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arrays (FPGAs) have emerged as indispensable tools in the design of advanced digital
LIAs used in precision measurement applications. Their inherent flexibility, high-speed
processing capabilities, and parallel architecture make FPGAs particularly well suited for
the computational demands of digital signal processing and real-time analysis.

In addition to computational efficiency, FPGAs facilitate rapid prototyping and iter-
ative design, which are essential for developing LIAs tailored to specific measurement
requirements. For example, in biomedical applications, such as electrical impedance to-
mography or bioimpedance spectroscopy, the FPGA’s ability to handle high-frequency
signals and maintain signal integrity across multiple channels is pivotal. Furthermore, the
scalability of FPGA-based designs supports their integration into portable and cost-efficient
measurement systems, expanding the applicability of LIAs in diverse fields. Another
approach is the development of biomedical databases, electronic health records (EHRs),
and public health, which have been enhanced not only by availability and traceability but
also by the liquidity of heterogeneous healthcare data obtained from several environment
sensors [4]. One can find applications of LIAs in every sector of industrial electronics,
including the service industry, such as in telecommunications systems, electronics design,
healthcare devices, the manufacturing of measurement equipment, and any application
where the signal to be measured is several times smaller than the background noise [5–7].
Lock-in amplifier circuit integration, along with the design of sensor elements, has seen
a reduction in cost and power consumption [8–12]. Digital LIAs (DLIAs) have become
increasingly popular in many experimental configurations due to the combination of flexi-
bility, cost, and performance [13]. Current research efforts on signal acquisition provide
solid foundations for the development of embedded design, VLSI systems, and applications
with a special emphasis on application-specific integrated circuit (ASIC) integration, for
instance, to build smart and fully embedded EEG sensing systems [14,15].

This paper aims to provide an overview to comparatively analyze LIA architectures
from the perspective of their design, implementation, and applications to give the reader a
general point of view of the importance of a functional digital design. This work discusses
the practicality of features of cost-efficient, portable, and digital customizable LIA systems.
Hence, the role of lock-in amplifiers and the state of the art of the FPGA system design
implementations are reviewed. The rest of this paper is organized as follows. Section 2
describes the fundamentals of LIA systems. Section 3 provides comprehensive and detailed
review for the single-phase and dual-phase LIAs architectures and their basic operation.
In Section 4, the LIAs digital approach from the perspective of critical design issues and
a phase-dithering technique for signal generation enhancement are discussed. Section 4
provides a detailed implementation review of FPGA-based systems. Section 5 presents
an overview of the advancements in bioelectrical impedance measurements in biomedical
applications. Section 6 provides a discussion of the reviewed systems aimed at feature
classification model extraction and final remarks for future research. Finally, Section 7
concludes this paper.

2. Lock-In Amplifier Fundamentals
Mainly, in lock-in detection, a reference signal of the same frequency as the measured

signal of interest is needed. The reference signal may be generated in the LIA or given
as an external input. A phase-sensitive detector (PSD) identifies the phase difference
between the input and reference signals, and phase shifting is performed to ensure that
the two signals are in phase. Finally, the amplitude of the input signal that is in phase
with the reference signal is obtained [16]. It is termed “lock-in” because it locks to and
measures the particular frequency of the reference signal, ignoring all other signals in the
input. The operating principle is that an input signal is demodulated by a synchronous
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reference signal to produce in-phase or out-of-phase signals through a PSD [3]. In these
applications, an LIA is able to perform phase measurements that determine the entire
precision of the displacement measurement [17]. In the FPGA-based design, an LIA can
provide phase estimate solutions on the accuracy of one reference signal oscillator period.
Thus, an advantage of using FPGA-based designs is that, starting from a fixed system clock,
the dynamic range of digital-to-time converter (DTC) only needs to cover the residual
phase error within one cycle of the output clock [18].

Furthermore, correlation methods have been introduced, mainly to enhance the non-
linearity detrimental effects at the reference signal. This is an approximately linear operating
range for the amplifier, and it is called the linear dynamic range (LDR). Some of the main
criteria for the evaluation of LIA systems that include low-noise amplifiers and mixers are
the maximum power level for which inter-modulation distortion becomes unacceptable
and the noise-limited operation of the amplifier. The operating range for which spurious
responses are minimal is called the spurious-free dynamic range (SFDR). In [19], H. Fan
et al. report a recent study that provides limited digital control to achieve a significant
improvement of SFDR in smart sensor systems. Several key performance parameters,
such as signal-to-noise ratio (SNR), maximum operating frequency (freqmax), sampling
frequency, clock frequency, and frequency resolution, are addressed in this paper. These
capabilities, comparing both digital and analog LIAs from the current state-of-the-art, are
illustrated in Figure 1 and defined in the following subsections.

Figure 1. Key capabilities of revised LIA architectures: The chart considers critical parameters for the
most commonly used LIA architectures, with metrics ranging from minimum to maximum values for
SNR, sampling frequency, clock frequency, frequency resolution, and operational frequency.

The features of SFDR and SNR are used to demonstrate the trade-off between spectral
leakage performance and hardware complexity, e.g., the direct digital frequency synthesizer
(DDFS) design for fundamental signal generation. Similarly, the AC specifications are the
most important in evaluating high-speed DAC/ADC settling time, glitch impulse area,
distortion, SFDR, and SNR, since they play a critical role in the overall accuracy of the LIA
system. The accuracy is a noteworthy advantage of the digital lock-in amplifiers instead
of the analog ones, including the frequency synthesis, unwanted signal mitigation, and
phase-sensitive detection [20–22]. The aforementioned approach to the DLIA structure
has been used in a variety of real-time applications such as medical applications, optical
spectroscopy, measuring multiple modulated frequency signals, electrical and electronic
applications, and more [23]. The key capabilities outlined in Figure 1 summarize the revised
LIA’s designs analyzed in this manuscript. The chart highlights critical parameters for the



Sensors 2025, 25, 584 4 of 24

FPGA-based architecture, including metrics such as signal-to-noise ratio (SNR), maximum
sampling frequency, maximum clock frequency, frequency resolution tailored to specific
applications, and the operational frequency to low-, mid-, and high-range applications.

Lock-In Amplifier Classification

Addressing the review of LIA architectures is not an easy task, due to the broad range
of approaches in their implementation: analog vs. digital, and within digital, based on
DSPs, FPGAs, multicore controllers, etc. However, the type of system suited for LIAs can
be classified based on the number of mixers used, the architecture incorporated, and the
specific application [24]. Lock-in amplifiers in conjunction with PSD are used in instru-
mentation for their capability of detecting low-amplitude signals affected by interference
or noise. FPGA, digital signal processors (DSPs), and microcontroller (MCU) technolo-
gies, among others, can help in rapid prototyping and the implementation of low-cost
embedded systems while obtaining both high reliability and accuracy. Owing largely to the
advancements in modern FPGA devices, which can provide highly integrated hardware
resources, digital block features of complex DLIA architectures can be implemented in the
same device, resulting in a compact and low-cost acquisition system that is well suited for
applications requiring a large number of measurement channels [25,26]. Depending on the
PSD method, the lock-in amplifier can be classified based on the architecture [27]. Here, we
consider two classes as follows:

1. Single-phase instrument: It has a single-PSD branch and a single reference signal. The
method multiplies the excited signal by the lock-in reference using a PSD mixer or
detector. Then, the PSD output is simply the product of two sine waves, and thus, the
result is able to filter the removed unwanted AC signals.

2. Dual-phase instrument: It uses two PSD blocks along with two reference signals,
one being phase-shifted ninety degrees with respect to the other. It is to be noted
that with this configuration, the LIAs are capable of measuring both the in-phase and
quadrature components. These components can greatly help in signal measuring and
extraction in Cartesian or polar representations.

3. Single- and Dual-Phase Lock-In Amplifiers
The single-phase LIA operation is based on the frequency mixing, and a reference

signal is used to single out the component of the input signal at the reference phase and
frequency with known amplitudes. Thus, it can easily calculate the phase difference
between these; otherwise, it may not be feasible to eliminate the AC component at the
mixer output.

3.1. Basic Principle and Architecture

The general design of the lock-in amplifier could be represented at the system level
with five building blocks, as shown in Figure 2. One can see the functional diagram block
from the illustration, in which the basic architecture is compounded by (i) the stimulus
input signal xin, (ii) a reference signal xre f , (iii) a phase-sensitive detector, (iv) a low-pass
filter (LPF), and (v) output signal conversion xout. Depending on the intended application
and the technology applied, each element can be a custom-hardware, cost-effective, high-
performance, and optimized solution. The reference signal xre f will lock in to the input
signal xin, which usually comes from a sensor, a circuit previously implemented, a device
under test (DUT), or an external input system. The phase-sensitive detector is a circuit that
takes two signals at its input and produces an output that is the product of both signals,
usually employing a mixer or multiplier. For certain sensor applications, dual-phase LIAs
are demonstrated to be best suit, because it is not always possible to produce reference
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signals with specific frequencies. In [26], Masciotti et al. proposed the analysis extended
for multi-frequency that can be used to identify the limit (if any) to improve the noise
immunity by increasing the sampling frequency.

 

(a)

 

(b)

Figure 2. Block diagram of the single-phase LIA: (a) overall system, (b) conceptual LIA process at the
system level.

3.2. Dual-Phase Lock-In Amplifier

The dual-phase method for LIAs is capable of measuring both in-phase and quadrature
components by using the mixing principle along with two reference signals, one being
90◦ shifted from the other. The dual-phase LIAs can obtain the amplitude and phase of
the mixing frequency signals [28]. For sensor applications, dual-phase LIAs seem to be
better, because sensors are deployed in real-life scenarios, and in some cases they will be
prone to severe noise, for example, atmospheric disturbances in weather sensors. However,
it is not always possible to produce matched frequency signals [24]. A LIA provides an
extremely narrow band-pass filter, which, at the same time, does not suffer from 1/ f noise
when amplifying. Figure 3 shows a dual-phase block system based on the principle of an
orthogonal signal decomposition. Let us consider the amplitude and phase components of
an input Vin, as shown in Figure 3, and a reference signal Vre f , to derive the PSD given as

V1 = Vin · sin(ωin + θin) · Vre f · sin(ωre f ), (1)

where ωin is the input signal frequency, and ωre f is the reference signal frequency. According to
the trigonometric identity sin(x) · sin(y) = 1

2 [cos(x − y)− cos(x + y)], Equation (1) becomes

V1 =
Vin · Vre f

2

[
cos(ωin − ωre f + θin)− cos(ωin + ωre f + θin)

]
,

Then, the signals are applied to a low-pass filter to further signal conditioning, so
higher-frequency components are neglected. Thus, the X is obtained as follows:

X =
Vin · Vre f

2
cos

(
ωin − ωre f + θin

)
, (2)

Similarly, in the other branch of the system, we obtain

V2 = Vin · sin(ωin + θin) · Vre f · cos(ωre f ), (3)
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and using the trigonometric identity sin(x)· cos(y) = 1
2
[

sin(x − y) + sin(x + y)
]
, we can

easily modify the Equation (3), to obtain

V2 =
Vin · Vre f

2

[
sin(ωin − ωre f + θin) + sin(ωin + ωre f + θin

)]
, (4)

The signals are applied to a low-pass filter, so higher-frequency components are
neglected. Obtaining Y as

Y =
Vin · Vre f

2
sin

(
ωin − ωre f + θin

)
, (5)

In theory, it is therefore sufficient to determine the expected value (relevant value
to be measured), with the values of X and Y. The magnitude A is calculated as
A(t) =

√
X(t)2 + Y(t)2 and the phase, tan(φ) = Y/X, given by

φ(t) = arctan
(

Y(t)/X(t)
)

, (6)

where φ(t), is the phase that can be easily extracted from the DUT.

Figure 3. Block diagram of a basic dual-phase LIA design.

4. Digital Assessments: On the FPGA Critical Design Methodology
for DLIAs

FPGAs play a critical role in addressing the leverage of modern signal processing algo-
rithms to enhance frequency resolution, improve phase accuracy, and expand operational
bandwidths in DLIAs by providing a customization platform for implementing tailored
digital LIA architectures. Their capability to integrate direct digital synthesizers (DDS)
for precise frequency generation, adaptive filters for noise reduction, and phase-sensitive
detection algorithms ensures high-performance operation. Moreover, FPGAs allow for
efficient resource utilization, enabling the realization of single- and dual-phase LIA systems
with minimal hardware overhead while maintaining real-time processing capabilities. Since
digital LIA platform performance needs to satisfy precise signal conditioning requirements,
some numerical precision degree is mandatory. Thus, adequate methods for frequency
stability, phase-sensitive multiplication, and filtering are also required. A digital approach
can jointly provide a computationally much simpler implementation than an analog one
such as in [29], which also yields a lower error estimation of the underlying signal am-
plitude. Furthermore, when designing LIAs in an analog implementation, some errors
are difficult to mitigate due to the inherent characteristic of analog electronics, whereas in
digital implementations, one can mitigate some of those error sources by modifying digital
functional blocks or applying signal enhancement algorithms, thus improving accuracy.
The FPGA-based digital LIA promises useful improvements for weak signal detection
technology, such as those needed in the fields of electronic science, signal processing, and
sensor technologies [30–32]. FPGAs are flexible and robust devices for this purpose, which,
in addition to VHDL hardware description language, allow describing through behavior
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models by the register-transfer level (RTL) and structure of digital components, such as pre-
cise DDS, which is a key component for ASIC design and implementation. For example, in
sensors and measurement systems, finite precision controllability for the signal extraction is
accomplished, thus reducing some error-phase measurement system imperfections [33,34].
In turn, intrinsic signal noise introduced by detectors, filters, and amplifiers features certain
levels of unavoidable noise, and some can be eliminated by improving the generator and/or
detector design. We summarize some of the critical reliability requirements with regard to
the digital inaccuracy; these features are salient:

• DDS resolution (spectral purity DAC/ADC enhances).
• Low complexity in arithmetic logic (multiplications).
• Signal/noise power contributions (DDS-to-DAC).
• Clock synchronization to uncertainty reduction.
• Total harmonic distortion (mixing process) [35].

An FPGA-based LIA design enables flexible hardware adjustments in the field, result-
ing in significant cost savings. Note that in the proposed techniques, critical performance is
dependent on the reference signal, which becomes of relevant for high precision. Figure 4
sketches a dual-phase DLIA platform with the main modules implemented in FPGA hard-
ware. Thus, DDFS is a key component, especially in instrumentation and measurement,
which becomes a functional part for high-precision systems (see [25,36–39]), which is cru-
cial in both single- and dual-phase DLIAs architectures. In DDFS designs, the effect of
finite precision on digital sinusoidal frequency synthesizers manifests itself as spurs in the
spectral representation of the output sine wave. These effects are directly related to the
phase angle precision limitations since the derived phase of the DDFS digital oscillator
tends to be periodic in time and to contribute to the generation of harmonics and spurious.
These drawbacks can be reduced by considering the following:

• Phase noise in DDS. In digital LIAs, the signal reference needs to determine DDS
periodicity accordingly in order to appropriately reduce the phase noise at these
frequencies. This can be accomplished by introducing a random signal of suitable
variance into the derived phase, thus facilitating the reduction in the likelihood of
identical values over time.

• SFDR strength ratio specifications. Spur-reduction techniques state that adding noise
into the data path raises the overall noise level within the oscillator, which tends to
reduce the noise localization and can provide significant SFDR enhancement.

• Frequency-phase likelihood in DDS. The requirements to reduce spur levels are de-
pendent on many factors. The likelihood of repetition of derived phase values and
resulting spurs, for a given angular precision, are closely linked to the ratio of the
sampling frequency to the desired output frequency from any DDS source. An integral
ratio clearly results in high-level spurious frequencies, while an irrational relationship
is less likely to result in highly correlated noise at harmonic frequencies.

4.1. FPGA-Based Lock-In Amplifier System Signal Enhancement

It is well known that a digital LIA structure uses a synthesizer DDS-to-DAC output.
DDS contains a digital block called a phase accumulator of 2n-bit samples, which produces
the digital sinusoidal signal. A large word size is needed to produce the low-hertz step
size. Ultimately, the phase accumulator outputs to a sine look-up table (LUT). The large
word size of the phase accumulator means that the word output to the DDS must be
truncated to fit the limits of the DAC’s input. This truncation leads to small discontinuities
in the generated pattern, creating greater harmonic distortion [35]. These potential issues
unavoidably cause deterministic timing errors, often referred to as deterministic jitter, that
appear in the output spectrum as spurious tones. A preferred solution is using dither seed
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in the generation of the phase accumulator output, which can reduce these “truncation
spurs”. Fortunately, these imperfections can be mitigated significantly with an efficient
spread spectrum technique for a near-optimal spur-reduction performance. To extract
enough useful information from the low signal-to noise ratio (SNR) signals, supposing a
periodic waveform signal measured as in Equation (7), and, according to a given variance,
modeled as the additive Gaussian, the white noise is:

x(t) = A · sin(ω(t) + ϕ) + n(t) (7)

SNR = 10 log10

( A2

2σ2

)
(8)

As the approach of this work, we have concentrated on signal enhancement awareness
to provide a digital signal conditioning stage as a key design consideration in the signal
reference generation module of a typical DLIA. Notice that in the present work [40], the
reference signal frequency resolution of 0.0291 Hz is ensured (calculated as fmin = fs/232),
and for specific bioelectrical signals under 10 KHz, this is more than enough for these
applications. Please also note that in terms of the dynamic reserve (DR) and SFDR, those
metrics have a strong relationship to the accuracy of measurement in the capabilities of any
LIA system, and can be calculated as follows:

DR = 20 log10 Vd/Vs (9)

where Vd is the amplitude of the disturbance and Vs is the amplitude of the signal of interest.

Figure 4. DLIA block diagram with main modules.

4.1.1. FPGA-Based Lock-In Detection for Multi-Channel Chemical Species Tomography

A DLIA is based on a quadrature demodulation, by which both the amplitude and
phase of the signal can be obtained [25]. The system is implemented using a Nexys
3 development board with an FPGA Xilinx Spartan-6. The LIA reference signals were
tuned at 50 kHz. These results validate the feasibility of the proposed system to exploit the
properties of FPGA platforms to implement low-profile, low-weight, and low-cost DLIAs.
Figure 5 shows the design of the dual-phase lock-in amplifier. The input signal is then
converted from analog to digital, and the two reference signals of the same amplitude are
used, at the same angular frequency ω, but with 90◦ offset relative to each other; this to
be able to obtain the signal amplitude and phase. By multiplying the input signal with
amplitude A, with the two reference signals with amplitude B, we obtain the in-phase and
quadrature components.
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Figure 5. Block diagram of an FPGA-based LIA for multi-channel chemical species tomography.

4.1.2. Lock-In Amplifier for Atomic Force Microscopy Systems

In [39], a new efficient method for implementing the multichannel digital lock-in
technique is presented, which is able to measure the amplitude and phase of multiple
modulated frequency signals to solve the two most important problems in atomic force
microscopy (AFM) systems, which are resolution and cost. Nonlinear contact between the
tip and sample in tapping-mode AFM systems induces higher harmonics, which may be
useful for the extraction of some characteristics of the sample [39]. The FPGA Xilinx Spartan-
3 results demonstrate that the proposed architecture is superior to previous structures,
especially in the hardware area and power consumption. The design is very similar to the
basic dual-phase LIA system, where the reference signal comes from a DDS component
on FPGA Xilinx Spartan-3. The input signal in this design is formed by the signal coming
from the device under test (DUT), because it is a digital system, and the DUT may be an
analog system. To measure the amplitude response of a nonlinear system, the probe should
initially be excited by the sinusoidal signal. In a digital LIA, this signal can be realized
by the DDS on FPGA and a DAC to convert it into analog form. It is worth mentioning
that microscopy is one of the most popular applications of LIAs, used in experimental
physics applications to design instruments that measure signals that are affected by a lot of
noise [41,42].

4.1.3. FPGA-Based LIA with Sub-ppm Resolution

In [38], Gervasoni et al. reported a synchronous phase-sensitive architecture for
sub-ppm resolution measurement system as shown in Figure 6. Here, the two branches
are driven by a switch to sampling simultaneously at {ADC1, ADC2}, respectively.
Note that gain fluctuations are canceled out by means of a ratio operation between the
two amplitudes. The signals are reconstructed in real time using an FPGA to obtain their
discrete-time sampled data as x(n)=I(n) + Qi(n) synchronously established by a PLL. The
two signal amplitudes (and phases) are calculated with a dual-phase demodulation as in
a standard LIA. The realized enhanced-LIA (ELIA) instrument comprises a generation
channel, two acquisition channels, and an FPGA, and the measurement frequency can be
up to 6 MHz. The design realization is based on a Spartan-6 FPGA from Xilinx (mounted on
a module Opal Kelly XEM6010 that includes a PLL, external memory, and USB interface).
A PGA provides an attenuation/gain in the range of (−22 to 20 dB). The realized enhanced
LIA (ELIA) is a high-resolution replacement of standard LIAs, for example, in sensors or in
device characterization applications, without requiring changes in the experimental setup
or calibration.
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Figure 6. Block diagram of an FPGA-based LIA with sub-ppm resolution working up to 6 MHz [38].

4.2. Low-Cost Accurate Phase Measurement System

In [36], Vandenbussche et al. reported a low-cost accurate phase measurement system
based on a DLIA. In particular, we consider the structure with six stages depicted in
Figure 7 for a conventional FPGA-based DLIA implementation. The blocks 1 and 6 depict
the design built using an FPGA Xilinx Spartan 3A-DSP as a pre- and post-processing circuit
to sending capture data. For the blocks 2 and 5, the system employs a NuHorizons Spartan
3A-DSP kit NH-SPAR3ADSP-EVL with a Maxim MAX11040K DAC/ADC to provide an
adequate sampling procedure. The overall digital design is implemented in the FPGA
NuHorizons kit, and a Xilinx Spartan 3A-DSP XC3SD1800A with an FPGA clock sampling
at 80 MHz. At the blocks 1 and 6, the circuit also ensures a clock frequency that is divided
by ten inside the FPGA and supplied to the Xilinx DDS IP Core using an 8 MHz reference
clock. As noted in block 1; the reference signal is generated with a DDS component using
a parameterized IP-block able to generate a cosine/sine signal of equal frequency. Both
channels are converted from digital to analog by the DAC.

Figure 7. FPGA-based design of a digital phase measurement system [36].

The cosine signal, which is the input signal, passes the DAC reconstruction low-pass
filter, the driver circuit, and the DUT. The reference signal passes a DAC reconstruction
filter and driver circuit. For the blocks 3, 4, and 5, the input and the signal from the reference
channel are both anti-aliasing filtered and simultaneously sampled by the ADC and sent
back to the FPGA. Similarly, in blocks 5 and 6; the two signals, composed of the input signal
and the reference signal, are sampled simultaneously and multiplied with each other in
the PSD and low-pass-filtered. In the block 6, the product output is subsequently digitally
low-pass-filtered. Also, the arc-tan function computes the associated angle difference by
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using a Xilinx parametric CORDIC IP φ information at the output signal. Blocks 1 and 2
address the frequency resolution constrained by the hardware DAC’s 24-bit limitations,
resulting in an output SNR of approximately 6 dB per/bit, corresponding to a spurious-free
dynamic range (SFDR) of around 96 dB/Hz.

5. Bioelectrical Impedance Measurement
Disregarding the method or architecture used to perform the measurement of the

signal properties of different systems, there is no doubt that biomedical and healthcare
applications of biological signal measurement have been responsible for continuously
pushing the electronic hardware to their limits of performance and miniaturization. The
measurement of the electrical bio-impedance (EBI) of the human body and its organs,
tissues, and cells, better known as bioelectrical impedance analysis (BIA), has been widely
used in medicine because of the relative simplicity of its technical implementation, its
feature of being non-invasive, relatively inexpensive, and its property of performing
in almost any subject because of its portability and miniaturization capabilities. These
characteristics make this technique the most suitable method for monitoring the state of
tissues and organs, both in vitro and in vivo, and it has great potential for the development
of new applications.

EBI analyzers with acceptable accuracy, reliable measurements, and compact hardware
implementations are needed for the most relevant clinical applications, for instance, to be
suitable for on-chip realization in implantable devices [43–45]. A technique called Electric
Cell-Substrate Impedance Sensing (ECIS) provides label-free and real-time detection of
cells, which is emerging as an alternative or assistive method to traditional biochemical
assays for diagnostic and pharmaceutical applications [46]. Its compatibility with a liquid
environment combined with low cost and reduced size, with respect to optical techniques,
makes bioimpedance measurements one of the most promising transducer mechanisms
for lab-on-a-chip and biochip platforms [47]. This sensing methodology has been applied
to different biomedical applications, such as cell growth monitoring, impedance-based
flow cytometry [48], and impedimetric affinity biosensors, the latter being one of the most
promising tools for point-of-care diagnostics [47]. The EBI analysis is widely used to
quantify fat-free mass (FFM), body fat (BF), body cell mass (BCM), total body water (TBW),
extracellular water (ECW), and intracellular water (ICW) in healthy and ill subjects [49].
It can be also used to perform several studies on body bigger parts (e.g., rheography and
plethysmography) [50], the examination of particular organs, glands, or parts of the body
(e.g., heart, liver, larynx, prostate, breast, blood, etc.), the examination of some selected
fragments of tissues, and measurements of single-cell impedance [44,51]. More recently, it
was also shown that EBI analysis has sufficient sensitivity to replace reference methods for
the assessment of body composition in athletes [52], and it has great potential to be used
to observe the proper body development in children and adolescents [53] and to predict
risk for gestational diabetes mellitus by measuring maternal body composition [54], just to
mention a few high-impact applications in the biomedical and health industry.

Electrical impedance spectroscopy (EIS) applied to biological tissues, also known
as bioimpedance spectroscopy, is a powerful and versatile technique used to study the
frequency response of the electrical properties of biological materials noninvasively. In this
test, a low-amplitude electrical signal is injected into the tissue sample or body parts to
characterize the sample in terms of its bioimpedance. Since biological tissues are developed
with biological cells, which exhibit complex electrical responses, under an alternating
electrical excitation, the bioimpedance varies with the tissue anatomy and composition, and
the applied signal frequency modifies the current penetration and conduction paths [55].
The variation of bioimpedance as a function of frequency is a valuable source of information
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about an examined tissue. This technique has been widely used to assess the condition of
organic tissues in vivo, in vitro, and ex vivo and for various applications in many areas of
research and clinical practice [56–60].

For instance, bioimpedance measurement using EIS has been applied to differenti-
ate cancerous tissues in a variety of organs, including breast, cervix, skin, bladder, and
prostate [60], to assess skin hydration, to detect breast cancer, to measure fluid volumes on
limbs, for respiratory monitoring [61], to detect subjects with cardiovascular disease risk
factors, and to improve the prediction accuracy for measuring abdominal fat distribution
using machine-learning-based algorithms [62]. Bioimpedance measurement in tissue is one
of the parameters that allow ischemia monitoring in living bodies [63]. This measurement
was also used to show the influence of skin impedance on biological potential measurement,
to measure skin moisturization using skin admittance, and to analyze gait analysis using
lower-leg electrical impedance [64]. Many biomedical, immunological, and pharmaceutical
studies require highly homogeneous populations of biological particles separated from
heterogeneous mixtures such as peripheral blood or even clonal cell lines with differing
characteristics. Impedance-activated microseparation is a very sensitive technique, which
can size, count, and isolate particles based on the bioimpedance measurement [65].

Thus, the understanding of the electrical current conduction in biological tissues and
the development of new methodologies for the quantification of this phenomenon are
of great relevance to improve techniques like bioelectrical impedance analysis (BIA) and
electrical/electrochemical impedance spectroscopy (EIS).

Computational Prediction: A Robust Machine Learning Approach

The underlying embedded technology aims to make optimal use of hardware real-
izations to address more complex and flexible circuit architectures that can be applied
to improve the digital signal acquisition and conditioning performance with practical
limitations. This notion is faced by DSP algorithms for implementing the complex pro-
cessing of biological systems acquired from reading sensor signals that present intrinsic
properties with highly irregular, non-stationary, and heterogeneous morphologies. This
complexity implies the necessity of suitable methods, such as the supervised and unsuper-
vised classification of machine learning (ML) algorithms, which contribute to providing
several promising results to modern medicine devices [66]. The goal of the classification
algorithm is to distinguish different signal states accurately [14]. Thus, the performance of
classification algorithms can help to acquire high-quality signals to characterize true and
false positives to provide further metrics and figures of merit such as receiver operating
characteristic (ROC) curve and area under the curve (AUC) analysis. In [67], N. Dey et al.
reported several models based on clustering and classification approaches such as convolu-
tional neural networks (CNNs), decision trees, and support vector machines (SVM) that
have been successfully applied to medical imaging. However, biomedical signal analysis
has yet to fully benefit from this novel approach. Figure 8 shows the block diagram of the
analog components and digital hardware building blocks based on FPGA-based design
blocks for the analysis of bioelectrical signals with sources of multiple wire connection
frequencies with channel selection [68]. The block diagram shown in Figure 9 denotes
the two procedures associated with an automated process for the extraction of the main
features in a given adaptive processing and classification of sensor signals, following a
step-by-step parameterization. The model classification provided in procedure 1 in Figure 9
integrates various techniques, including ensemble learning approaches and artificial neural
networks (ANNs), serving as examples for feature extraction. Additionally, parameter
optimization is performed using metrics such as the mean squared error (MSE), mean
absolute error (MAE), normalized mean squared error (NMSE), and the coefficient of de-
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termination. These metrics evaluate the model’s performance in regression analysis and
assess its effectiveness in minimizing prediction errors.

In [69], a system is reported to determine the optimal biosignal characteristics from
recorded sampled data points over time periods for the detection of driving stress from
electrocardiogram (ECG) signals. An extensive review is addressed in [70] to compare the
accuracy of classification, implementation complexity, invasiveness, and targeted applica-
tion for electromyography (EMG), electroencephalogram (EEG), and rapid eye movement
(REM). An approach guided by learning paradigms can successfully aid in the development
of advanced healthcare diagnostic systems for biosignal analysis [71].

Figure 8. Block diagram classification with analog components and digital FPGA-based design blocks
for the analysis and digital conditioning of bioelectrical signals.

Figure 9. Block diagram of the procedure for signal extraction, selection, and model classification for
feature optimization.

Figure 10 shows different types of signals with typical frequency, amplitude, and 1/f
noise relationship levels. Figure 11 summarizes the implementation building blocks to



Sensors 2025, 25, 584 14 of 24

continuously sample and process the various types of bioelectrical signals from electrodes
shown in Figure 8. The concept of developing the architecture in the digital domain
enables us to reach an adequate algorithmic and digital processing circuits, which in turn
analyze and classify the stream of digital signals using well-suited pre-defined algorithms
to provide dedicated FPGA/ASIC hardware. The AUC classification captures key signal
characteristics in the time domain, which can be transformed into frequency representations
via a fast Fourier transform. Calculating the AUC of the power spectral density quantifies
the energy distribution of EEG, EMG, and ECG signals across frequency bands [72], offering
insights into signal power and facilitating the analysis of physiological or pathological
processes within specific frequency ranges, as illustrated in Figure 10.

Figure 10. Signal characteristics with the frequency/amplitude relationship.

Figure 11. System key building blocks for the processing signals at the hardware integrated circuit.

6. Discussion
We have introduced a comprehensive summary of applications, including industrial

electronics [73], telecommunications, and healthcare biomedical circuits [12,21,43,44,66,69,74].
The design implementation for these applications has attracted the attention of the industry
and the scientific community, starting from a few basic assumptions on the design [29],
analysis [26,68], measurement, and modeling techniques which are important to address
rigorously engineered LIA systems [34]. Moreover, a key lack of these architectures in voltage
resolution control for the detectable instrument has to be fixed by an input range for both the
single and dual-phase and is independent of the input signal amplitude [38]. Note, however,
that the dual-phase LIA usually deals with an unavoidable and intrinsic 1/ f flicker noise
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of the reference voltage (either used by the DAC and ADC), and most applications result in
signal amplitude modulation [17,24,26,38,39,75]. LIAs are strongly affected by cyclostationary
effects that mainly originate from circuits such as the ADC and DAC, which are also correlated
with conversion gains and fluctuations. In [38] a standard implementation is demonstrated
to provide benefits in sub-ppm measurements, i.e., filtering bandwidth of 1 Hz to switching
frequency greater than 1 kHz so that the resolution will be flat at sub-ppm values. However,
by lowering the switching frequency [21,76], the resolution suffers from spectral degradation
due to the overlapping with the side harmonics of the 1/ f noise components. Then signal-
conditioning measurements become dependent on the frequency of the input’s spectral
density, which can be compensated with an operation where a finite frequency response exists.
Furthermore, some noise effects on digital LIA architectures can be scaled or shifted using
convolution [75], which helps to keep SNR at maximum levels. In this context, it is well known
that lower phase noise is achieved with a larger size or by paralleling several devices. Thus,
FPGA digital components that operate with main clock synchronization, (i.e., if a frequency
synthesis is dependent on clock-aware routability, some issues such as the sampling clock
jitter can be removed given the time base) are an overall cost [34,77]. The convenience of the
digital alternatives is that it benefits the accuracy of detecting quantitative noise contributions.

The assumption behind the methods of quantization errors and resolution in signal
generation lie in the achievable digital LIAs performance, which shares a strong relationship
with the optimization methods, such as in terms of numerical precision problems. To the
extent of our knowledge, in [26] Masciotti et al. introduced a great advance in the analysis
of a digital lock-in technique for practical noise reduction and discrimination, where the
design can detect multiple signals at different modulation frequencies. Consider that for the
enabling technologies that involve medical applications comprising several IoTs providing
smart healthcare devices into one SoC, measurements present fundamental limits that
are related to the lock-in amplifier relative resolution. Similarly, it should not be ignored
that practical sensor-stimuli systems (EEG, gas, audio, etc.) have lagged far behind the
application flexibility given their steady-state discrete-time conditions [76]. Despite the
capabilities provided for analog lock-in amplifiers, a few examples from the literature of
proof-of-concept experiment design CMOS technologies provide flexible functionalities or
enable interoperability between the measurement system and the sensor. In other words,
the supporting process of signal extraction is in most cases limited to specific technical
restrictions related to the signal conditioning stage, extraction, and the measurement
process [21,76,78].

6.1. Challenges and Future Directions for Driven Machine Learning Architectures

Bioelectrical impedance sensors are pivotal tools in the domain of health monitoring,
providing valuable insights into various physiological parameters. The review concludes
by addressing the challenges encountered in employing machine learning algorithms for
feature extraction from bioelectrical impedance sensors. The extraction of meaningful
features from impedance data is a critical step in enhancing the accuracy and reliabil-
ity of health-related predictions. Additionally, potential future directions, including the
integration of deep learning techniques and real-time applications, are outlined to pro-
vide a roadmap for further research in this domain. The incorporation of AUC analysis
enhances the precision of feature extraction processes, thus contributing significantly to
the advancement of health monitoring technologies. Emphasis is placed on algorithms’
ability to exploit the enhanced impedance signals obtained through lock-in amplifiers,
as explained in the procedure extraction and the model feature classification in Figure 9.
Thus, this review provides some key comparative metrics such as accuracy, sensitivity, and
specificity to quantify their performance. The development of compact instrumentation and
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the measurement and analyses of the observed data use multiple stochastic and machine
learning techniques to bring out the best correlation fit between the glucose concentration
and a specific feature of the electrical signal ML techniques applied to the extraction of data
from LIAs [79] to provide pioneers with compact photoacoustic spectroscopy systems with
a lock-in amplifier as basis circuit that also can integrated with machine learning, marking
a significant step toward wearable glucose monitoring devices.

6.2. Comparative Table: A Systematic Review

Some practical considerations of the state of the art for LIA architectures are sum-
marized in Table 1. The discussion in Section 4 was devoted to detailing the applications
available for a wide range of frequencies. In the same way, some underlying aspects
of LIA technology such as the design, application, and signal reference generation were
addressed. In the literature, Chighine et al. [25], Vandenbussche et al. [36], and Ayat
et al. [39], proposed some FPGA-based architectures where an overall LIA system is con-
ceived. The most relevant features ofn the FPGA devices are in the requirements and
reliability of signal conditioning aspects, which are crucial for these specific sensor appli-
cations. In most cases, the digital DDS architecture [16,18,26,34,37,77] requires a precise
tuning frequency control, which sometimes makes critical to apply a sampling rate for an
equivalent sampling frequency. Tables 1 and 2 present an overview of works that attain
a good synchronization and frequency resolution for each platform/device design for
several LIAs systems. As an example, such a design principle is to ensure the Nyquist
criterion, and the optimal detection process is simple and can ensure a reliable and straight-
forward characterization if the maximum output frequency is provided on a factor of 1/3
for a sampling frequency [38,40]. These limitations on critical sensor applications tend
to result in inaccurate sub-Hertz frequencies at the extraction method and thus do not
provide a precise normalized amplitude at the stimulus signal [34,38]. Recent develop-
ments present attractive solutions to address the digital precision of LIA system-level
requirements. In [80], Pfeiffer et al. proposed a module for biomedical health issues over
the terahertz range to constitute a sequential system implementation with clocking control
and a lock-in amplifier-based digital readout mode. Likewise, the implementation of silicon
technology, such as the approach using DSP, has advanced to the point of providing special
signal conditioning functions on LIAs, thus enabling high-precision measurements on
sensor systems through FPGA devices [16,25,26,33,34,36,38]. In [36], Vandenbussche et al.
proposed a practical investigation to calculate the causes of inaccuracy from a system
derivation that considers aspects like linearity, quantization effects [18], differentiation, log-
arithmic and anti-logarithmic conversion, and peak-to-peak and phase-sensitive detection
[11,33,34,36], in which signal quality improvements are closely related to phenomena, such
as cross-sensitivity, non-linearity [19], and unwanted signals. In [19], Fan et al. proposed a
technique to detect physical, chemical, or biological quantities in sensors by optimizing
SFDR from the ADC signal extraction to smart sensor systems, which can enhance the
inaccuracy of the delayed measured phase for conventional LIA architectures [19,33,81].
On the other hand, the knowledge of the experimental designs in which non-idealities for
synthesizing frequency limits for the signal recovery process are strongly dependent on sys-
tematic errors due to harmonics [43]. In this context a study with the reference frequencies
is validated in [11] and for the designs reported in Table 1. Another aspect that occurs with
successive measurements is related to phase distortion that is highly dominant; thus, it
becomes crucial to apply calibration methods to reduce the uncertainty in the experimental
system [82]. Gervasoni et al. [38] experimentally demonstrated an LIA system based on
a dual-channel ADCs full-duplex, which can acquire the signal from the DUT and the
stimulus signal. In this architecture, the LIA enhancements allow the compensation of the
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slow gain fluctuations of both the DAC and ADC, which can considerably reduce phase
mismatch effects at the extraction chain. In [83], Sarma et al. presented an analysis of
theoretical SFDR resolutions ≥ 12-bit ADCs. A key aspect is related to the convenience of
the DDS resolution accuracy for the designs summarized in Table 2, which also determines
precision in the output signal. Such a key condition is difficult to fulfill in the case of
high-frequency digital LIAs, with sampling rates of tens or hundreds of MS/s.

Table 1. Comparison of DDS performance in seminal works on digital LIA systems.

Digital Architectures

LIA Class, References Freq. clk. Device/Platform Key Feature: Ref. Description

Single-phase, [36] 250 MHz FPGA Xilinx Spartan-3 A low-cost digital LIA system to
accurate phase measurement.

Single-phase, [84] 100 MHz TI TMS320 DSP series A low-power operation DSP for remote
and battery-powered operations.

Dual-phase, [12] 250 MHz FPGA Xilinx SoC XC7Z100 A system application for microfluidic
impedance measurement

Dual-phase, [25] 100 MHz FPGA Xilinx Spartan-6 A multichannel optical chemical
tomography system.

Dual-phase, [39] 500 kHz FPGA Xilinx Spartan-3
A digital LIA to measure the amplitude
and phase of multichannel modulated
frequency signals.

Dual-phase, [75] 70 kHz Microcontroller DSP-based A low-cost LIA, that recovers the weak
signal under extremely noisy conditions.

Different approaches [38] 6 MHz FPGA Xilinx Spartan-6
A DLIA architecture that allows to
compensate low-frequency gain
fluctuations added by the DAC/ADC.

Analog Architectures: Seminal Works

LIA Class, References Freq. clk. Technology Key Feature: Ref. Description

Single-phase, [21] 14.64 MHz CMOS 0.35-µm A LIA for optical sensing and
spectroscopy applications.

Single-phase, [76] 10 kHz CMOS analog multipliers A system for electroencephalogram
biomedical applications.

Single-phase, [78] 25 Hz CMOS 0.35-µm A detector for measurement of small,
slow, and noisy signals.

Table 2. Comparison of DDS performance with several digital LIAs systems.

Reference DDS Resolution [bits] Operating Freqmax [Hz] SNR [dB]

Huang et al. [12] 14-bit 30 MHz 20

Chighine et al. [25] 12-bit 50 kHz –

Vandenbussche et al. [36] 16-bit 15.62 kHz 90

Ayat et al. [39] 14-bit 500 kHz 2

Gervasoni et al. [38] 14-bit 6 MHz 42

Proposed work, [40] † 14-bit 12.5 MHz 90
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Table 2. Cont.

Reference DDS Resolution [bits] Operating Freqmax [Hz] SNR [dB]

Sonnaillon, et al. [85] 10-bit 5 MHz 50

Milhem et al. [76] – 10 kHz 15

Das et al. [84] 10-bit 5 kHz –

Rahmannuri et al. [86] 12-bit 10 kHz 15.6

Bhattacharyya et al. [75] 16-bit 5 kHz 24.09

Liu et al. [87] 16-bit 100 kHz –

Cheng et al. [88] 12-bit 1 MHz –
† Considering the DDS signal reference with phase dithering enhancement (up-to four tones), Freqmax is given
with a 1/10 factor for a 125 MHz clock.

6.3. Final Remarks and Future Research

The overview of LIAs in this paper emphasizes the digital design capabilities to
enable the LIA instruments interfacing with sensor devices [8,10,30–32]. In general, some
critical LIA requirements for higher-level applications that interact with a sensor, such
as their topological arrangement, can be related to voltage phenomena associated with
the amplification, filtering, and digitization. Most digital LIAs use a PLL to generate a
stable frequency. This indicates that in the phase domain that governs the reference and
input signal, a phase relation and its frequency are responsible for the progression of phase
locking for both the stimuli and the reference signals [26]. Some frequency-dependent key
attributes in LIAs are related to three considerations:

• Frequency-commensurate support: It is important to emphasize that for the commen-
surate agreement lock-in frequencies (i.e., working at precisely 10 MHz on a lock-in
with 100 MHz sampling rate), a frequency with a factor of 1/10-th of the sampling
rate has to be ensured [40].

• Uniformly sampled signal rational samples: In digital LIA instruments, it is often
necessary to consider incommensurate frequencies [89], where the ratio of the two
signal frequencies is irrational. This is an important sub-case of a commensurate
frequency relationship, namely f1/ f2 = n/m for the integers n and m.

• Time-invariant, phase normalization, and commensurate signals: A signal condition-
ing stage must be present on a quick verification of the DUT response that treats the
nonlinear stimuli.

In addition to the signal conditioning and integrity techniques, some LIA systems
where signal processing is compounded with correlation methods are certainly valid and
sufficient to identify and count events where the SNR is already good, even if these electrical
signals become noisy due to severe conditions of temperature, pressure, humidity, and
drift [18,26,29]. In some LIA applications under very noisy environments, it sometimes
becomes impossible to apply correlation techniques; however, digital adaptive filtering
techniques can help to recover the data (see Ref. [74]). This also facilitates a more accurate
estimation given the subsequent dependence at the inter-stage quantization process (e.g.,
DDS, DAC-ADC, filtering) [83]. Thus, for a noisy measurement environment, improving
the reattained SNR (assuming a reasonable calibration procedure) of the system is crucial.
In some cases, SNR reduction can modify the filtering so that any correlation method can
be subsequently applied to the filtered data [26,30,34].
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7. Conclusions
In this paper, we have provided an overview of recent digital LIA application develop-

ments. We emphasized in this investigation the context of a tailor-made real-time embedded
system, where the stimulus frequency and acquisition can provide a stable operation above
Hz up to tens of MHz. Thus, by knowing the capabilities of the application of signal
processing techniques, lock-in amplifiers’ performance can be improved rapidly from an
RTL digital design perspective. For the reviewed applications, DDS digital frequency con-
trollability can accelerate the embedded LIA design applications, which in turn can provide
an effective and efficient tradeoff between accuracy and hardware consumption. Similarly,
from the digital point of view, large systematic errors in both single- and dual-phase of
the described lock-in phase’s system applications tend to decrease the conditioning signal
methods’ performance for most practical sensors, which in turn influence the interoperabil-
ity features for the measurements and design limitations. As we highlighted, for the critical
design features for DLIA’s architectures, the SFDR performance is a critical characteristic in
FPGA-based design and is especially vital in applications requiring high sensitivity and
specificity, such as biomedical signal processing and advanced sensor systems. Therefore,
we also emphasize that the optimization of SFDR to DLIA’s designs not only enhances
measurement accuracy but also increases the applicability of these systems across diverse
and complex use cases. This enhancement can not only improve the calibration stage for
digital dual-phase LIAs, but it can also improve linearity in the DUT signal extraction.
From this perspective, an accelerated FPGA-based LIA digital architecture implementation
can be improved by ensuring enhancements of spectral purity. Also, our findings from the
actual needs of the far-reaching significance of frequency-dependent LIAs operation has a
good compromise among resolution, control, switching, and system implementations, such
as in sensors that need high specificity and sensitivity.
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Abbreviations

ADC analog-to-digital converter
AFM Atomic force microscopy
ARM advanced RISC machines
ASIC application-specific integrated circuit
BPF band-pass filter
CMOS complementary metal-oxide-semiconductor
DAC digital-to-analog converter
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DDFS direct digital frequency synthesizer
DDS direct digital synthesis
DLIA digital lock-in amplifier
DSP digital signal processor
DTC digital-to-time converter
DUT device under test
FPGA field programmable gate array
HDL hardware description language
HPF high-pass filter
IP intellectual property
LDR linear dynamic range
LFSR linear-feedback shift register
LIA lock-in amplifier
LNA low-noise amplifier
LPF low-pass filter
LUT look-up table
MCU microcontroller unit
NCO numerically controlled oscillator
PGA programmable gain amplifier
PLL phase-locked loop
PMD phase-modulation-demodulation
PSD phase sensitive detection
PXI PCI eXtensions for Instrumentation
RISC reduced instruction set computer
RMS root mean square
RTL register-transfer level
SFDR spurious-free dynamic range
SINAD signal-to-noise-and-distortion
SNR signal-to-noise ratio
SoC system on a chip
THD total harmonic distortion
VHDL VHSIC hardware description language
IoT internet of things
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