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Abstract: Goal: Current methodologies for assessing cerebral compliance using pressure
sensor technologies are prone to errors and issues with inter- and intra-observer consistency.
RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance),
holds promise. It is derived using the moving correlation between intracranial pressure
(ICP) and the pulse amplitude of ICP (AMP). RAP remains largely unexplored in cases of
moderate to severe acute traumatic neural injury (also known as traumatic brain injury
(TBI)). The goal of this work is to explore the general description of (a) RAP signal patterns
and behaviors derived from ICP pressure transducers, (b) temporal statistical relationships,
and (c) the characterization of the artifact profile. Methods: Different summary and
statistical measurements were used to describe RAP’s pattern and behaviors, along with
performing sub-group analyses. The autoregressive integrated moving average (ARIMA)
model was employed to outline the time-series structure of RAP across different temporal
resolutions using the autoregressive (p-order) and moving average orders (g-order). After
leveraging the time-series structure of RAP, similar methods were applied to ICP and AMP
for comparison with RAP. Finally, key features were identified to distinguish artifacts in
RAP. This might involve leveraging ICP/AMP signals and statistical structures. Results:
The mean and time spent within the RAP threshold ranges ([0.4, 1], (0, 0.4), and [—1, 0])
indicate that RAP exhibited high positive values, suggesting an impaired compensatory
reserve in TBI patients. The median optimal ARIMA model for each resolution and each
signal was determined. Autocorrelative function (ACF) and partial ACF (PACF) plots of
residuals verified the adequacy of these median optimal ARIMA models. The median
of residuals indicates that ARIMA performed better with the higher-resolution data. To
identify artifacts, (a) ICP g-order, AMP p-order, and RAP p-order and g-order, (b) residuals
of ICP, AMP, and RAP, and (c) cross-correlation between residuals of RAP and AMP
proved to be useful at the minute-by-minute resolution, whereas, for the 10-min-by-10-
min data resolution, only the g-order of the optimal ARIMA model of ICP and AMP
served as a distinguishing factor. Conclusions: RAP signals derived from ICP pressure
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sensor technology displayed reproducible behaviors across this population of TBI patients.
ARIMA modeling at the higher resolution provided comparatively strong accuracy, and
key features were identified leveraging these models that could identify RAP artifacts.
Further research is needed to enhance artifact management and broaden applicability
across varied datasets.

Keywords: traumatic brain injury; cerebral compliance; RAP; Signal Processing;
Cerebral Dynamics

1. Introduction

Acute biomechanical traumatic neural injury, also termed traumatic brain injury (TBI),
is a significant global health concern, causing over 50 million cases annually and incurring
worldwide costs of approximately CAD 540 billion [1]. In Canada and globally, TBI remains
a leading cause of death and disability [2]. The impact of moderate to severe TBI involves
both primary and secondary injuries. Primary injuries occur at the moment of impact,
causing immediate structural brain damage. In contrast, secondary injuries develop over
time through systemic and cellular processes that exacerbate brain tissue damage. Unlike
primary injuries, secondary injury mechanisms may respond to therapeutic interventions,
offering opportunities to enhance patient outcomes. To prevent secondary injury across
patient populations, current management strategies for moderate to severe TBI focus on
guideline-based interventions that target physiological parameters using data from invasive
pressure sensor technologies [2-5]. A key focus is maintaining intracranial pressure (ICP)
below 22 mmHg, triggering therapeutic measures when exceeded [2,3]. ICP, which is
often derived from invasive strain-gauge pressure sensors, is also used as an indicator of
intracranial compliance, with the bedside manual visual inspection of pulse waveform
morphology for assessing compensatory reserve. Intracranial compliance/compensatory
reserve is a parameter that provides insight into the brain’s ability to adapt to changes in
volume while maintaining stable pressure levels [6,7]. However, these methods are prone
to errors, along with inter-observer and intra-observer consistency issues.

As a result, the RAP index was derived using signal sources from ICP pressure sensors,
and has the potential for usage in TBI. RAP is a metric of intracranial compensatory reserve
(and therefore compliance) derived using the moving correlation between ICP and the
pulse amplitude of ICP (AMP) from any ICP pressure sensor technology [8-12]. In recent
hydrocephalus studies, RAP (the correlation [R] between AMP [A] and ICP [P]) helped pre-
dict shunt failure in patients [8-11]. In addition, this index can be continuously calculated
at the bedside in those patients with continuous ICP monitoring, optimally positioning
it for use in TBI monitoring. As RAP values are the Pearson correlation coefficients, they
range from —1 to +1, with lower positive values indicating good compliance, while higher
positive and negative values suggest poor and exhausted compliance, respectively [8,9].
However, RAP has not been thoroughly investigated in moderate to severe TBI populations.
Specifically, there is a lack of understanding of the general statistical behaviors of RAP in
relation to ICP and AMP, its temporal time-series structure, and the characterization of its
artifact profiles [7,13].

Therefore, this study aims to explore the following: (A) the general description of
RAP signal patterns and behaviors, (B) the temporal statistical profile of RAP, and (C) the
characterization of RAP artifact profiles. Gaining more profound insights into these aspects
is essential for advancing the future integration of the RAP index into bedside monitoring,
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enhancing patient trajectory modeling, and supporting clinical intervention studies based
on RAP values.

2. Materials and Methods
2.1. Patients

As with previous studies from our lab group [14,15], the data were retrospectively
obtained from the TBI database prospectively maintained at the Multi-omic Analytics and
Integrative Neuroinformatics in the HUman Brain (MAIN-HUB) Lab at the University of
Manitoba. This study included patient data collected from January 2018 to March 2023.
All patients in this cohort experienced moderate to severe TBI (Glasgow Coma Score < 12).
Invasive ICP and arterial blood pressure (ABP) monitoring were conducted as per Brain
Trauma Foundation (BTF) guidelines [2].

2.2. Ethics

Data collection was conducted with full approval from the University of Manitoba
Health Research Ethics Board (H2017:181, H2017:188, and H2024:266).

2.3. Data Collection

In line with our previous work [14,15], all physiological data were recorded and digi-
tized at a high frequency of 100 Hz or higher using Intensive Care Monitoring ‘Plus” (ICM+
v8.5.4.6) data acquisition software, with analog-to-digital converters (Data Translations,
DT9804 or DT9826) employed as needed. ABP was captured via radial arterial lines, while
ICP was measured invasively using intra-parenchymal strain gauge probes (Codman ICP
MicroSensor; Codman & Shurtleff Inc., Raynham, MA, USA) placed in the frontal lobe or
using external ventricular drains (Medtronic, Minneapolis, MN, USA) in four cases.

For this study, demographic information at admission was extracted according to
existing prognostic models in TBI. The collected demographic data included age, biological
sex, admission pupillary response (bilaterally reactive, unilaterally reactive, or bilaterally
unreactive), Marshall computed tomography (CT) grade, and Glasgow Outcome Scale-
Extended (GOSE) grade.

2.4. Signal Processing

Post-acquisition processing of the above signals was conducted using ICM+, in keeping
with our previously published methodology. ICP and ABP were initially decimated using
10 s moving averages updated every 10 s to avoid data overlap [14-16]. Mean arterial
pressure (MAP) was subsequently calculated from ABP. AMP was obtained through Fourier
analysis of the fundamental harmonic of the ICP waveform [7,17,18]. RAP was derived
via the moving Pearson correlation coefficient between 30 consecutive 10 s mean windows
(i.e., each calculation window was 5 min) of the parent signals (ICP and AMP), updated
every minute according to previously validated methods [9,19-21]. This analysis also
included cerebrovascular reactivity. The pressure reactivity index (PRx) is a continuous
measure for assessing cerebrovascular reactivity [6,22,23]. Likewise, PRx was determined
using the Pearson correlation coefficient between ICP and MAP, where the update period
(i.e., one minute) and the calculation window size (i.e., 5 min) were similar to those of
RAP [14,24,25].

2.5. Analysis of the Patterns and Behaviours of RAP

Alongside RAP, the analysis also included ICP, MAP, AMP, and CPP signals, since
ICP and AMP were used to derive RAP [8,19], while MAP and cerebral perfusion pressure
(CPP) helped establish standard thresholds used in RAP analysis in this field [2,26]. Firstly,
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Panda’s (a Python library) [27] describe function [28] from Python was used to find the
summary measurements for each signal in all patients. Following this, a custom script was
executed to find the time spent on RAP within certain threshold ranges (0.4 to 1, 0 to 0.4,
and —1 to 0), based on a systematic review study previously conducted by our lab [19].
Afterwards, a comparative sub-group analysis was conducted based on age, biological sex,
pupillary response, Marshall CT grade, outcome (GOSE grade), ICP, AMP, and PRx values.
Threshold lines for these comparisons were established using commonly referenced values
from prior studies [29-32] in related fields, as follows:

Age—less than 40 years, 40 to 60 years, and above 60 years;

Pupillary response—bilateral reactive, bilateral unreactive, and unilateral unreactive;
Marshall CT grade—grade II, grade III, grade IV, and grade V;

Outcome GOSE grade—alive/dead (2 or higher vs. 1) and favorable/unfavorable

(5 or higher vs. 4 or less);
e  ICP thresholds—below 20 mmHg and above 22 mmHg;
e  AMP thresholds—below 1, between 1 and 3, and above 3;
e  PRx thresholds—less than 0 vs. greater than 0 and less than 0.25 vs. greater than 0.25

Mann-Whitney U-test was utilized for the formal comparison since none of the
groups showed normal distributions. One-way ANOVA was used to compare more than
two groups. To run these operations, Python'’s (version 3.7.16) mannwhitneyu [33] and
f_oneway [34] functions from scipy.stats library were used, respectively.

2.6. Analysis of RAP Time-Series Structures
2.6.1. Application of ARIMA Model

The autoregressive integrated moving average (ARIMA) model is a widely used
statistical method for time-series forecasting [35-38]. It works by combining three main
components, as follows: autoregression (AR), differencing to make data stationary (I for
Integrated), and a moving average (MA). The model aims to capture the underlying patterns
in time-series data and predict future values based on historical observations [35-38]. The
AR part is controlled by the parameter p, representing the number of lagged observations
in the model. It refers to the regression of the variable on its own lagged (previous) values.
The parameter d represents the number of times the data need to be differenced to achieve
stationarity. The MA part is controlled by parameter g, representing the number of lagged
error terms in the model. It refers to modeling the error (or residual) term as a linear
combination of previous error terms [35-38]. An ARIMA model is usually written as
ARIMA(p, d, q). Assuming the signal is stationary (d-order = 0), a general autoregressive
moving average model for a physiological signal, X, can be represented using Equation (1).
In this model, p is the autoregressive order, q is the moving average order, X; is the signal
at time ¢, X;_; is the signal at time ¢ — i, & is the error at time f, e jis the error at time t — j,
¢ is the autoregressive coefficient at time t — 7, and 6 is the moving average coefficient at
time t — j [14].

p 9
Xi=c+er+ ) ¢iXi+) 0jg; (1)
i=1 =1

This ARIMA model was employed to capture the structure of time-series signals.
ARIMA was chosen since it provides interpretability in terms of temporal dependencies
(p, d, q), making it particularly suited for understanding signal dynamics, comparing temporal
structure among signals and identifying artifacts. It is also a similar methodology to those used
for determining the more basic aspects of cerebral blood flow physiologies [14,15]. According
to previous works from the lab, both the p-order and g-order for determining the optimal
ARIMA model varied from 0 to 10 [14,15]. The analysis was run on the differenced data
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(discussed in Section 2.6.3), and therefore, the d-order was set to 0, which effectively acted
as d-order = 1. The ARIMA function from the statsmodels module [39] of Python was used
for this analysis. Each combination of the orders was evaluated to find the optimal model
for each signal and each patient.

2.6.2. Statistical Metrics for ARIMA Analysis

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Log-
Likelihood (LL) were calculated to assess whether the models effectively captured the
structure of the signal. These are statistical metrics used to evaluate the quality and
goodness-of-fit of an ARIMA model, helping to assess how well the model captures the
underlying structure of the time-series data [14,40,41]. Each of these metrics has its own
characteristics and significance in model selection. AIC measures the goodness-of-fit of
a model while penalizing for model complexity (the number of parameters). It balances
model fit and complexity to avoid overfitting. BIC is similar to AIC but applies a more
substantial penalty for models with more parameters, making it more conservative in terms
of model complexity. LL measures the likelihood that the model could have generated the
observed data. It reflects the fit of the model without penalizing for complexity. Lower
AIC and BIC values indicate a better model, while higher LL values indicate a better
fit [14,40,41].

According to a previous study from our lab, BIC is more stringent than AIC and
LL [14]. On the other hand, models based on LL were more complex and could potentially
overfit the data, leading to better residuals [14]. Given this, AIC was considered the most
balanced option for model selection, as it strikes a middle ground between the stringency
of BIC and the leniency of LL. For this reason, AIC was chosen to find the optimal ARIMA
models for the signals.

2.6.3. Stationarity Analysis

Since the ARIMA model is built on the assumption of the stationarity of time series,
the data need to be stationary to apply an ARIMA model. Hence, stationarity analysis was
carried out. Like in the previous work from our lab [16], Augmented Dickey—Fuller (ADF)
and Kwiatkowski-Phillips—Schmidt-Shin (KPSS) tests were used to check the stationarity
of all the signals. The ADF test indicates whether a time series is trend-stationary, while the
KPSS test determines if the series remains stationary around a linear trend [36,42]. If the
p-value from the ADF test is less and the p-value from the KPSS test is higher than a certain
threshold, the time series is considered stationary. In line with previous studies [16], the
threshold was set at 0.05 for both tests. The adfuller and kpss functions from the statsmodels
module [39] in Python were used to perform the tests at the patient level. Additionally,
due to the ADF and KPSS test results on the original data (discussed in Section 3.2.1), these
tests were performed on each patient’s first-order-differenced data. It is noteworthy that
the differenced data were achieved after temporal resolution.

2.6.4. Generation of Different Temporal Resolutions of Data

ICP, AMP, and RAP were calculated across various temporal resolutions for a com-
prehensive analysis and to examine the impact of the temporal resolution reduction on
the results. Subsequently, the optimal ARIMA model at the patient level was calculated
for each parameter for every temporal resolution. The temporal resolutions applied in
this study included minute-by-minute, 10 min intervals, 30 min intervals, and hour-by-
hour intervals. The primary derived data were at minute-by-minute intervals. Afterward,
Panda’s resample function [43] was used to reduce the resolution. The primary data (i.e.,
minute-by-minute resolution) mean of 10 min data points was determined as a single
non-overlapping point in 10 min intervals. Similarly, for the 30 min and 1 h intervals, the
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means of 30 consecutive data points and 60 consecutive data points, respectively, were
used to represent each interval.

2.6.5. Evaluation Tools

After deriving the optimal ARIMA model for each patient, the median optimal ARIMA
model for each signal was calculated based on those models (i.e., median p-order and
median g-order values were calculated). The choice of the median value for optimal models
across the whole population ensured a more representative summary across the examples
while reducing the impact of outliers. To confirm the adequacy of the median optimal
ARIMA models, the magnitude of residuals, autocorrelation function (ACF), and partial
ACEF (PACF) plots of residuals were examined by comparing the raw data to the modeled
data [14,36]. Residuals represent the differences between actual data points and model-
predicted values. The ACF measures the relationship between a time series and its past
values, while the PACF indicates the correlation between a time series and its lagged values,
excluding the effects of intermediate lags. For a well-fitted ARIMA model, residuals should
be minimal, and the ACF and PACF plots should show no significant spikes at any lags,
indicating that the model has captured the underlying structure [14,36]. Additionally, this
analysis included the calculation of the overall variance in data, the residual variance, and
the count of significant spikes to justify that the data had been modeled well.

2.7. RAP Artifact Segment Analysis
2.7.1. Separating True Artifact Segments

For this section, true artifacts had to be calculated. Previously, to obtain clean and
artifact-free data, artifacts were manually detected and removed from the raw collected
data by experts in cerebral physiologic signal analysis and neurophysiology. Therefore,
while comparing clean data with non-clean data, any additional data present in the non-
clean version but absent in the clean version should be taken as representing artifacts. This
step was performed by comparing timestamps of clean and non-clean data. Afterwards,
identified artifact segments were saved into different comma-separated value (CSV) files.

2.7.2. Analysis of Clean Data and Artifact Segments

The optimal models for the clean signal have already been obtained in the previous
section. The optimal models for the artifact segments were calculated for each signal of each
patient using the same methodology. Finally, a comparison between clean data and artifact
segments based on temporal structure was conducted using various statistical techniques.
The temporal resolutions applied in this analysis included minute-by-minute and 10 min
intervals. The remaining resolutions were excluded from this analysis because, at such low
resolutions, the quantity of artifact data would be insufficient to yield significant results in
this section.

This analysis focused on three key areas:

(i) Comparing optimal ARIMA models—The optimal models for the clean data were
obtained in the previous section (i.e., Section 2.6). The optimal models for the ar-
tifact segments were also computed for each signal of each patient using the same
methodology. These models for clean data and artifact segments are expected to differ,
resulting in varying p-orders and g-orders between the two groups for each patient. A
formal comparison of the groups” ARIMA orders for each signal was conducted using
the Mann-Whitney U test, with scatterplots provided for visual representation;

(i) Comparing the residuals—Using the median optimal ARIMA model calculated for
clean data in Section 2.6, residuals for clean and artifact segments were computed and
formally compared at the patient level. The results are expected to indicate significant
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differences in the mean residuals and variance of residuals between the clean and
artifact groups;

(iii) Comparing the cross-correlation of residuals—If cross-correlation is calculated be-
tween RAP residuals and ICP/AMP residuals, the expectation is that the maximum
correlation value between clean RAP and clean ICP/AMP residuals would be higher
than that between clean RAP and artifact ICP/AMP residuals. Since RAP is derived
from ICP and AMP, their residuals should naturally show a strong correlation. How-
ever, this correlation is expected to decrease when considering the artifact segments of
ICP/AMP, as these segments do not accurately represent true ICP/ AMP values. The
correlate function from the Numpy library was used to calculate the cross-correlations,
and it measured the similarity between two signals (or datasets) as a function of the
time lag applied to one of them (i.e., calculated dot product).

2.7.3. Evaluating Identified Features

After analyzing the data to identify features with the potential to effectively distinguish
artifacts, a simple sliding window approach was applied to the non-clean data to assess the
success rate of these features in identifying artifacts within the signal. The success rate of
capturing artifacts within the signal was calculated as (captured artifacts/true artifacts) x 100%.

3. Results
3.1. Patient Demographics

As reported in Table 1, 109 TBI patients were included in this study, with a median
recording duration of 4125.13 min. The median age of the patients was 43 years (interquar-
tile range (IQR): 29 to 57), and 89 of the patients were male (81.65%). The median Glasgow
Coma Scale (GCS) score was 7 (IQR: 4 to 8), while the median motor sub-score was 4 (IQR:
2 to 5).

Table 1. Demographic data.

Variable Median (IQR) or Number (%)
Duration of Recording (min) 4125.13 (1714.99-7250.14)
Number of Patients 109
Age (years) 43 (29-57)
Sex (Male) 89 (81.65%)
GCS 7 (4-8)
GCS Motor 4 (2-5)
Pupils
Bilateral Reactive 65 (59.63%)
Unilateral Reactive 25 (22.93%)
Bilateral Unreactive 19 (17.43%)
Marshall CT Score
\" 55 (50.46%)
v 20 (18.34%)
III 31 (28.44%)
II 3 (2.75%)

CT, computerized tomography; GCS, Glasgow Coma Score; IQR, interquartile range.

3.2. General RAP Patterns and Behaviours
3.2.1. Summary Measurements

There were some unrealistic values of ICP and MAP in the data that could lead
to erroneous CPP, AMP, and RAP values, since they are derived from them. Therefore,
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according to the previous studies [44], data points with ICP > 100 mmHg or <—15 mmHg
and MAP > 200 mmHg or <0 mmHg were excluded from this analysis. Afterwards,
summary measures of the aforementioned parameters were calculated and are depicted in
Table A1 of Appendix A. Notably, RAP had a mean of 0.632 £ 0.483.

Based on our previous study, RAP was classified into three distinct states according
to its value [19], which were as follows: (i) state 1, representing a healthy condition,
was characterized by small positive RAP values close to zero; (ii) state 2, which was
most commonly observed in TBI patients, reflected impaired intracranial compliance and
compensatory reserve, with elevated RAP values (RAP > 0.4), and (iii) state 3 occurred
in more severe conditions, indicating the further deterioration of compensatory reserve,
cerebrovascular reactivity, and cerebral autoregulation. This state was associated with a
significant number of fatal outcomes and was marked by declining RAP values, including,
in some cases, negative RAP [19]. Based on the mean RAP obtained in this study, it can
be stated that the mean RAP fell into state 2, indicating impaired cerebral compliance and
compensatory reserve. This finding is consistent with our previous study, wherein state
2 was also the most commonly observed condition among TBI patients [19].

3.2.2. Time Spent Within Thresholds

According to the threshold ranges outlined in Section 2.5, the percentage of time
spent within each range was calculated for all patients and is presented in Table A2 of
Appendix A. So, using the RAP index, the highest percentage of time spent was in the
impaired state (ranging from RAP of 0.4 to 1), which was 78.091% and corresponds to state
2, as previously defined [19].

3.2.3. Sub-Group Analysis

The sub-group analysis results are shown in Appendix A Tables A3-A15. In the age
groups analysis, for the first age comparison (i.e., age above and below 40 years), only ICP
showed a significant difference (p = 0.048) between the two groups, with AMP having a
near-significant p-value of 0.065227, as depicted in Table A3 of Appendix A. In the second
age comparison (age below 40 years, 40 to 60 years, and above 60 years), AMP and RAP
were significantly different (p = 0.046, p = 0.005), while ICP showed no significant difference
(p = 0.284) (Table A4 of Appendix A).

In the M/F sex groups, only CPP (p = 0.008) was significantly different (Table A5 of
Appendix A). For pupillary response, none of the parameters showed significant differ-
ences (Table A6 of Appendix A). In Marshall CT grade groupings, ICP, AMP, and RAP
were significantly different across groups (p = 0.002, p = 0.0003, p = 0.00001) (Table A7 of
Appendix A). RAP increased from grade II to IV, but at grade V, it decreased. A similar case
was observed for ICP and AMP.

For outcome comparison, the GOSE grade was assessed at 1-month and 6-month
intervals (Tables A8-A11 of Appendix A). In the alive/dead comparison, for both cases,
AMP significantly differentiated the groups in both intervals (p = 0.003, p = 0.01), while ICP
and CPP were only significant in the 1-month GOSE results (p = 0.033, p = 0.032). However,
RAP was not significant in either case. In the favorable/unfavorable cases, ICP, CPP, and
AMP were significantly different for both intervals, but RAP again showed no significant
difference in either case (p = 0.294, p = 0.403).

In the subgroup analysis for ICP, all parameters showed significant differences between
the two groups (p = close to 0 for both groups). The group with ICP > 22 mmHg had higher
RAP and AMP values than the other group. Similarly, in the AMP analysis, both ICP and
RAP increased as AMP rose, reflecting the findings from the ICP subgroup analysis, with
all parameters displaying significant differences.
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Finally, in PRx analysis, the first comparison showed that RAP had a lower mean
value when PRx > 0 compared to PRx < 0, though ICP and AMP were higher. This
finding suggests that impaired cerebrovascular reactivity (PRx > 0) was associated with
reduced RAP, aligning with the results of our systematic review [19]. This decrease in
RAP corresponded to state 3 of RAP [19], as defined in Section 3.2.1. Similarly, in the
second comparison, using a PRx threshold of 0.25, a comparable pattern emerged, with
lower RAP being associated with higher PRx values (i.e., PRx > 0.25). Similar to the ICP
and AMP threshold analyses, all parameters demonstrated significant differences between
sub-groups in the PRx threshold analysis (p = close to 0 for all cases). The results of these
three threshold analyses are presented in Tables A12-A15 of Appendix A.

3.3. Optimal ARIMA Structure Analysis
3.3.1. Stationarity Assessment

As discussed in Section 2.6.3, ADF and KPSS tests were performed for each patient
and signal to check the stationarity of the signals. Initially, these tests were applied to the
original data. Tables A16 and A17 of Appendix B illustrate the p-values for each patient’s
test results at the minute-by-minute data resolution. Additionally, Tables A20 and A21
of Appendix C show the summarized results. As shown in the tables, while most of the
signals appeared stationary according to the ADF tests, the KPSS test indicated that most
were non-stationary. This suggests that the signals are largely trend-stationary, but likely
non-stationary around a linear trend. However, for ARIMA model analysis, the data need
to be stationary in terms of both cases. Therefore, a first-order difference was applied
to the original data after temporal resolution. Tables A18 and A19 of Appendix B show
the p-values for each patient’s test results at the minute-by-minute data resolution. The
resulting outcomes are summarized in Tables A22 and A23 of Appendix C.

As evident from the tables, after applying first-order differencing, nearly all the data,
with a few exceptions, were assessed as stationary in both tests. Therefore, these differenced
data were suitable for ARIMA model analysis.

3.3.2. Determination of Optimal ARIMA Models

Appendix D provides the optimal ARIMA models for each signal at each resolution for
each patient, detailing the p-, d-, and g-orders along with their AIC values. Based on these
results, the population global median optimal models in each resolution were calculated
and are shown in Table 2. As shown in the table, the models for each signal were quite
similar in the case of 10-min resolution and below.

Table 2. Global population median optimal models for each resolution.

Temporal Resolution ICP AMP RAP
Minute-by-minute 51,1 3,1,5 3,1,3
10-min-by-10-min 2,1,2 2,1,3 1,1,1
30-min-by-30-min 2,1,2 2,1,2 1,1,1

Hour-by-hour 2,1,2 1,1,1 1,1,1

AMP, pulse amplitude of ICP; ICP, intracranial pressure; RAP, compensatory reserve index.

3.3.3. Evaluation of Optimal ARIMA Models

With the median optimal ARIMA models now determined, the quality of these models
can be assessed using the residuals, ACF, and PACF plots of residuals. Figure 1 represents
a patient example of the ACF and PACF plots of residuals for RAP at 1 min intervals for
pre- and post-ARIMA modeled data.
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Figure 1. ACF and PACEF plots at minute-by-minute temporal resolution—patient example. (a) RAP
pre-ARIMA plots, (b) RAP post-ARIMA (3, 1, 3) plots.

The figure corresponds to the residuals of the RAP signal (a) before and (b) after
ARIMA. The original plots had significant spikes in both ACF and PACF plots, while the
spikes in post-ARIMA (3, 1, 3) were mostly within the 95% confidence interval, indicating
that the model moderately accounts for the RAP structure.

ACEF, autocorrelative function; ARIMA, autoregressive integrated moving average;
PACEF, partial autocorrelative function; RAP, compensatory reserve index.

Figure la corresponds to the original RAP data since the orders were set to zero
(ARIMA (0, 0, 0)). Figure 1b utilizes the median optimal ARIMA model for RAP (ARIMA
(3,1, 3)). It is evident that the ACF plot of the residuals using the original data showed a
gradual decay, while the PACF plot had significant spikes at various lags, indicating that
the ARIMA (0, 0, 0) model did not effectively capture the signal’s structure. On the contrary,
after applying the median optimal ARIMA model for RAP (3, 1, 3), only two significant
spikes were present at lag 15, with another after lag 30 in the PACF plot. Otherwise, most
of the ACF and PACEF values fell within the 95% confidence interval, implying that any
autocorrelation left in the residuals is not statistically significant and suggesting that the
calculated ARIMA model successfully captured the structure of the signal.

Figures A1l and A3 of Appendix E illustrate a patient example of ACF and PACF plots
with this comparison for ICP and AMP signals, and demonstrate similar results, proving
that the calculated median optimal ARIMA model captures the time-series structure with
moderate performance.

While visually, the performance of the optimal ARIMA model is satisfactory, the
global population median of residuals was compared with it to provide a better description
between the original data and those yielded after optimal ARIMA model application for all
signals, as reported in Table 3.

Table 3. Global population median residuals of the signals.

Parameter Original Optimal ARIMA Model
Icp 0.63008 0.17941
AMP 0.49329 0.13549
RAP 0.32493 0.12564

AMP, pulse amplitude of ICP; ARIMA, autoregressive integrated moving average; ICP, intracranial pressure; RAP,
compensatory reserve index.

While calculating, the absolute value of the residuals of each data point was taken for
the betterment of the calculation. The median residual of the optimal ARIMA model was
substantially less than that of the original data for all signals, which further emphasizes the
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ARIMA model’s success in capturing the signal structure. Additionally, the variance of the
overall data, variance in the residuals, and the number of significant spikes were calculated
and are shown in Table A25 of Appendix E. It can be seen that the variance of the residuals
was smaller than that of the original data. Furthermore, both ACF and PACF plots for the
modeled data had only one significant spike, in contrast to the original ACF and PACF
plots, which had seven and two spikes, respectively. These values align with the results
from Figure 1 and Table 3, further proving that the data are being modeled. The values of
these parameters were calculated for each signal of each patient at the minute-by-minute
resolution, as shown in Tables A27, A29 and A30 of Appendix E. Subsequently, the means
and medians were determined, as presented in Tables A31 and A32 of Appendix E. The
attribute values in these tables indicate that the data were adequately modeled. The values
of the variance in the residuals and the number of significant spikes in ACF and PACF plots
were much smaller than those of the original data.

A similar analysis was performed at different temporal resolutions for the same
patients. Figure 2 shows a patient example of the ACF and PACEF plots of the residuals
for RAP at the remaining temporal resolutions. Even though all the lags were within the
95% confidence interval at all the resolutions (which was also justified by the result in
Table A26 of Appendix E), the ACF and PACEF plots exhibited comparatively significant
spikes with higher magnitudes than those at the minute-by-minute temporal resolution
(depicted in Figure 1b). This indicates that while the optimal ARIMA model captures the
time-series structure in both cases, it is more successful at the minute-by-minute resolution
than at other lower temporal resolutions. Figures A2 and A4 of Appendix E present these
comparative figures for ICP and AMP at the 10 min, 30 min and 1 h intervals, which also
displayed similar characteristics in the ACF and PACEF plots of the residuals.
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Figure 2. ACF and PACEF plots at different resolutions—patient example. (a) At 10-min-by-10-min

resolution with ARIMA (1, 1, 1), (b) at 30-min-by-30-min resolution with ARIMA (1, 1, 1), (c) at
hour-by-hour resolution with ARIMA (1, 1, 1).
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The figure documents the ACF and PACEF of the residuals of the RAP-mapped ARIMA
structure in the (a) 10-min-by-10-min, (b) 30-min-by-30-min, and (c) hour-by-hour relationships.

ACEF, autocorrelative function; ARIMA, autoregressive integrated moving average;
PACEF, partial autocorrelative function; RAP, compensatory reserve index.

3.4. Assessment of the Features for Identifying Artifacts
3.4.1. Comparing Optimal ARIMA Models

Initially, the optimal ARIMA models for the artifact segments of each signal of each
patient were calculated. The results are depicted in Table A34 of Appendix F. Afterwards,
the medians and means of the orders of the ARIMA models for the two groups were
calculated. Tables A35 and A36 of Appendix F contain the median and the mean results for
the 1 min and 10 min temporal resolutions. d-order was not included in the analysis, as
it was set to 1 across all cases. While calculating optimal models for the artifact segments
of 10 min data, five examples (i.e., patients) could not provide any result because of the
inadequacy of data (i.e., artifact segments). As both tables show, the median and mean
orders of all clean and artifact data parameters differed significantly, particularly for the
minute-by-minute data. The Mann-Whitney U test that was conducted on these two groups
of orders could provide a clear statistical comparison. The resulting p-values are as follows.

As reported in Table 4, since p-value < 0.05 indicates a significant difference between
the two groups, it can be concluded that in the case of minute-by-minute data, both the
p-orders (p = close to 0) and g-orders (p = 0.01526) of the RAP ARIMA model can serve as
effective indicators for distinguishing artifact segments from clean data. However, only
the g-order of ICP (p = 0.00058) and the p-order of AMP (p = 0.00501) demonstrated a
significant difference between the two groups. For the lower-resolution data, RAP did not
appear to show any notable differences across any orders. However, the g-orders of ICP
(p = close to 0) and AMP (p = 0.00032) exhibited significant differences.

Table 4. A comparative analysis between clean and artifact segments” optimal ARIMA models
(p-values from Mann-Whitney U-test).

Minute-by-Minute 10-min-by-10-min
Parameter
p-Order g-Order p-Order q-Order
ICP 0.60996 0.00058 0.49778 close to 0
AMP 0.00501 0.20620 0.23175 0.00032
RAP close to 0 0.01526 0.88808 0.94798

All the significant p-values are marked in bold. AMP, pulse amplitude of ICP; ARIMA, autoregressive integrated
moving average; ICP, intracranial pressure; RAP, compensatory reserve index.

To visually represent the data, scatterplots comparing the orders of the two groups are
shown in Figure 3. As seen in the figure, there are only a few patient examples wherein the
clean and artifact segment orders overlap in the minute-by-minute resolution (Figure 3a).
The majority of them differ, confirming that the optimal models for the parameters of
clean and artifact segments are quite distinct. In the case of the 10 min resolution data,
although many instances show non-overlapping orders, there are more examples of overlap
compared to the minute-by-minute resolution. Scatterplots for RAP g-order and the rest of
the signals are demonstrated in Appendix F Figures A6—A8. They also displayed similar
results, with both of the orders differing between the two groups and the minute-by-minute
resolution showing a more pronounced distinction.
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Figure 3. Scatterplots for RAP p-orders at different resolutions for each patient. (a) at minute-by-
minute resolution, (b) at 10-min-by-10-min resolution.

The figure demonstrates the values of the p-orders from the ARIMA model of the clean
vs. artifact for each patient at (a) minute-by-minute resolution and (b) 10-min-by-10-min
resolution. The blue circles correspond to the p-orders of the cleaned data, whereas the red
crosses represent the p-orders of the artifact segment. If a red cross overlaps a blue circle,
the value of the order for that patient is the same. If they do not overlap, the values differ.

ARIMA, autoregressive integrated moving average; RAP, compensatory reserve index.

As seen from the figures, there are only a few patient examples wherein the clean
and artifact segment orders overlap in the minute-by-minute resolution (Figure 3a). The
majority of them differ, confirming that the optimal models for the parameters of clean and
artifact segments are quite distinct. In the case of the 10-min resolution data, although many
instances show non-overlapping orders, there are more examples of overlap compared to
the minute-by-minute resolution. Scatterplots for RAP g-order and the rest of the signals
are demonstrated in Appendix F Figures A6—-A8. They also display similar results, with
most of the orders differing between the two groups and the minute-by-minute resolution
showing a more pronounced distinction.

To assess the success rate of artifact identification, the sliding window method was
applied at the patient level. For minute-by-minute data, a window size of 100 with a
sample size of 50 was used, while for 10-min-by-10-min data, a window size of 50 with a
sample size of 25 was employed. Within each window, the optimal ARIMA model was
calculated, and artifacts were identified in the window if any of the calculated orders (p, 4,
or q) differed by more than three from those of the clean data optimal model. Using this
approach, the average success rates for artifact identification were 65.258% for ICP, 65.258%
for AMP, and 84.038% for RAP at the minute-by-minute resolution. The average success
rates for artifact identification at the 10-min-by-10-min resolution were 55.336% for ICP,
54.128% for AMP, and 43.089% for RAP. Tables A37 and A38 of Appendix G depict the
average success rates for artifact identification in both temporal resolutions.

3.4.2. Comparing the Residuals

Using the median optimal model described in Table 5, the residuals of clean data and
artifact segments were calculated for all patients. The difference between the two groups
was determined using the Mann—-Whitney U test for each patient. The result is summarized
below, where significant corresponds to p < 0.05 and insignificant is otherwise.
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Table 5. Significant and insignificant counts after a Mann-Whitney U test between clean and
artifact residuals.

Minute-by-Minute 10-min-by-10-min
Parameter
Significant Insignificant Significant Insignificant
ICp 63 45 17 79
AMP 64 45 22 74
RAP 65 44 8 96

AMP, pulse amplitude of ICP; ICP, intracranial pressure; RAP, compensatory reserve index.

As seen from the table, most cases showed significant differences at the minute-by-
minute resolution while comparing clean residuals with artifact residuals. On the contrary,
the result was the opposite in the 10-min temporal resolution, with the majority of examples
belonging to the insignificant group.

While calculating residuals, a few patient examples had inadequate data points
(1 patient at the minute-by-minute data resolution for ICP and 13 patients at the 10 min
data resolution across all signals). Consequently, the residuals for those patients could not
be calculated, and the analysis was carried out excluding them.

Additionally, to consider residuals as a feature to identify artifacts, the residuals of
all the clean data should be low. In other words, they need to be consistent and should be
fitted by the median optimal ARIMA model calculated for the clean data. To check this, the
variance of the residuals of each patient was calculated (Table 6). The same was done for
the artifact data (whose expected variance should be higher). The median and mean values
of variance of each group were calculated as shown below.

Table 6. Medians and means of the variance of the residuals.

Minute-by-Minute 10-min-by-10-min
Parameter Median Mean Median Mean
Clean Artifact Clean Artifact Clean Artifact Clean Artifact
ICP 1.41843 24.83865 2.00069 266.45723 4.56886 35.47967 10.2683 1837.70208
AMP 0.04842 0.61611 0.08891 2.29946 0.11453 0.09194 0.27448 3.60461
RAP 0.10523 0.20676 0.10882 0.21222 0.08715 0.10794 0.09471 0.11736

AMP, pulse amplitude of ICP; ICP, intracranial pressure; RAP, compensatory reserve index.

As shown in the table, the expected outcome was observed for both resolutions.
Particularly, ICP showed the largest difference among the signals. However, the median
results of AMP at the 10-min-by-10-min data resolution deviated from the expected result.

The sliding window method was applied at the patient level to evaluate the success
rate of artifact identification for this feature. A window size of 50 with a sample size of
25 was used for both minute-by-minute and 10-min-by-10-min resolution. At first, the
variance of residuals within each window was calculated, and artifacts were identified
if the variance of residuals exceeded the median variance of the total data for a single
patient. Using this method, the average success rates for identifying artifacts across the
entire population were 70.212% for ICP, 56.916% for AMP and 91.666% for RAP at the
minute-by-minute resolution, and 85.092% for ICP, 74.264% for AMP and 84.411% for RAP
at the 10-min-by-10-min resolution, as illustrated in Tables A37 and A38 of Appendix G.
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3.4.3. Comparing the Cross-Correlation of Residuals

The groups for this analysis were formed as outlined in Section 2.7.2. After calculating
the cross-correlation of total signals for each case and patient, the maximum values from the
results were recorded. Next, the median and mean values of the maximum cross-correlation
between RAP and ICP/AMP residuals were calculated across the total population for both
the clean and artifact cases, as follows below.

Table 7 demonstrates that for the minute-by-minute data, the maximum RAP-AMP
cross-correlation of residuals was expectedly higher in clean—clean cases compared to clean—
artifact cases, based on both median and mean values. However, this was not the case for
RAP-ICP; even though the mean value of clean—clean cases was slightly higher, the median
was lower. On the other hand, for the 10-min-by-10-min data, none of the clean—clean
cases had considerably higher values in RAP-ICP (median and mean) cross-correlation. In
contrast, RAP-AMP cross-correlation showed higher values in clean—clean cases in terms
of both median and mean.

Table 7. Medians and means of the maximum cross-correlations of residuals.

Minute-by-Minute 10-min-by-10-min
Median Mean Median Mean
Parameter
Clean and Clean and Clean and Clean and Clean and Clean and Clean and Clean and
Clean Artifact Clean Artifact Clean Artifact Clean Artifact
RAP-ICP 14.48875 23.01389 77.319716 46.14512 26.92 32.46088 36.9293 121.002
RAP-AMP 137.63467 28.61530 41591384 51.74234 4.4332 1.55919 5.83130 3.97946

Clean and clean refers to the cross-correlation between clean RAP and clean ICP (RAP-ICP) or clean RAP and
clean AMP (RAP-AMP), whereas clean and artifact refers to clean RAP and artifact ICP (RAP-ICP) or clean RAP
and artifact AMP (RAP-AMP).

A Mann-Whitney U test was subsequently performed to compare the two groups—
maximum cross-correlation of clean RAP residuals with clean ICP/ AMP residuals vs. clean
RAP residuals with artifact ICP/ AMP residuals. For RAP-ICP, the p-values were 0.02809
for the minute-by-minute resolution and 0.31919 for the 10 min resolution. In contrast, for
RAP-AMP, the p-values were close to 0 for both resolutions.

Additionally, the maximum cross-correlations of the two groups (i.e., RAP-ICP clean-
clean residuals vs. clean-artifact residuals and RAP-AMP clean-clean residuals vs. clean—
artifact residuals) were compared at the patient level. The expected result was that the clean—
clean maximum cross-correlation of residuals should be greater than the clean—artifact
maximum cross-correlation of residuals, as explained in Section 2.7.2. The numbers of
patients (out of 108 patients in total) in each case that showed greater values in clean—clean
cases are as follows: (i) RAP-ICP, 34 cases and (ii) RAP-AMDP, 95 cases at the minute-by-
minute resolution; (i) RAP-ICP, 41 cases and (ii) RAP-AMP, 69 cases at the 10-min-by-
10-min resolution.

The outcome of this analysis aligns with the findings of the overall (median and mean)
result presented in Table 7, showing that the RAP-AMDP cross-correlation at the minute-
by-minute resolution demonstrated the greatest number of patients (95 cases) with higher
values of maximum cross-correlation in clean—clean cases, alongside RAP-AMP cross-
correlation at the 10-min-by-10-min resolution demonstrating 69 cases. On the contrary,
RAP-ICP failed to achieve such large numbers at both resolutions.

In the success rate findings of this feature, RAP-ICP and RAP-AMP cross-correlations
were calculated within each window. The window sizes and sample sizes were similar
to the previous feature (i.e., 50 and 25, respectively). Artifacts were predicted within a
window if the maximum cross-correlation was lower than the median of the maximum
cross-correlation values between clean and artifact groups of the total recording for a single
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patient. Using this method, the median success rates for identifying artifacts across the
entire population were 37.011% for RAP-ICP and 61.6% for RAP-AMP cross-correlation at
the minute-by-minute resolution, whereas at the 10-min-by-10-min resolution, they were
6.512% and 35.829%, respectively.

4. Discussion

We set out to explore the RAP compensatory reserve index, derived from ICP pressure
sensors, to better understand some critical aspects of such cerebral data streams. First, we
comprehensively characterized the general nature of RAP signals with respect to other
cerebral physiologic parameters, including subgroup analysis. Second, we outlined the
time-series statistical structures of RAP in relation to its constituent signals (ICP and AMP).
Finally, we leveraged our enhanced understanding of the time-series structures of RAP
data streams to explore signal artifact detection. Throughout this process, some important
aspects of RAP and the use of such sensor data streams deserve to be highlighted.

4.1. RAP’s Patterns and Behaviours

First, based on the results in Appendix A, TBI patients generally demonstrated an
impaired compensatory reserve, as they spent most of their time within the range of 0.4 to
1, as measured by the RAP index (illustrated in Table A2 of Appendix A), corresponding
to state 2 of RAP [19], as defined in Section 3.2.1. Regarding age comparison, Tables A3
and A4 of Appendix A indicate that RAP increased with age. For Marshall CT grades,
grades I through IV represent progressively worsening brain injuries [15]; thus, RAP would
be expected to increase from grade I to IV, as supported by the analysis in Table A7 of
Appendix A. In grade V, patients underwent brain surgery whereby mass lesions were
removed [15]. This may or may not have resulted in a higher RAP than grade IV, depending
on the surgery’s outcome, and can explain the reduced RAP value observed in grade V.

4.2. Time Series Structure Analysis

Second, during the time series analysis, it was clear that RAP signal sources were
non-stationary and carried substantial trend features inherent within their data streams.
We were able to demonstrate this across two different temporal resolutions of RAP data,
emphasizing that this was present even at low temporal resolutions. This is critical for the
future use of RAP in physiologic modeling, as not accounting for such a trend would lead
to model inaccuracies, and most work in the field to date ignores such features.

RAP data streams displayed inherent autoregressive features, consistent with optimal
ARIMA models with non-zero autocorrelative and moving average orders (p-orders and
g-orders, respectively). Also of interest, the optimal ARIMA model orders for RAP differed
from both ICP and AMP, and its constituent signals, highlighting that RAP contains different
information compared to ICP or AMP alone. This was the case across the population,
highlighting again the need to account not just for the data trend, but also for more
complex autoregressive features, in future modeling using temporally resolved RAP data.
However, it must be noted that the median optimal model calculated for the dataset may
not accurately represent all patients. For instance, RAP at minute-by-minute resolution had
a median optimal ARIMA model of (3, 1, 3). However, one patient individually obtained
an optimal ARIMA model (8, 1, 3). Hence, applying the ARIMA (3, 1, 3) model to this
patient’s RAP signal may not effectively capture the data’s structure due to the substantial
difference in the p-order. Examining this patient’'s ACF and PACF plots shown in Figure A5
of Appendix E reveals spikes between lags 0 to 5 that fall outside the confidence intervals,
highlighting further limitations of using the median optimal ARIMA model. Nevertheless,
the spikes out of the confidence intervals had very small magnitudes compared to the
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spikes seen in the ACF and PACF plots from the original data. Therefore, the median
optimal ARIMA model obtained in this analysis could contribute to the identification of
the features that helped distinguish clean data from artifact segments.

4.3. Comparison Among Different Resolutions

Third, during ARIMA model generation, including stationarity tests, some examples
failed to return a p-value due to insufficient data points, which were most commonly
observed at the hour-by-hour temporal resolution. Similarly, most of the non-stationary
results were also found at this lowest resolution in both the original and differenced data.
Additionally, while calculating the optimal ARIMA model for each signal of each patient,
some cases failed to yield results due to insufficient data, mainly at lower resolutions. These
observations highlight the critical role of data point quantity in each step of determining
the optimal ARIMA model. It also suggests that lower resolutions may be associated
with higher residuals, indicating a comparatively less accurate model. The medians of the
residuals for each resolution were calculated with the results summarized in Table A33 of
Appendix E. All of these findings emphasize the importance of a proper understanding
of the statistical structures of such data streams from pressure sensors and their derived
metrics (such as RAP). Throughout Table 2, the loss of RAP lags can be observed in the
median optimal ARIMA models for lower resolutions (i.e., order numbers are smaller).
Additionally, Tables 5 and 6 show the lower importance of artifact management, since
the difference between clean and artificial groups was not significantly different at lower
resolutions. This suggests that the lower resolutions lose the dynamic aspects of the data
(ICP/AMP/RAP).

This trend can also be observed in Table A24 of Appendix D, which details the optimal
models for each signal and resolution for each patient. Lower resolutions tend to have
simpler optimal models with lower order (p, d, q) values, leading to underfitting. This
occurred because the ARIMA analysis, constrained by fewer data points, could not find
a suitable model to capture the data fully. In contrast, higher resolutions, with more data
points, yielded better results. The presence of spikes with higher magnitudes in the ACF
and PACEF plots of residuals at lower resolutions from Figure 2 and Appendix F further
supports this statement.

4.4. Identifying Artifacts

Finally, building on the results from the time-series modeling of RAP, ICP, and AMP,
we aimed to identify potential features capable of distinguishing artifacts from clean data.
To qualify as a potential identifier of artifact profiles, a feature must show significant
differences between the clean and artifact groups in every case; for instance, in a Mann—
Whitney U-test analysis, the p-value between the two groups should be less than 0.05.
Firstly, according to Table 4, the p-values for ICP g-order, AMP p-order, and RAP p-orders
and g-orders were less than 0.05 (i.e., significant difference) while comparing optimal
ARIMA models of clean and artifact data at the minute-by-minute resolution, suggesting
that these orders are strong candidates for identifying artifacts. Conversely, ICP p-orders
and AMP g-orders from the optimal models could be excluded as potential features due to
insignificant differences between the clean and artifact groups (p-value > 0.05). However,
at the 10-min-by-10-min data resolution, only the g-order of optimal ARIMA models of ICP
(p-value = close to 0) and AMP (p-value = 0.00032) proved to be a potential distinguishing
factor, while other orders showed no significant differences.

Secondly, while comparing the residuals of clean and artifact profiles at the patient
level, Table 5 shows that the majority of cases exhibited significant differences for each sig-
nal at the minute-by-minute resolution. Specifically, significant differences were observed
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in 63, 64, and 65 cases out of 108 for ICP, AMP, and RAP, respectively. In contrast, at the
10-min-by-10-min resolution, most cases showed no significant differences for all signals.
This indicates that though residuals could be a strong feature for distinguishing artifact
profiles at the minute-by-minute resolution, they are less effective at the 10 min resolu-
tion. Table 6 further supports this finding, as the medians and means of the variance
of residuals across the population were consistently lower for clean data and higher for
artifact segments at both resolutions. This consistency suggests that clean data were mod-
erately well-modeled. Therefore, residuals could be considered as a reliable feature for
artifact identification.

The third and final analysis focused on comparing the maximum cross-correlation
of residuals between clean—clean and clean—artifact combinations for RAP-ICP and RAP-
AMP. This analysis was conducted in three parts. It was hypothesized that the maximum
cross-correlation between clean RAP and clean ICP/AMP residuals would be higher than
that between clean RAP and artifact ICP/AMP residuals, as RAP is derived from ICP and
AMP, and their residuals are expected to exhibit strong correlations. Firstly, the medians
and means of the maximum cross-correlations were calculated. Among these, only the RAP-
AMP cross-correlation consistently showed higher values in clean—clean cases for both
median and mean. Thus, the RAP-AMP maximum cross-correlation emerged as a potential
feature for both minute-by-minute and 10-min-by-10-min resolutions. Secondly, a Mann—
Whitney U test was performed across the entire population to compare the groups. The test
revealed significant differences (p < 0.05) between clean—clean and clean—artifact residuals
for each case except RAP-ICP at the 10-min-by-10-min resolution. Finally, maximum
cross-correlations were compared at the patient level, with the expectation that clean—
clean maximum cross-correlations would be greater than clean—artifact correlations. This
was confirmed for RAP-AMP cross-correlation at both the minute-by-minute and 10-
min-by-10-min resolutions, where the majority of patients exhibited higher clean—clean
values. In conclusion, combining these three parts, between RAP-ICP and RAP-AMP,
the cross-correlation of the latter at both resolutions could serve as a strong feature for
identifying artifacts.

Fourthly, a detailed treatment-based sub-group assessment is required. This analysis
did not include the effects of different therapeutic interventions, such as decompressive
craniectomy, pCO, changes or mannitol infusion. Though ICP treatments have an immedi-
ate impact on ICP (the minutes after treatment), their long-term impact on ICP modeling
and other derived ICP measures (like PRx) is quite limited [45-47]. Therefore, when model-
ing and assessing RAP physiological factors over larger periods of time and over whole
populations, ICP treatment factors can likely be largely ignored. However, when robust
minute-by-minute RAP is being modeled (looking at individual moments of patient state),
these factors should be considered.

Finally, while the success rate of capturing artifacts showed promising results, some non-
artifact data points were mistakenly identified as artifacts (i.e., false positives). The number of
false positives at each parameter and each analysis is demonstrated in Tables A37 and A38 of
Appendix G. Removing these non-artifact data points could result in the loss of valuable
information from the signal. Further work is needed to address this issue, either by refining
the thresholds and parameters in the sliding window approach, or by utilizing machine
learning (ML) methods and incorporating these identified features into the model.

5. Limitations

The population sample size is relatively small despite representing the largest study
to date comprehensively characterizing RAP data features. Such small sample sizes limit
the ability to extrapolate such findings to other populations where ICP sensor technology is
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applied, and RAP can be measured. For instance, as discussed in the previous section, the
median optimal model identified for the clean data may not fully represent all patients. Sec-
ondly, the number of data points for each patient constrains the results at lower resolutions.
The reduction in data points at lower resolutions, due to calculation methods, led many
optimal models at these resolutions to return ARIMA (1, 1, 1), indicating insufficient data
points to capture the signal structure and resulting in underfitting. This is supported by
the table showing higher residuals at lower resolutions (Table A32 of Appendix E). Addi-
tionally, several examples failed to return optimal ARIMA models, residuals, or p-values in
the Mann—-Whitney U-test, further decreasing the data size at lower resolutions. Moreover,
it remains unclear why RAP at lower resolutions did not show significant order differences
between clean and artifact groups, while RAP at higher resolutions did. This could be due
to RAP’s derivation method, which results in 80% overlapping data, or due to insufficient
data points at lower resolutions. Thirdly, the heterogeneity in TBI characteristics and the
diversity of treatments administered could have influenced the physiological response
observed in the signals, which might make it difficult to identify consistent patterns and
draw generalized conclusions Finally, the data originate from a single-center archive, lim-
iting generalizability, as findings may not apply to other centers with different patient
populations, treatment protocols, or equipment.

6. Future Directions

Future work on ICP pressure sensor-based signal sources, including RAP, needs to
include larger multi-center high-frequency signal databases. With improved sample sizes,
the validation of the above general RAP behavior, its time-series structure and artifact
detection methods need to occur. Such future work could include non-linear methods and
future sub-group analysis based on injury or disease patterns. Further, artifact detection
methods could be enhanced to include not just the time-series methods explored within
this manuscript, but also layered approaches, including signal morphological assessments,
wavelet decomposition methods, and ML techniques. Finally, for RAP data to be temporally
modeled, a proper understanding of its time-domain statistical features is key. Such larger
multi-center studies would be optimally positioned to define RAP statistical features
more robustly.

7. Conclusions

RAP signals, derived from ICP sensor technology, displayed reproducible and charac-
teristic patterns in this population of moderate/severe TBI patients, with most displaying
features of impaired compensatory reserve. The time-series statistical features of RAP
demonstrated inherent autoregressive features and data trends, regardless of temporal
resolution. Such time-domain statistical features of RAP signals can be used to identify
artifactual segments in RAP data streams. Future work is required in larger populations to
validate such findings.
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integrated moving average; ICP, intracranial pressure; KPSS, Kwiatkowski—Phillips—Schmidt-Shin;

MAP, mean arterial blood pressure; RAP, compensatory reserve index; std, standard deviation.

Appendix A. Summary Measurements, Time Spent Within Thresholds,
and Analysis of ICP/AMP/RAP

The following appendix contains the tables for summary measurements and percent-
age of time spent within certain thresholds, across the whole population. All the significant
p-values were marked bold.

AMP, pulse amplitude of ICP; CPP, cerebral perfusion pressure; CT, computed tomog-
raphy; GOSE, Glasgow outcome scale-extended; ICP, intracranial pressure; MAP, mean
arterial blood pressure; PRx, pressure reactivity index; RAP, compensatory reserve index;
std, standard deviation.
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Table Al. Summary measurements.

Metrics ICp MAP CPP AMP RAP
mean 10.818 85.374 74.555 2.244 0.632
std 7.564 13.881 14.049 1.855 0.483
min —15 0.035 —34.26 0 -1
25% 6.138 76.69 66.5005 0.9977 0.49635
50% 10.17 83.94 73.03 1.711 0.8578
75% 14.74 92.65 81.69 291 0.9646
max 80.06 200 197.362 22.41 1

Table A2. Time spent within threshold.

Ranges Time Spent (Unit) % Time Spent Total Time (Unit)
[0.4,1] 267.578 78.091

(0,04) 30.889 9.014 342.646

[0, —1] 43.166 12.597

Table A3. Sub-group analysis—age (first comparison).

Condition ICP MAP CPP AMP RAP
Bel‘z;"_‘“ig’)ears 10.56481 + 6.85241 84.44187 + 7.36121 73.68225 + 7.94464 1.71982 + 1.21450 0.60043 + 0.18153
Ab"(‘; e:4(6)§;ears 8.51253 + 6.63832 84.07349 + 7.70570 76.12142 + 8.49570 2.40335 + 1.82718 0.53754 + 0.20982

p-value 0.047852 0.710493 0.136793 0.065227 0.119867
Table A4. Sub-group analysis—age (second comparison).
Condition ICP MAP CPP AMP RAP
Bel‘z::’fig’)ears 10.56481 + 6.85241 84.44187 + 7.36121 73.68225 + 7.94464 1.71982 + 1.21450 0.60043 =+ 0.18153
Between 40 and 60
years 8.71919 + 7.12835 86.03822 + 8.03764 77.66581 + 9.36177 221371 + 1.61825 0.59274 + 0.19015
(n = 39)
Abo(‘; ef%ears 8.17672 + 5.88620 80.88080 + 6.01193 73.61179 + 6.25669 2.71151 + 2.12438 0.44784 + 0.21301
p-value 0.28399 0.02818 0.05323 0.04624 0.00459
Table A5. Sub-group analysis—M/F Sex.

Condition ICP MAP CPP AMP RAP
Male (1 = 89) 8.90705 + 6.30729 84.74958 + 7.90121 76.15799 + 8.24657 2.02947 + 1.54173 0.55111 + 0.20298
Female (1 = 20) 11.47718 + 8.42448 81.91215 + 5.12074 70.34861 + 7.02543 2.49502 + 1.96119 0.62181 + 0.17918

p-value 0.333628 0.192417 0.00805 0.483515 0.164657
Table A6. Sub-group analysis—pupillary response.

Condition ICP MAP CPP AMP RAP
Bﬂ?;lieg;“’e 9.68200 + 6.32553 84.11428 + 7.34526 74.95088 + 7.44597 2.25631 + 1.76652 0.59983 + 0.19003
Bﬂat(gr:‘rf;‘)ctwe 7.21860 =+ 6.62510 8525445 & 1043550  77.67136 = 10.39840 1.84440 + 1.38851 0.51583 & 0.19264

Unilateral Unreactive ) 53149 4 7 9057 83.74773 + 5.33723 73.49879 + 8.63051 1.95276 + 1.41453 0.50780 + 0.21717

(n=25)
p-value 0.29519 0.79378 0.25327 0.53557 0.07446
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Table A7. Sub-group analysis—Marshall CT grade.

Condition ICP MAP CcrP AMP RAP
Grade Il (n =3) 8.41885 £ 1.46502 88.19054 £ 2.95348 79.67350 £ 4.20626 1.10567 £ 0.32360 0.53874 + 0.23926
Grade III (n = 31) 10.10747 £ 5.75164 85.77724 + 7.99221 75.28605 & 6.88824 2.34405 £+ 1.30344 0.65335 + 0.16089

Grade IV (n = 20)

13.85727 £ 7.61941

86.37602 £ 7.24507

73.34250 £ 8.89201

3.30238 4 2.28233

0.67305 + 0.16134

Grade V (n = 55)

7.39158 + 6.41152

82.35945 1= 7.18358

75.36899 + 9.00899

1.60895 £ 1.28146

0.47552 + 0.19312

p-value 0.00227 0.06480 0.60516 0.00028 0.00001
Table A8. Sub-group analysis—alive/dead (1-month GOSE).
Condition Icp MAP CPP AMP RAP
Alive (n =71) 8.08183 =+ 5.20270 84.54202 4= 7.87658 76.48282 + 8.44677 1.65068 4= 1.01478 0.57072 + 0.19835
Dead (n = 38) 11.98871 £ 8.45046 83.68252 £ 7.01954 72.27488 £ 7.38769 2.96776 + 2.15609 0.55279 + 0.20754
p-value 0.033485 0.668784 0.031911 0.002865 0.604539
Table A9. Sub-group analysis—favorable/unfavorable (1-month GOSE).
Condition Icp MAP CPP AMP RAP

Favourable (n = 52)

7.29237 £ 5.30263

84.20479 £ 7.90128

77.03737 £ 8.74621

1.44024 £ 0.79148

0.54361 + 0.20245

Unfavorable (n = 57)

11.46599 £ 7.36347

84.27194 £+ 7.30886

73.11250 & 7.46122

2.73982 £ 1.94607

0.58373 + 0.19920

p-value 0.001883 1.0 0.016348 0.000358 0.294478
Table A10. Sub-group analysis—alive/dead (6-month GOSE).
Condition Icp MAP CPP AMP RAP
Alive (n = 68) 8.42374 + 5.18191 84.72952 + 7.98240 76.32846 + 8.45665 1.66250 £ 1.02750 0.58264 + 0.19200
Dead (n = 41) 11.37039 £ 8.47379 83.53319 £ 7.27248 72.68237 £+ 7.72236 2.83479 + 2.12879 0.53877 £+ 0.21121
p-value 0.169741 0.562849 0.065448 0.010051 0.258864
Table A11. Sub-group analysis—favorable/unfavorable (6-month GOSE).
Condition ICp MAP CPP AMP RAP

Favourable (n = 25)

8.12572 4 5.14666

84.64676 + 8.09823

76.55841 £ 8.59283

1.67795 £+ 1.04272

0.57845 + 0.19602

Unfavorable (n = 64)

11.61034 £ 8.23577

83.83620 + 6.72062

72.72268 £ 7.47357

2.77978 + 2.10187

0.54720 + 0.20960

p-value 0.048501 0.738688 0.041701 0.01456 0.4034
Table A12. ICP thresholds.
Condition ICp MAP CPP AMP RAP
ICP > 22 28.34662 + 7.12649 91.16469 + 17.08712 62.81109 + 17.58897 4.99916 + 3.26314 0.72418 + 0.43710
ICP <20 9.34625 + 5.61682 84.79938 + 13.48051 75.54584 + 13.34231 2.06319 + 1.57050 0.62705 + 0.48596
p-value Close to 0 Close to 0 Close to 0 Close to 0 Close to 0
Table A13. AMP thresholds.
Condition Icp MAP CPP AMP RAP
AMP<1 6.99299 + 5.69411 84.26304 + 14.03507 77.38008 + 13.74575 0.58311 + 0.26164 0.43376 + 0.55036
1<AMP<3 10.94096 £ 7.58453 85.39152 + 13.89387 74.56503 + 14.06739 2.31228 + 1.93635 0.63582 + 0.48283
AMP >3 15.60541 + 8.33541 86.79509 + 14.63808 71.22871 + 14.81692 5.01951 + 1.90360 0.78769 + 0.36104

p-value

Close to 0

Close to 0

Close to 0

Close to 0

Close to 0
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Table A14. PRx thresholds (first comparison).

Condition ICp MAP CPP AMP RAP PRx
PRx<0 10.44394 £ 6.53201 85.41019 4+ 12.90041  74.88617 +12.82014  2.22166 £ 1.73685  0.68340 + 0.44809  —0.42581 + 0.26188
PRx>0 11.25437 £ 8.56936  85.55157 £ 14.99946  74.20460 + 15.28773  2.27123 +1.98214  0.57066 £ 0.51977  0.42869 + 0.27811
p-value Close to 0 Close to 0 Close to 0 Close to 0 Close to 0 Close to 0

Table A15. PRx thresholds (second comparison).

Condition Icp MAP CPP AMP RAP PRx

PRx<0.25  10.82641 + 7.57303  85.47692 + 13.93089  74.56473 + 14.04217  2.24505 £ 1.85682  0.63016 + 0.48653  —0.02201 £ 0.50469

PRx > 0.25 11.77002 £ 9.13674  85.55960 + 15.74818  73.67751 £ 16.11601  2.34873 +2.09150  0.55701 £ 0.52997  0.57686 £ 0.21250
p-value Close to 0 Close to 0 Close to 0 0.002642 Close to 0 Close to 0

Appendix B. Stationarity Test Analysis—ADF/KPSS Tests for Original
and Differenced Data

The following are specific p-values for stationary tests at the minute-by-minute reso-
lution, confirming that, for the most part, the data were stationary after the first ordered
differencing for both ADF and KPSS tests.

ADF, Augmented Dickey-Fuller; AMP, pulse amplitude of ICP; ICP, intracranial
pressure; KPSS, Kwiatkowski-Phillips—Schmidt-Shin; RAP, compensatory reserve index.

Table A16. ADF test p-values for original data at the minute-by-minute resolution.

Patient ICP AMP RAP
TBI_001 close to 0 close to 0 close to 0
TBI_002 close to 0 close to 0 close to 0
TBI_003 0.01 0.16 close to 0
TBI_004 close to 0 close to 0 close to 0
TBI_007 0.02 0.59 close to 0
TBI_008 0.33 close to 0 close to 0
TBI_009 close to 0 0.08 close to 0
TBI_010 close to 0 0.01 close to 0
TBI_011 close to 0 close to 0 close to 0
TBI_012 close to 0 close to 0 close to 0
TBI_013 0.19 0.14 close to 0
TBI_014 0.98 0.72 close to 0
TBI_015 close to 0 close to 0 close to 0
TBI_016 0.04 0.01 close to 0
TBI_017 0.03 0.09 close to 0
TBI_018 0.55 0.17 close to 0
TBI_019 0.47 0.25 0.03
TBI_020 close to 0 close to 0 close to 0
TBI_021 0.58 0.22 close to 0
TBI_022 0.02 0.02 close to 0
TBI_023 close to 0 close to 0 close to 0
TBI_024 close to 0 close to 0 close to 0
TBI_025 0.26 0.27 close to 0
TBI_026 close to 0 close to 0 close to 0
TBI_027 0.12 0.16 close to 0
TBI_028 close to 0 close to 0 close to 0
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Table A16. Cont.

Patient ICp AMP RAP
TBI_029 close to 0 close to 0 close to 0
TBI_030 close to 0 close to 0 close to 0
TBI_031 0.1 0.04 close to 0
TBI_032 0.23 0.05 close to 0
TBI_033 close to 0 close to 0 close to 0
TBI_034 0.01 0.01 close to 0
TBI_036 close to 0 close to 0 close to 0
TBI_037 close to 0 close to 0 close to 0
TBI_038 close to 0 close to 0 close to 0
TBI_039 close to 0 close to 0 close to 0
TBI_040 close to 0 0.02 close to 0
TBI_041 close to 0 close to 0 close to 0
TBI_042 close to 0 close to 0 close to 0
TBI_043 close to 0 close to 0 close to 0
TBI_044 0.03 0.1 close to 0
TBI_045 close to 0 close to 0 close to 0
TBI_046 close to 0 close to 0 close to 0
TBI_047 close to 0 0.14 close to 0
TBI_048 0.54 0.63 close to 0
TBI_049 close to 0 close to 0 close to 0
TBI_050 close to 0 close to 0 close to 0
TBI_051 0.33 0.42 close to 0
TBI_052 0.68 0.12 close to 0
TBI_053 0.01 0.01 close to 0
TBI_054 0.05 0.01 close to 0
TBI_055 close to 0 close to 0 close to 0
TBI_056 0 close to 0 close to 0
TBI_057 close to 0 close to 0 close to 0
TBI_058 0 close to 0 close to 0
TBI_059 0.06 0.05 close to 0
TBI_060 close to 0 close to 0 close to 0
TBI_061 close to 0 0.08 close to 0
TBI_062 0.01 0.27 close to 0
TBI_063 close to 0 0.01 close to 0
TBI_064 0 0.42 close to 0
TBI_065 0.03 0.04 close to 0
TBI_066 0 close to 0 close to 0
TBI_067 close to 0 close to 0 close to 0
TBI_068 0 0.12 close to 0
TBI_069 close to 0 close to 0 close to 0
TBI_070 0.42 0.99 close to 0
TBI_071 close to 0 close to 0 close to 0
TBI_072 0.05 0.37 close to 0
TBI_073 close to 0 close to 0 close to 0
TBI_074 close to 0 close to 0 close to 0
TBI_075 close to 0 close to 0 close to 0
TBI_076 close to 0 close to 0 close to 0
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Table A16. Cont.

Patient ICp AMP RAP
TBI_077 close to 0 close to 0 close to 0
TBI_078 close to 0 0.28 close to 0
TBI_079 0.49 close to 0 close to 0
TBI_080 close to 0 close to 0 close to 0
TBI_081 close to 0 close to 0 close to 0
TBI_082 0.72 0.17 close to 0
TBI_083 0.02 0.06 close to 0
TBI_084 0.05 0.06 close to 0
TBI_085 close to 0 close to 0 close to 0
TBI_086 close to 0 close to 0 close to 0
TBI_087 0.01 0.06 close to 0
TBI_088 close to 0 close to 0 close to 0
TBI_089 close to 0 close to 0 close to 0
TBI_090 0 0.01 close to 0
TBI_091 close to 0 close to 0 close to 0
TBI_092 close to 0 close to 0 close to 0
TBI_093 close to 0 close to 0 close to 0
TBI_094 0.57 close to 0 close to 0
TBI_095 close to 0 close to 0 close to 0
TBI_096 0.29 close to 0 close to 0
TBI_097 0.02 0.04 close to 0
TBI_098 close to 0 0.01 close to 0
TBI_099 close to 0 close to 0 close to 0
TBI_100 close to 0 close to 0 close to 0
TBI_101 0.55 close to 0 close to 0
TBI_102 0.02 0.2 close to 0
TBI_103 close to 0 close to 0 close to 0
TBI_104 close to 0 close to 0 close to 0
TBI_105 0.04 close to 0 close to 0
TBI_106 close to 0 close to 0 close to 0
TBI_107 0.1 close to 0 close to 0
TBI_108 close to 0 close to 0 close to 0
TBI_109 0.01 close to 0 close to 0
TBI_110 close to 0 close to 0 close to 0
TBI_111 close to 0 close to 0 close to 0
TBI_112 0.07 close to 0 close to 0

Table A17. KPSS test p-values for original data at minute-by-minute resolution.

Patient ICP AMP RAP
TBI_001 0.01 0.01 0.01
TBI_002 0.01 0.01 0.01
TBI_003 0.01 0.01 0.01
TBI_004 0.08 0.1 0.1
TBI_007 0.01 0.01 0.1
TBI_008 0.01 0.07 0.1
TBI_009 0.01 0.01 0.01
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Table A17. Cont.

Patient ICp AMP RAP
TBI_010 0.1 0.01 0.01
TBI_011 0.01 0.01 0.01
TBI_012 0.02 0.01 0.1
TBI_013 0.03 0.07 0.1
TBI_014 0.01 0.01 0.01
TBI_015 0.01 0.01 0.1
TBI_016 0.01 0.01 0.01
TBI_017 0.01 0.1 0.1
TBI_018 0.01 0.01 0.01
TBI_019 0.01 0.01 0.01
TBI_020 0.01 0.01 0.01
TBI_021 0.01 0.01 0.01
TBI_022 0.01 0.01 0.01
TBI_023 0.01 0.01 0.01
TBI_024 0.01 0.01 0.02
TBI_025 0.01 0.01 0.1
TBI_026 0.03 0.01 0.01
TBI_027 0.1 0.1 0.01
TBI_028 0.01 0.1 0.01
TBI_029 0.01 0.01 0.01
TBI_030 0.01 0.01 0.1
TBI_031 0.03 0.05 0.01
TBI_032 0.01 0.01 0.08
TBI_033 0.01 0.02 0.03
TBI_034 0.01 0.01 0.01
TBI_036 0.01 0.01 0.01
TBI_037 0.01 0.01 0.01
TBI_038 0.01 0.01 0.01
TBI_039 0.01 0.01 0.01
TBI_040 0.01 0.01 0.02
TBI_041 0.01 0.01 0.1
TBI_042 0.01 0.02 0.01
TBI_043 0.01 0.01 0.09
TBI_044 0.01 0.01 0.1
TBI_045 0.01 0.01 0.01
TBI_046 0.01 0.01 0.1
TBI_047 0.01 0.01 0.1
TBI_048 0.01 0.01 0.01
TBI_049 0.01 0.01 0.1
TBI_050 0.01 0.1 0.1
TBI_051 0.01 0.01 0.1
TBI_052 0.01 0.01 0.01
TBI_053 0.01 0.01 0.01
TBI_054 0.02 0.01 0.1
TBI_055 0.01 0.01 0.01
TBI_056 0.02 0.1 0.1
TBI_057 0.01 0.01 0.01
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Table A17. Cont.

Patient ICp AMP RAP
TBI_058 0.01 0.01 0.01
TBI_059 0.01 0.01 0.01
TBI_060 0.01 0.01 0.01
TBI_061 0.01 0.01 0.1
TBI_062 0.01 0.01 0.07
TBI_063 0.01 0.01 0.1
TBI_064 0.01 0.01 0.01
TBI_065 0.01 0.01 0.01
TBI_066 0.01 0.01 0.01
TBI_067 0.1 0.09 0.1
TBI_068 0.01 0.01 0.01
TBI_069 0.01 0.01 0.01
TBI_070 0.01 0.01 0.02
TBI_071 0.01 0.01 0.01
TBI_072 0.01 0.01 0.01
TBI_073 0.1 0.01 0.01
TBI_074 0.01 0.01 0.01
TBI_075 0.05 0.01 0.01
TBI_076 0.01 0.01 0.1
TBI_077 0.1 0.1 0.01
TBI_078 0.02 0.01 0.1
TBI_079 0.01 0.01 0.01
TBI_080 0.01 0.01 0.1
TBI_081 0.01 0.02 0.01
TBI_082 0.01 0.01 0.02
TBI_083 0.01 0.01 0.01
TBI_084 0.01 0.01 0.1
TBI_085 0.01 0.01 0.1
TBI_086 0.01 0.01 0.01
TBI_087 0.01 0.01 0.01
TBI_088 0.02 0.01 0.01
TBI_089 0.01 0.01 0.01
TBI_090 0.01 0.02 0.01
TBI_091 0.01 0.01 0.01
TBI_092 0.01 0.01 0.01
TBI_093 0.01 0.01 0.01
TBI_094 0.01 0.01 0.09
TBI_095 0.01 0.01 0.01
TBI_096 0.1 0.1 0.01
TBI_097 0.01 0.01 0.05
TBI_098 0.01 0.01 0.05
TBI_099 0.02 0.01 0.01
TBI_100 0.05 0.01 0.02
TBI_101 0.01 0.01 0.01
TBI_102 0.01 0.01 0.01
TBI_103 0.01 0.01 0.02
TBI_104 0.01 0.01 0.01
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Table A17. Cont.

Patient ICp AMP RAP
TBI_105 0.01 0.01 0.01
TBI_106 0.01 0.01 0.1
TBI_107 0.01 0.09 0.01
TBI_108 0.01 0.01 0.01
TBI_109 0.09 0.01 0.1
TBI_110 0.01 0.01 0.01
TBI_111 0.01 0.01 0.01
TBI_112 0.01 0.01 0.02

Table A18. ADF test p-values for differenced data at minute-by-minute resolution.

Patient ICP AMP RAP
TBI_001 close to 0 close to 0 close to 0
TBI_002 close to 0 close to 0 close to 0
TBI_003 close to 0 close to 0 close to 0
TBI_004 close to 0 close to 0 close to 0
TBI_007 close to 0 close to 0 close to 0
TBI_008 close to 0 close to 0 close to 0
TBI_009 close to 0 close to 0 close to 0
TBI_010 close to 0 close to 0 close to 0
TBI_011 close to 0 close to 0 close to 0
TBI_012 close to 0 close to 0 close to 0
TBI_013 close to 0 close to 0 close to 0
TBI_014 close to 0 close to 0 close to 0
TBI_015 close to 0 close to 0 close to 0
TBI_016 close to 0 close to 0 close to 0
TBI_017 close to 0 close to 0 close to 0
TBI_018 close to 0 close to 0 close to 0
TBI_019 close to 0 close to 0 close to 0
TBI_020 close to 0 close to 0 close to 0
TBI_021 close to 0 close to 0 close to 0
TBI_022 close to 0 close to 0 close to 0
TBI_023 close to 0 close to 0 close to 0
TBI_024 close to 0 close to 0 close to 0
TBI_025 close to 0 close to 0 close to 0
TBI_026 close to 0 close to 0 close to 0
TBI_027 close to 0 close to 0 close to 0
TBI_028 close to 0 close to 0 close to 0
TBI_029 close to 0 close to 0 close to 0
TBI_030 close to 0 close to 0 close to 0
TBI_031 close to 0 close to 0 close to 0
TBI_032 close to 0 close to 0 close to 0
TBI_033 close to 0 close to 0 close to 0
TBI_034 close to 0 close to 0 close to 0
TBI_036 close to 0 close to 0 close to 0
TBI_037 close to 0 close to 0 close to 0
TBI_038 close to 0 close to 0 close to 0
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Table A18. Cont.

Patient ICp AMP RAP
TBI_039 close to 0 close to 0 close to 0
TBI_040 close to 0 close to 0 close to 0
TBI_041 close to 0 close to 0 close to 0
TBI_042 close to 0 close to 0 close to 0
TBI_043 close to 0 close to 0 close to 0
TBI_044 close to 0 close to 0 close to 0
TBI_045 close to 0 close to 0 close to 0
TBI_046 close to 0 close to 0 close to 0
TBI_047 close to 0 close to 0 close to 0
TBI_048 close to 0 close to 0 close to 0
TBI_049 close to 0 close to 0 close to 0
TBI_050 close to 0 close to 0 close to 0
TBI_051 close to 0 close to 0 close to 0
TBI_052 close to 0 close to 0 close to 0
TBI_053 close to 0 close to 0 close to 0
TBI_054 close to 0 close to 0 close to 0
TBI_055 close to 0 close to 0 close to 0
TBI_056 close to 0 close to 0 close to 0
TBI_057 close to 0 close to 0 close to 0
TBI_058 close to 0 close to 0 close to 0
TBI_059 close to 0 close to 0 close to 0
TBI_060 close to 0 close to 0 close to 0
TBI_061 close to 0 close to 0 close to 0
TBI_062 close to 0 close to 0 close to 0
TBI_063 close to 0 close to 0 close to 0
TBI_064 close to 0 close to 0 close to 0
TBI_065 close to 0 close to 0 close to 0
TBI_066 close to 0 close to 0 close to 0
TBI_067 close to 0 close to 0 close to 0
TBI_068 close to 0 close to 0 close to 0
TBI_069 close to 0 close to 0 close to 0
TBI_070 close to 0 close to 0 close to 0
TBI_071 close to 0 close to 0 close to 0
TBI_072 close to 0 close to 0 close to 0
TBI_073 close to 0 close to 0 close to 0
TBI_074 close to 0 close to 0 close to 0
TBI_075 close to 0 close to 0 close to 0
TBI_076 close to 0 close to 0 close to 0
TBI_077 close to 0 close to 0 close to 0
TBI_078 close to 0 close to 0 close to 0
TBI_079 close to 0 close to 0 close to 0
TBI_080 close to 0 close to 0 close to 0
TBI_081 close to 0 close to 0 close to 0
TBI_082 close to 0 close to 0 close to 0
TBI_083 close to 0 close to 0 close to 0
TBI_084 close to 0 close to 0 close to 0
TBI_085 close to 0 close to 0 close to 0
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Table A18. Cont.

Patient ICp AMP RAP
TBI_086 close to 0 close to 0 close to 0
TBI_087 close to 0 close to 0 close to 0
TBI_088 close to 0 close to 0 close to 0
TBI_089 close to 0 close to 0 close to 0
TBI_090 close to 0 close to 0 close to 0
TBI_091 close to 0 close to 0 close to 0
TBI_092 close to 0 close to 0 close to 0
TBI_093 close to 0 close to 0 close to 0
TBI_094 close to 0 close to 0 close to 0
TBI_095 close to 0 close to 0 close to 0
TBI_096 0.05 close to 0 close to 0
TBI_097 close to 0 close to 0 close to 0
TBI_098 close to 0 close to 0 close to 0
TBI_099 close to 0 close to 0 close to 0
TBI_100 close to 0 close to 0 close to 0
TBI_101 close to 0 close to 0 close to 0
TBI_102 close to 0 close to 0 close to 0
TBI_103 close to 0 close to 0 close to 0
TBI_104 close to 0 close to 0 close to 0
TBI_105 close to 0 close to 0 close to 0
TBI_106 close to 0 close to 0 close to 0
TBI_107 close to 0 close to 0 close to 0
TBI_108 close to 0 close to 0 close to 0
TBI_109 close to 0 close to 0 close to 0
TBI_110 close to 0 close to 0 close to 0
TBI_111 close to 0 close to 0 close to 0
TBI_112 close to 0 close to 0 close to 0

Table A19. KPSS test p-values for differenced data at minute-by-minute resolution.

Patient ICp AMP RAP
TBI_001 0.1 0.1 0.1
TBI_002 0.1 0.1 0.1
TBI_003 0.1 0.1 0.1
TBI_004 0.1 0.1 0.06
TBI_007 0.1 0.1 0.1
TBI_008 0.1 0.1 0.1
TBI_009 0.1 0.1 0.1
TBI_010 0.1 0.1 0.1
TBI_011 0.1 0.1 0.1
TBI_012 0.1 0.1 0.1
TBI_013 0.1 0.1 0.1
TBI_014 0.09 0.1 0.1
TBI_015 0.1 0.1 0.1
TBI_016 0.1 0.1 0.1
TBI_017 0.1 0.1 0.1
TBI_018 0.1 0.1 0.1
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Table A19. Cont.

Patient ICp AMP RAP
TBI_019 0.1 0.1 0.1
TBI_020 0.1 0.1 0.1
TBI_021 0.1 0.1 0.1
TBI_022 0.1 0.1 0.1
TBI_023 0.1 0.1 0.1
TBI_024 0.1 0.1 0.1
TBI_025 0.1 0.1 0.1
TBI_026 0.1 0.1 0.1
TBI_027 0.1 0.1 0.1
TBI_028 0.1 0.1 0.1
TBI_029 0.1 0.1 0.1
TBI_030 0.1 0.1 0.1
TBI_031 0.1 0.1 0.1
TBI_032 0.1 0.1 0.1
TBI_033 0.1 0.1 0.1
TBI_034 0.1 0.1 0.1
TBI_036 0.1 0.1 0.1
TBI_037 0.1 0.1 0.1
TBI_038 0.1 0.1 0.1
TBI_039 0.1 0.1 0.1
TBI_040 0.1 0.1 0.1
TBI_041 0.1 0.1 0.1
TBI_042 0.1 0.1 0.1
TBI_043 0.1 0.1 0.1
TBI_044 0.1 0.1 0.1
TBI_045 0.1 0.1 0.1
TBI_046 0.1 0.1 0.1
TBI_047 0.1 0.1 0.1
TBI_048 0.1 0.1 0.1
TBI_049 0.1 0.1 0.1
TBI_050 0.1 0.1 0.1
TBI_051 0.1 0.1 0.1
TBI_052 0.1 0.1 0.1
TBI_053 0.1 0.1 0.1
TBI_054 0.1 0.1 0.1
TBI_055 0.1 0.1 0.1
TBI_056 0.1 0.1 0.1
TBI_057 0.1 0.1 0.1
TBI_058 0.1 0.1 0.1
TBI_059 0.1 0.1 0.1
TBI_060 0.1 0.1 0.1
TBI_061 0.1 0.1 0.1
TBI_062 0.1 0.1 0.1
TBI_063 0.1 0.1 0.1
TBI_064 0.1 0.1 0.1
TBI_065 0.1 0.1 0.1
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Table A19. Cont.

Patient ICp AMP RAP
TBI_066 0.1 0.1 0.05
TBI_067 0.1 0.1 0.1
TBI_068 0.1 0.1 0.1
TBI_069 0.1 0.1 0.1
TBI_070 0.1 0.04 0.1
TBI_071 0.1 0.1 0.1
TBI_072 0.1 0.1 0.1
TBI_073 0.1 0.1 0.1
TBI_074 0.1 0.1 0.1
TBI_075 0.1 0.1 0.1
TBI_076 0.1 0.1 0.1
TBI_077 0.1 0.1 0.1
TBI_078 0.1 0.1 0.1
TBI_079 0.1 0.1 0.1
TBI_080 0.1 0.1 0.1
TBI_081 0.1 0.1 0.1
TBI_082 0.1 0.1 0.1
TBI_083 0.1 0.1 0.1
TBI_084 0.1 0.1 0.1
TBI_085 0.1 0.1 0.1
TBI_086 0.1 0.1 0.1
TBI_087 0.1 0.1 0.1
TBI_088 0.1 0.1 0.1
TBI_089 0.1 0.1 0.1
TBI_090 0.1 0.1 0.1
TBI_091 0.1 0.1 0.1
TBI_092 0.1 0.1 0.1
TBI_093 0.1 0.1 0.1
TBI_094 0.1 0.1 0.1
TBI_095 0.1 0.1 0.1
TBI_096 0.1 0.1 0.1
TBI_097 0.1 0.1 0.1
TBI_098 0.1 0.1 0.1
TBI_099 0.1 0.1 0.1
TBI_100 0.1 0.1 0.1
TBI_101 0.1 0.1 0.1
TBI_102 0.1 0.1 0.1
TBI_103 0.1 0.1 0.1
TBI_104 0.1 0.1 0.1
TBI_105 0.1 0.1 0.1
TBI_106 0.1 0.1 0.1
TBI_107 0.1 0.1 0.1
TBI_108 0.1 0.1 0.1
TBI_109 0.1 0.1 0.1
TBI_110 0.1 0.1 0.1
TBI_111 0.1 0.1 0.1
TBI_112 0.1 0.1 0.1
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Appendix C. Summary of Stationarity Analysis Tests—ADF/KPSS Tests
for Original and Differenced Data

This appendix highlights that after first-ordered differencing was applied, overall, the
data became stationary at each resolution.

ADEF, Augmented Dickey—Fuller; AMP, pulse amplitude of ICP; ICP, intracranial
pressure; KPSS, Kwiatkowski-Phillips-Schmidt-Shin; RAP, compensatory reserve index.

Table A20. Stationarity check of the original data based on ADFE.

Minute-by-Minute 10-min-by-10-min 30-min-by-30-min Hour-by-Hour
Parameter
. Non- . Non- . Non- . Non-
Stationary Stationary N/A Stationary Stationary N/A Stationary Stationary N/A Stationary Stationary N/A
ICP 86 23 0 66 43 0 60 49 0 51 55 3
AMP 80 29 0 58 51 0 52 57 0 48 58 3
RAP 109 0 0 93 16 0 76 33 0 69 37 3
Table A21. Stationarity check of the original data based on KPSS.
Minute-by-Minute 10-min-by-10-min 30-min-by-30-min Hour-by-Hour
Parameter
. Non- . Non- . Non- . Non-
Stationary Stationary N/A Stationary Stationary N/A Stationary Stationary N/A Stationary Stationary N/A
Icp 8 101 0 33 76 0 49 60 0 59 49 1
AMP 13 96 0 34 75 0 48 61 0 54 54 1
RAP 33 76 0 46 63 0 56 53 0 57 52 0
Table A22. Stationarity check of the first difference data based on ADF.
Minute-by-Minute 10-min-by-10-min 30-min-by-30-min Hour-by-Hour
Parameter
. Non- . Non- . Non- . Non-
Stationary Stationary N/A Stationary Stationary N/A Stationary Stationary N/A Stationary Stationary N/A
Icp 108 1 0 106 3 0 104 4 1 91 14 4
AMP 109 0 0 108 1 0 101 7 1 89 16 4
RAP 109 0 0 107 2 0 100 8 1 92 13 4
Table A23. Stationarity check of the first difference data based on KPSS.
Minute-by-Minute 10-min-by-10-min 30-min-by-30-min Hour-by-Hour
Parameter
. Non- . Non- . Non- . Non-
Stationary Stationary N/A Stationary Stationary N/A Stationary Stationary N/A Stationary Stationary N/A
Icp 109 0 0 108 1 0 106 3 0 98 8 3
AMP 108 1 0 105 4 0 105 4 0 99 7 3
RAP 108 1 0 103 6 0 100 9 0 93 13 3

Appendix D. Optimal ARIMA Models for Each Signal and Each Patient

The following shows the most significant ARIMA models (as informed through AIC)
at individual patient levels for each resolution and each signal. Each cell has four values
corresponding to p, d and g orders and associated AIC values for the model. m refers to
minute and h refers to hour.

AIC, Akaike information criterion; AMP, pulse amplitude of ICP; ARIMA, au-
toregressive integrated moving average; ICP, intracranial pressure; RAP, compensatory

reserve index.
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Table A24. Optimal ARIMA models.
ICP ICP AMP AMP RAP RAP
Patient m—IlS Iim 10-m-by-  30-m-by- h-Ilf Iih mﬁl)\/l T’m 10-m-by-  30-m-by- hﬁl)v[ f’h mI_{]? I_)m 10-m-by-  30-m-by- hI_{];A I_)h
Yy 10-m 30-m Yy Yy 10-m 30-m y Yy 10-m 30-m Yy
teLoox LWOL3 o [611 - [413 21,4, 1,19, 61,1, 31,1, 6,17 1215  [615 [6,1,5, 1,11,
- ‘1531.771']  “4255.733'] “1522.509’] ‘788.013’] ‘35487.221°] “1332.552'] ‘498.284'] 265.408’] 14862.477'] ‘—192.534"] ‘—243.988"] ‘—186.431']
TBI 002 4V1L L1, 214 213  [9L4  [L,12 [l  [5L1 913 2.1 L1l  [L11],
- ‘301.383’] 798.246"] ‘312.842'] 165.722’] 7043.873"]  “390.750'] ‘22.000] 99.766’] 2469.440] ‘—52.852'] ‘—55.084'] ‘—29.913]
TBLo0s oLl [413  [L12 L 1,5, LL5 212 21,1, 41,1, 31,1, 31,4 1,11, 1,12,
- 1091.937]  ‘609.108’]  ‘221.819’]  “123.989’]  ‘3681.918'] ‘—613.493'] ‘—213.387'] ‘—86.515"] ‘—5762.879’] ‘102.301’]  ‘10.314’] = ‘—5.858]
T8I 00a WLLL 815 211 [LL1  [,L1  [10L1  [311  [LL1  [L11  [L11  [311  [L11,
- ‘33.269’] 19.483'] ‘—15.142'] ‘—5.331"] ‘339.517’] ‘—8.337'] ‘—24.703']  ‘—12.050"] 68.348'] 7.550] ‘4.856"] ‘—10.030]
TBL 007 %L1 11, L1, 111, 1,11, 11, 1,11, (01,2  [L11, 1,11, [1,1,2, [9,1,5,
- 337.225']  ‘341.530"] “121.113’]  ‘58.863']  ‘2403.149’] ‘—42.308'] ‘—21.910'] ‘—29.149'] ‘66.362'] = ‘29.447’] 1.014'] 2.568']
TBLO0s L2 [617  [LL1, LL1, 811  [LL5 11,3 1,1, 61,1  [1,1,1, 21,3, 11,2
- 1230.670']  ‘640.823']  ‘292.706']  ‘170.699’]  ‘3091.271') ‘—234.704'] ‘—51.2007] ‘—6.116']  ‘—3794.499']) “133.499’]  ‘19.027']  ‘—0.816']
TBLOO9 Ll [BL1 - [215 7,12, 518 215  [213 [4,1,4, 3,1,5 (21,3 61,8, [3,1,5,
- ‘'5942.191’]  ‘2728.697'] “1043.663'] ‘567.291']  ‘17479.477'] ‘—198.338'] ‘37.041'] ‘77.012']  ‘—4518.618'] “405.306"]  ‘—28.212"] ‘—54.206']
TBLO10 |, 2L1L 21,8 [2,1,4, L1, 4110, [812 1,13, 111, 12,1,8, 21,4, 1,11, 21,3,
- ‘—609.152"] “829.657'] ‘339.936] 174.663’] ‘4585.005"] ‘421.414'] 208.454"] ‘111.955’] 1342.374']  ‘—123.974’] ‘—106.847"] ‘—67.124’]
tBLonn L2 411 - [817 21,3 31,10, [515 [10,1,10, [2,1,3  [217  [911, [4,1,5, [3,1,5,
- 2021.678"]  “3969.556']  “34.000’] 616.790] ‘34337.153"] “1322.034'] ‘472.085] 262.872’] “10386.355"] ‘—66.064"] ‘—104.843'] ‘—120.804]
tBloz BLL 0 B3 211 214 (10110, [314 1,13 L1l (314  [LL1 (613  [213
- 120.069’] ‘932.354’] ‘350.342] ‘190.127’] '6289.455"]  “170.531'] ‘99.561’] ‘57.176'] ‘615.635’] ‘34.5107] ‘—57.594’] ‘—41.261"]
o3 LL o LLL 211 [0L4 214  [LL1  [512  [10L6  [2L4  [L11  [LL1  [LL1,
- ‘—704.728"] ‘285.451'] 129.206"] '61.929'] ‘1008.086"]  “116.816'] 59.733’] ‘11.389’] ‘—430.580"] ‘—111.659"] ‘—49.679'] ‘—30.654]
TBlow L2 612 [LLL  [LL4 817 411, (713 312 718 (L1 [L14  [L11],
- ‘'913.826']  ‘705.939']  ‘341.638']  ‘200.105']  ‘3008.562’] ‘170.705]  ‘80.471’] ‘'53.547']  ‘—803.703’] ‘149.620’]  ‘25.501']  ‘—6.100']
T8I 015 %L1 [4L10,  [10,1,8  [7L2  [10,L,9,  [6L7  [10,L,9, 218, [9,1,9, 41,1, 21,1, 1,11,
- ‘3613.128"]  ‘3273.361'] ‘1261.074] ‘711.312'] 15518.215"] ‘887.067'] ‘464.622'] ‘316.652’] ‘—2847.042'] ‘325.832'] ‘53.187’] 24.501']
TBIlo16 2L 415 212 [LL1  [7L7  [2L6  [L11 L1 [9110,  [315  [L1,1  [L11,
- 701.730"]  ‘577.298'  “190.466’]  ‘108.708’]  ‘32.000'] '92.695'] 30.722'] 12.994']  ‘1331.935']  ‘35.309’] 1.111] 2.441']
BLO017 L1 1,12 [2,1,3, LL1, (81,8, 51,6, 13,1,2, 61,1, [91,10, [51,5 1,11, 2,1,3,
- 889.808’] ‘841.047'] 274.709'] ‘142.480’] 2882.115"]  ‘—46.309'] “—9.950’] ‘—11.021"] ‘—116.108"] ‘144.457'] ‘12.939’] 7.099']
eI os  LL5  [L13  1212  (6L1  [919  [1LL2 (L1l  [LL1 314  [313 311  [L14
- 752.0117] ‘433.669’] 178.075"] 91.705] 2441.415"]  ‘—13.491'] ‘8.642'] 7.812'] ‘—629.140"] “89.550’] 26.384’] 11.223]
TBLo19 |, LL% [2,1,6, 11, (11,1, 6,19, [4,1,3, [1,1,3, 1,11, 51,7, 81,7, 21,2 2,1,3,
- 498.112']  ‘408.893']  ‘148.683']  ‘82.831']  ‘3812.284'] ‘13.428'] ‘8.181'] ‘8756’  ‘—287.769'] ‘18908']  ‘—3.921]  ‘—5.043"]
TBIo20 &LL 813 1219  [L12  [813 1,13  [214  [,11  [$110, (311  [912 = [212
- 1784.103']  4486.602'] “1865.086'] ‘1012.086'] ‘28969.156'] ‘5.157']  ‘357.707'] = ‘256.960°] = ‘—17023.134'1—23.169"] ‘—194.386'] ‘—182.112’]
TBLoz | &LL 112 - 314 L3 9110, [L13  [L12 1L1,1,  [B1L10, [L,12 [1,1,2, 1,11,
- ‘1098.804'] ‘2075.738'] ‘862.914'] ‘477.400’] ‘9002.559] ‘—1094.246"] ‘—174.995"] ‘—30.954'] ‘—13874.873'—105.751"] ‘—195.491"] ‘—112.378']
TBLoz2 [10L2 314 [6,1,8, 413, (51,8 [6,1,3, 1,12, 21,4 81,8 1,12, 1,11, 1,11,
- ‘4169.616"]  ‘2732.960'] ‘1014.211']  ‘570.046'] 17558.366"] ‘—1294.473’] ‘—303.740'] ‘—117.154"] ‘—14891.883']'339.065’] ‘—4.223"] ‘—54.605']
Bl o2z L1 518 311 [215  [411 212 [318  [7110, [315  [L11  [414  [413
- 1588588’ ‘2102.452'] ‘722.915']  ‘342.677']  ‘10881.139'] ‘286.001']  ‘109.017']  ‘51.368'] = ‘—5418.788'] ‘140.425"] ‘—45.122'] ‘—65.264']
TBI 024 %12 21,2 [2,1,7, (2,14, [L1,5 13,17, 41,8, 21,4, [6,1,8 51,1, 31,2 1,11,
- 772.025’] ‘1977.338']  ‘759.301'] ‘405.739’] ‘9235.961']  “213.528'] ‘193.197’] ‘94.872'] ‘—3654.987"] ‘46.978’] ‘—101.452"] ‘—52.779']
TBI 025 BL4 517 [LL1L,  [LL1,  [7L1, 2.1, (L1l  [LL1 213 (L1 [415  [L11,
- ‘813.208’] '673.930'] 246.431'] 128.190°] ‘536.739’] ‘—187.712'] ‘—67.705"] ‘—45.265"] ‘—3299.656"] ‘182.025'] ‘—2.759'] ‘—20.589']
TBLo26 L1 311 - [4110  [L11 5,16 417  [319, 31,3  [L1,2 (211, 21,3, 1,11,
- ‘5398.748']  ‘3079.708'] ‘1065.744’] ‘561.883’] 27609.011"] ‘884.406'] 277.779'] 109.451"] 12092.375"] ‘282.125'] ‘—83.756’] ‘—79.607']
TBLO27 L1 61,6, (61,9, 31,8, (11,1, 81,9, 51,5, 11,1, 51,5, 31,2, 1,11, 41,1,
- 122.719] ‘3432.804’] ‘1294.061'] ‘688.991’] ‘1913.341°]  “1810.299'] “757.074’] ‘417.487’) 24.000] ‘46.304] ‘—5.930"] ‘—57.306']
Bl ops 1011 615 218 513  [718  [1,11, 311, 211  [,16  [L11 (211  [214
- ‘3115.825"] ‘2481.023'] ‘789.797']  ‘388.397']  ‘17153.619'] ‘558.722] = ‘152.829']  ‘70.552']  ‘872.965'] ‘228.778']  ‘—3.613'] ‘—26.064']
TBI o9 I5LL 1919  [715  [212  [312 416  [714  [214  [2110, 311  [LL1  [311
- ‘3549.700'] ‘3676.162'] ‘1466.528']  ‘810.891'] 16689.107’] ‘1817.830'] ‘763.579’] ‘467.189’] 11026.043’] ‘323.412'] ‘—38.610] ‘—57.485']
tBroso LVL 215 313 215 (L4 1211 (611  [6L1 213 (L1 [LL1  [L11],
- 689.969’]  “1440.883'] ‘521.747']  ‘265.548']  ‘10910.172'] ‘424.745']  ‘178.014']  ‘95.864’] = ‘1378.543] ‘125.002] ‘—38.493] ‘—42.582]
TBLO31 2L 11, 81,9, 1,11, L11, 911, [4,1,1, 111, 1,13  [10,11  [1,1,1, 1,11,
- ‘110.431"] ‘116.934'] “38.0007] ‘0.909'] 633.083'] ‘65.009'] 24.7107] ‘—5.600'] ‘133.559'] ‘12.878’] ‘4.687'] ‘—12.1007]
Bl oz2 BLL 416  [10,15  [,15  [10,19  [$L6  [313  [2L2  [L18  [LL1  [213  [L11,
- ‘1373.186"]  ‘1243.360'] ‘448.944’] 229.956’] ‘8316.565"]  ‘414.222'] 179.034] 88.697’] “1870.893’]  “90.492’] ‘11.638’] ‘—14.844']
TBL033 | LL3 - L1212 111, LL4  [LL1L  [LL6 1,11, 214  [L11, 1,11, [1,1,3,
- ‘1446.406']  ‘556.279’]  ‘185.070']  ‘85.864']  ‘4367.810'] ‘—196.827'] ‘—67.299'] ‘—27.247'] ‘—1988.852'] ‘134.205"]  ‘19.728'] 0.756']




Sensors 2025, 25, 586 35 of 54
Table A24. Cont.
ICP ICP AMP AMP RAP RAP
Patient m—IlS Iim 10-m-by-  30-m-by- h-Ilf Iih mﬁl)\/l T’m 10-m-by-  30-m-by- hﬁl)v[ f’h mI_{]? I_)m 10-m-by-  30-m-by- hI_{];A I_)h
Yy 10-m 30-m Yy Yy 10-m 30-m y Yy 10-m 30-m Yy
TBlosa LL 1215  [@LL1, L.l 1619 2.1 911  [LL1,  [6L6  [L11  [LL1  [LL1,
- ‘1534.139']  ‘608.336'] 246.840'] 136.863’] 2876.342']  ‘—560.840"] ‘—168.536"] ‘—77.134'] ‘—6995.116'] “118.680'] ‘14.645'] ‘13.331']
TBI 036 &LL 51,7, L1, [L,11  [10110, [10,18  [L11,  [LL4 [10L,10, [LL1  [LL1  [11,
- ‘1070.938"]  ‘6284.400"] 2438.594’] ‘1340.666'] ‘29070.777°] ‘2447.168'] ‘1382.036"] ‘838.793'] ‘—5956.178'] ‘—40.093"] ‘—233.931'] ‘—128.070]
TBLo3y ,oLL 1,11, 61,9, [4.1,6, (1,19, [1,1,2, 11,9, 7,11, 7,11, 61,7, 21,3, 1,11,
- 2029.214'] ‘31745551 ‘1047.098'] ‘548.494’]  ‘26139.197'] ‘692.762’]  ‘231.005"]  ‘122.810"]  ‘3980.163'] ‘186.534']  ‘—50.336'] ‘—22.760']
Bl ozs LL3 13110, [215  [6L5  [4L7 ~ [218  [L11  [615  [,L10, [LL11  [LL1  [L11,
- ‘1137.245"]  ‘3651.071'] “1274.656"] ‘642.687'] 24104.256"] “1418.069'] ‘563.827’] 272.605] '6255.177’]  “163.865'] ‘—51.497'] ‘—89.936']
TBI 0z &LL  [L11 313  [,L5  [L19  [,12 313  [LL1  [L14  [L11  [L15  [611,
- 1246.661°]  ‘1373.530°7] ‘441.113']  ‘210.307']  ‘9913.909'] ‘461.798']  ‘117.948']  ‘45.445']  ‘2137.73¢'] ‘147.763']  '26.651'] 2.691']
TBI oo &LL  [LL3 - [LL1, 412 [L15 314  [L,11 12  [2L1  [L12  [L11  [LL1,
- ‘1058.681']  ‘2388.786'] “928.918’] ‘447.237’] 17070.922’] ‘507.213'] ‘284.378’] 117.861’] ‘—475.122']  “98.532] ‘—51.851"] ‘—46.974']
TBloa &LL o LLL L1122 [6L8  [L,13  [,L1  [LLL  [6L9  [311  [LL4  [311,
- 1725.814°] ‘23222221 ‘887.819’]  ‘490.180°] = ‘15273.113'] ‘218.837']  ‘131.967']  ‘103.582']  ‘—4903.485'] ‘215.685"]  ‘—37.146'] ‘—31.963']
TBLos2 L3 o [LLL o [L12 1,14, 415 411, 3,13, 11, 515  [213 21,7, 1,11,
- ‘23741861  ‘1491.790'] ‘497.446'] 256.675’] 12487.824°] “275.034'] '64.228’] ‘40.204'] ‘3175.527']  “229.795'] ‘7.164'] ‘—5.512']
TBlosz OLL o IL1i  [L11  [LLL  [313  [L11  [LL1  [L,L13  [314  [L12  [LL1  [L11,
- 2253.945"]  ‘583.359'] 232.064°] 124.113’] ‘4389.474’) ‘—742.371"] ‘—232.103'] ‘—113.272"] ‘—7498.478'] “159.959’] 22.316] ‘4.356"]
TBLoaa | LLL [3,1,4, 2,11, (111, 7,11, 211, 21,1, 11, 51,2, 61,1, 21,1, [1,1,1,
- ‘863.795’] ‘712.394’] 274.918’] 159.557’] ‘5306.273']  “165.178'] ‘116.624"] '72.517’] ‘—377.611'] ‘70.514’] ‘—4.925'] ‘—1.222']
TBloss BLL 413 719  [3L2  [9L1  [211  [317  [LL1  [10,1,3, 215  [311  [LL1,
- ‘1084.027°']  “1595.632'] “603.971’] ‘303.459’] ‘11149.290°] “125.979'] 126.147] '65.471'] ‘—2520.470"] “13.006] ‘—52951'] ‘—34.911"]
TBI 0t6 2L1L 218  [,12  [,11 618  [2110, [L14  [LL12  [4L1  [212  [LL11  [411,
- '—376.596'] ‘745.024’]  ‘291.109’]  “153.518']  ‘3834.026'] ‘340.444'] ‘161.518’]  ‘85.585']  ‘—513.709’] ‘—91.210"] ‘—80.802'] ‘—42.38%']
TBLO0g7 LLL o [311 0 [LL1 [1,1,3, 3,17  [7110, [L17 1,13 417  [L,11, 1,11, 1,11,
- 2007.200"]  ‘1124.876'] ‘414.130'] 209.099’] 8677.843’] ‘1.010] ‘42.471"] ‘30.669’] ‘—144.422'] “179.101'] ‘25.246’] ‘8.012']
TBloss L7 L1l 213 L1l [LL1  [L12  [311  [7L1  [414 ~ [312  [812  [516
- 422350 ‘233.857']  ‘75.631']  ‘35.737']  ‘1613.809'] ‘—20.787']  7.269'] ‘—1320']  ‘=316.729'] “43.998'] 5.953']  ‘—11.224']
TBLogo L2 [LL3  [5L1 412, L1, 211, 11,19, 18 218  [L12 31,3, 1,11,
- ‘5376.289'] ‘1656.563'] ‘590.479'] ‘326.338’] 12735.921'] ‘—669.049’] ‘—206.879'] ‘—69.388'] ‘—7883.849'] ‘436.151'] ‘55.406’] 22.745']
TBLOSO L (21,4, 51,2 [10,1,1,  [L1,6, 61,9, 11,1, 11,1, 41,1, 21,4, 21,1, [1,1,1,
- 944.591’] ‘543.931'] ‘177.022'] 74.081’] ‘4487.034’] 7.473] ‘—7.671'] 2.830"] ‘—258.752"] “75.450’] ‘—19.339']  ‘—12.623']
TBLos1 | OLL o 1212 1,11, 21,1, L11, 2,11, 111, 1,11, 1,11, 1,12 1,11, 1,12,
- 1667.820']  “779.306'] ‘325.370"] 186.721’] ‘4609.700']  ‘—239.027"] ‘—43.043’] ‘—4.290'] ‘—3481.606"] “129.049'] ‘40.426'] 15.658']
TBI 052 LL L1 (311 214  [411 2110, 216  [,12  [LL2  [,11  [L11  [L11,
- ‘1006.793"]  “420.971'] ‘163.236"] 90.520’] ‘3439.819'] ‘—111.112"] ‘—6.848'] ‘—0.973"] ‘—412.020"] ‘120.369'] ‘33.371’] 16.747']
TRl oss 1011 418 214 213  [L,15 [8L10, (311,  [LLL 915 (317 (611  [313
- 1936.359’] ‘1055.686'] ‘413.145']  ‘213.149’]  ‘6752.862"] ‘—414.364'] ‘—69.436'] ‘—35.399'] ‘—8195.877'] ‘171.868']  ‘35.312'] '9.527']
TBLO5a LL2 0 [4L3 212 8,11, 3,14 212 L,1,1, 12  [BL1, [213 91,2, 18,1,1,
- ‘97.217] 248.705’] ‘98.762] ‘47.618’] 2007.982']  ‘—69.739'] 2.627'] 9.658'] ‘—1096.791'] ‘—34.805'] ‘—27.100"] ‘—17.537]
TBIoss L6 o [LL1 218 512  [5110, [LL4  [,12 - [411 L1110, 211 [LL1  [411,
- ‘3047.808'] ‘1387.897] ‘532.821']  ‘289.671']  ‘11484.450"] ‘—662.759'] ‘—150.499'] ‘—56.964'] ‘—8744.441'] '240.594’]  ‘28.482"]  ‘14.028']
merose L1 11 212 Bl o 11, o, Y pa1 1 o Bl
- 149263 “26.408'] 7.467'] P 160266'] ‘—13.890"] ‘—7.409'] P ‘~138.2601] ‘17.316']  ‘—5.010'] None
inf’] inf’] inf’]
TBIosy LLL4 1919 (512  [L,15  [,110,  [711  [L1,10, [216  [3110,  [511  [LL1  [3110,
- 226.678’] ‘7011.416"]  ‘2492.357'] “1296.788’]  ‘47415.546'] ‘2779.937’] ‘1061.677'] ‘588.615] 14844.050"] ‘443.905'] ‘—340.513"] ‘—260.502"]
TBLoss L2 o [LL1 - [5L5 (21,4, 3,13 212 13,1,3, 12 7.7  [LL1, 1,11, 2,1,3,
- 2732.924’]  “1432.209'] ‘570.988'] ‘308.583’] ‘10142.468’] ‘—44.341’]  “100.081'] 70.793'] ‘—2675.763'] ‘146.171'] ‘—31.155"] ‘—28.780']
TBIose LL2 212 912 L1  [312  [L11  [L13  [LL2  [L11 L1 [213  [LL1,
- ‘901.127’] ‘383.868'] ‘173.476"] ‘101.238’] 2550.066"] ‘—221.804’] ‘—80.575'] ‘—32.740"] ‘—741.986'] ‘73.161'] ‘0.247"] ‘—6.916"]
TBLO60 > LL o [L12 - [LL1 LL1, L7  [LL5 11,1, L,1,1, 611 (21,4 2,1,3, 1,11,
- ‘1531.158']  “1363.277'] ‘485.037'] ‘218.728’] ‘9299.601']  “471.852'] 188.544"] ‘84.654'] 1608.989’] ‘35.108’] ‘—40.964’] ‘—37.416"]
B 061 ILL4  1BL2 0 [LL1 213 211 [LL7  [L,13  [LL1,  [2L1 211  [LL1  [6L],
- 924.972’] 258.540'] ‘90.891] ‘50.873’] 2468.625"]  ‘—451.396"] ‘—131.510"] ‘—58.715"] ‘—3542.816"] ‘84.490’] 22.054] 16.638’]
TRl 0g2 L4 LLL o [LLL Q015 (316 317  [1,15 311, 917 (313  [LL3 611
- ‘840.774']  ‘401.476']  ‘144.057’]  ’59.231']  2105.820°]  “19.553'] 2.998] 53100  ‘—1379.051’] ‘88.883']  ‘16.904']  ‘13.276']
TBLO63 |, OLL  [L11 - 314 2,13, 611,  [L12, 18,1,1, 12 51,1, 212 51,6, [41,10,
- 1464.237']  ‘1489.315'] ‘475.502']  ‘249.235’]  ‘8515.205]  ‘35.883']  21.126']  20.784']  ‘—1578.509'] ‘40.785']  ‘—59.043'] ‘—64.118']
TBI 0ga L1 [LLL o [L11  [9L4  [5L1  [212 212 [612  [LL1 L1 L1  [L1,1,
- ‘813.256']  ‘274.303']  ‘101.098’]  ‘45.068'] = ‘2593.017'] ‘—79.875] ‘—15.617'] ‘—1.653'] ‘—724.017"] ‘76.839']  ‘30.018']  ‘13.842']
TBLO065 |, OLL  [L12 - [212 (11,2, 613  [L11, 1,12, 91,1  [10,1,7, [L11, 51,4, 21,2,
- 439.493’] ‘465.404'] ‘170.347'] ‘83.113'] ‘3353.609']  “120.083'] ‘57.380’] 24.896'] ‘—13.545'] ‘10.605’] ‘—22987"] ‘—22.768']
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Table A24. Cont.

ICP ICP AMP AMP RAP RAP
Patient m—IlS Iim 10-m-by-  30-m-by- h-Ilf Iih mﬁl)\/l T’m 10-m-by-  30-m-by- hﬁl)v[ f’h mI_{]? I_)m 10-m-by-  30-m-by- hI_{];A I_)h
Yy 10-m 30-m Yy Yy 10-m 30-m y Yy 10-m 30-m Yy

TBL 066 &1L 413 313  [10,1,2  [51,2 2,11, 21,3 13,1,2, [7,1,2, 1,1, 1,11, 1,11,

- 2979.779']  “1368.894']  ‘531.940'] ‘28.0007] ‘9401.210"] ‘—896.379"] ‘—243.850"] ‘—102.689'] ‘—11537.109'1'150.551'] ‘—66.236"] ‘—63.698’]
TBI 0y 4V4 71,1, 312 1212 8110 [2110, [L13  [6L1 (215  [LL1 1211  [,12

- ‘384.851’] 385.927'] ‘133.193"] 78.913] ‘3470.167°]  “158.461'] ‘82.468’] ‘51.740’] ‘340.122’] 33.999'] ‘0.999'] ‘—4.503"]
TBLoes ,rLo - [L11 - [L12 21,1, 3,11,  [L13 41,4, 312 511 313 1,11, 2,1,1,

- ‘3658.594]  “1229.778'] ‘436.566'] 263.0007] ‘11219.746"] ‘—217.419] ‘—0.259’] ‘13.244'] ‘—6317.538] “296.879'] ‘—1.660'] ‘—32.790]
TBILogo 9LL L4 918  [LL1  [LL13  [L12  [4L7  [717  [511  [10,L1  [219 = [L14

- ‘1746.409]  ‘4544.290']  ‘38.000’] ‘753.053’] ‘36583.517’] ‘1296.419'] ‘514.515] ‘305.057’] ‘4522.254’]  “15.428’] ‘—139.607"] ‘—129.456’]
BLO70 L L 14 914, 512, (51,5, L1, 1,11, 51,1, 1,13, 21,1, [1,1,1, 7,1,2,

- 371.028']  ‘126.313']  ‘55.252']  ‘25.958']  ‘866.349’] ‘—26.652'] ‘—4.945'] ‘4785  ‘—282.991"] ‘494127  ‘19.7527]  “12.056']
tBlon  9L2 L4 B4 [L,LL, 0 [L,L8 212 215 313  [$13 (L1l  [LL10, [L11]

- ‘38.752] '6316.318"]  ‘2280.672'] “1201.920°] ‘44941.599] ‘2622.449’] ‘1233.442'] ‘717.558’] 2079.592°] ‘—38.552] ‘—347.219'] ‘—249.390]
tBLO72 %L1 719 [L11 LL1, LL2 619 213 1,11,  [8110, [311, 2,1,1, 13,1,1,

- 701.818’]  ‘36.000]  ‘233.732’]  ‘119.949’]  ‘3653.861'] ‘288.003'] ‘128.512°]  ‘75.537’]  ‘1476.957'] ‘75470 = ‘—7.223] ‘—2.434']
Bl o7 L3 213 819 Ll [LL9  [BL5 7Ll 5.1,  [LLl, L1l 413  [513

- ‘6044.737']  ‘5265.377'] “1972.521’] ‘1102.534’] ‘31152.953"] ‘—1026.621"] ‘“163.573'] 226.264"] ‘—19788.132'1'602.585'] ‘—41957’] ‘—96.271']
TBloza L3 ILL2  [LL1  [LL1  [312  [6L10, [2L2  [LL1  [9L1  [LL1  [4L17  [L13,

- 2033.327'] ‘2353.766'] “658.238’] ‘365.060’] ‘9292.142"]  ‘—38.469] ‘—1.884"] 7.819'] 1484.169°]  ‘72.476’] ‘—44.283'] ‘—41.262']
tBLo7s 0L - [81,10,  [1,1,1, (11,1, 21,8, 13,1,6, 21,1, 1,11, 1,12, 31,3, 1,11, 21,4,

- “1006.698'] 40.000'] ‘447.754"] 254,442’ 7379.604]  ‘244.269'] ‘110.424"] ‘63.6107] 1187.449'] ‘93.193’] ‘19.821'] 16.645']
T8I 076 6LL  ILL2  [515  [3L6 219  [6L5  [613  [,13 411  [311  [2L1  [LL1,

= 2015.329']  ‘3795.065"] ‘12814801 ‘657.078']  ‘32735.636'] ‘668.983]  ‘223.408] ‘113.712] ‘73452781 ‘37.733] ‘—171.251'] ‘—154.354]
tBLo77 2LL o IL11 - [416 211, LLs 1313  [LL2 214 L1  [BL1, 41,2  [1,1,10

- 2091.058'] ‘2098.357] ‘694.607']  ‘347.893']  ‘16326.011'] ‘643.225']  ‘193.850']  ‘88.605']  ‘3221.43¢’] ‘119.313'] ‘—75.504’] ‘—38.655]
rozs  3LL o LLL 214,12 411 [3L9 216  [212  [2L1 [L11,  [,13  [212

- 1499.557°]  ‘561.375'] 208.265'] 113.232] ‘3817.208"] ‘—312.053"] ‘—56.841'] ‘—9.575] ‘—4448.552'] “131.781'] ‘—3.660"] ‘—12.584']
Loz 19L3  ILLL 213 [212  [415  [,11,  [L11  [2L1  [211  [4L1  [314  [212

- 499.800"]  ‘989.121']  ‘313.918’]  ‘149.683']  ‘8679.081] ‘140.132’]  ‘78511]  ‘56.192’]  ‘—36.576'] = ‘37.465']  ‘—45.035'] ‘—54.737']
TBL0s0 oL L 1311, 81,2, 31,4, 119, 11, 4,11, 1,11, 81,2, 1,12, 1,11, 3,11,

- ‘8519.552'] ‘2914.104'] ‘1121.896'] ‘621.151’] ‘23574.334'] ‘—1450.861"] ‘—513.780"] ‘—215.740"] ‘—9852.278'] ‘532.785’] ‘—6.488'] ‘—65.627']
TBIos1  6L2 818 516 311  [819  [3L4  [313  [LL1 (718  [LL1  [LL1  [213

- ‘—192.512'] ‘5232.541'] ‘1827.975'] “900.265’] ‘41173.806"] “1931.642"] “771.634] ‘385.392’] ‘3577.089]  “49.576’] ‘—249.189'] ‘—201.320]
TBLos2 O0L7 [2,1,2, 1,11, .11, 211, [1,1,3, L1,1 10,15  [L1,1, 1,11, [1,1,3, 21,1,

- 30.0001]  ‘324.380"]  ‘121.923']  ‘72.337']  ‘2085.297'] ‘—106.536'] ‘—21.566'] ‘—15568] ‘—902.423'] ‘765421  ‘—0.877'] ‘—2.428']
TBI 083 &L3 414 1613  [L11  [L13  [,11  [LL1 L1131 [Ll6  [211  [L11

- ‘1950.808"]  “615.931'] ‘22.000] ‘94.761’] ‘4618.665"] ‘—480.234"] ‘—177.361'] ‘—83.381'] ‘—3100.572'] “182.994'] ‘45.060’] ‘5.575"]
TBIoga 1913 [LLL 313  [7L4  [,13  [LL1 711 [211  [211 [L11 L1 [LL7,

- 24527021  ‘254.656’]  ‘160.261’]  ‘26.000]  “992.612] ‘—724.082"] ‘—277.703'] ‘—150.735"] ‘—5710.491'] '227.432"]  ‘38.168']  ‘—13.910']
TBI0ss L1 19L& 813  [211  [LL6 1817  [,15  [,13  [8L9 [L11  [,12  [LL1,

- ‘1617.882]  ‘3805.534'] ‘1284.198’] ‘639.988'] ‘32483.590"] ‘282.638'] 273.116] 156.721'] ‘—1157.248'] ‘—56.330"]  ‘—220.808'] ‘—154.243’]
T8I 0s6 &LL 419 314  [312 (713 41,1 (213  [412 1011 [L12  [311  [312

- 3759.659'] ‘4333.346'] ‘1525.961°] ‘733.449’]  ‘30851.610°] ‘43.771']  ‘84.952']  ‘—2.803'] ‘—7510.855'] ‘148.433'] ‘—142.687'] ‘—154.657']
TBL 087 L1 11,2 (21,1, (11,2, 3,17, [4,1,2, 21,1, (116 3,13 1,1, 11,1, [1,1,3,

- ‘3330.323']  ‘2362.099'] ‘1097.819'] ‘649.338’] ‘15117.197°] ‘—1591.208"] ‘—348.556"] ‘—92.731'] “—16709.147']'99.391'] ‘—141.305"] ‘—131.817’]
TBIloss ©&L2 L4 313 211,  [LL18  [711  [315  [L11  [10,L2  [LL11  [5L1 = [211,

- ‘—3676.644'] ‘'5733.186'] ‘1977.226"] “964.577’] ‘47020.336"] ‘1185.601'] ‘477.970] 233.392’] “1892.864] ‘—719.332] ‘—385.957'] ‘—386.385]
TBLOS9 L LL [1,1,2 (31,3, 41,4, (11,2 1,11, 31,3, (1,12 61,1, 1,1, [1,1,2,  [21,10,

- ‘5410.816"] “2767.672']  ‘830.000'] 499.134’] 26948.639'] ‘—898.413"] ‘—143.604"] ‘—26.113'] ‘—7917.505'] ‘361.620'] ‘—24.255"] ‘—63.433"]
TBIo9o LL2 1217 512  [L,L1 418  [713  [312  [212  [713  [LL1,  [213  [3L8

- ‘1496.104]  ‘2391.440'] ‘876.949'] ‘473.946’] 20812.777’] ‘605.383'] 270.077] 171.229°] 1453.419’]  '212.776'] ‘—36.092"] ‘—52.744"]
TBloor L2 712 [LL6 (612 815 517 (712 [LL1,  [418  [618  [313 212

- ‘—4326.074'] ‘6128.983'] ‘2341.587'] ‘1206.340"] ‘45969.072"] ‘2342.235"] ‘1126.075'] ‘621.492'] ‘9385.585"] ‘—668.544"] ‘—487.607'] ‘—315.631']
TBI 092 LOLL  [LL5 - [514  [313 (7.4  [314  [L,13 214  [315  [712  [312  [LL1,

- 2866.928']  ‘3760.560'] ‘1400.699’] ‘733.603'] ‘32217.740°] ‘1543.450'] ‘685.049’] ‘393.198’] ‘5891.441"]  “261.090'] ‘17.6117] ‘—56.554']
tBI o3 1011 [L12  [LL1  [L,L1 216  [311  [515  [LL4 [3L10, [L,12 212  [313

- 3214.846'] ‘51185411 ‘1505.439’] ‘757.552’]  ‘46132.657'] ‘1003.610]  ‘24.000"]  ‘180.726']  ‘10307.165'] ‘279.230']  ‘—66.665"] ‘—68.089']
TBL09a 211 161,06, 41,2, 211, 7,13, 1,11, 13,1,2, 111, 1,13, 11, 21,3, 1,11,

- ‘1137.523']  “394.269'] ‘123.858’] ‘65.781'] ‘3598.210°] ‘54.721'] ‘—7.700"] ‘—1.032'] 1028.863"]  “127.756'] ‘7.444'] ‘—6.719']
T8I 095 ILL2  [LL1 311 1,12 [10,1,4  [L1,3  [916  [2110, 10,2,  [419  [LL1  [LL1,

- 772.852’] 2364.346’]  ‘910.020'] ‘520.535’] 20958.908"] “126.146'] ‘34.000] ‘91.484'] ‘—1725.344] “9.800'] ‘—138.419'] ‘—117.862']
TBL 096 ,LLS8 L1 511 (21,2, 414  [LL2  [5L1, 5,11,  [L1L1,  [11,4 16,1,2, 2,1,1,

1767611 96413  ‘16.524] 62401 ‘71426471 ‘342041 ‘—11.838] ‘—5.1107 ‘11936071 ‘4547  ‘—21.070'] ‘—4.530]
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Table A24. Cont.
ICP ICP AMP AMP RAP RAP
Patient m—IlS Iim 10-m-by-  30-m-by- h-Ilf Iih nﬁéw T’m 10-m-by-  30-m-by- hﬁl)v[ f’h mI_{]? I_)m 10-m-by-  30-m-by- hI_{];A I_)h
Yy 10-m 30-m Yy Yy 10-m 30-m y Yy 10-m 30-m Yy
TBL 097 , LL3 2,17 [2,1,3, 51,7, 117, 31,3, 1,11, 1,11, 11, 21,1, 1,11, (1,14,
- ‘17721481  “539.291'] 254.764] 155.859’] ‘2955.267'] ‘—861.808"] ‘—208.121"] ‘—77.235'] ‘—8073.485'] ‘“164.963'] ‘—8.749'] ‘—11.313]
TBI 09 8L2 L1212 313  [219 916 216  [LL6 (614 [311 212  [515
- ‘3516.109]  “1453.918']  “495.557’] 271.226’] 7701.261°]  ‘—722.735"] ‘—292.401'] ‘—156.646"] ‘—7365.467'] '291.945] 7.306"] ‘—6.385"]
TBLoge [OLL - [41,6 — [214 L11, 213  [515 [7.1,5, 21,2 913  [414 2,1,1, [1,1,1,
- ‘4428.079']  ‘1044.266']  ‘381.526'] ‘201.1127] ‘7677.228']  ‘—1355.549"] ‘—465.568"] ‘—207.105"] ‘—13088.411'] '28.276'] ‘—31.254’] “—30.302']
Bl 100 VL 511 (2110, [619  [3110,  [219  [4L10, [6L9  [319  [4L6  [311  [L12
- ‘—888.900"] ‘5978.417'] ‘2357.758’] ‘1231.232'] ‘35412.892’] ‘2860.168'] ‘1285.253"] ‘671.428'] ‘4643.162]  ‘—204.319] ‘—229.001'] ‘—229.658’]
L1 oL 18,16 (21,2, L1, (11,2, 1,13, 16, 1,1,3  [71,10, [L,12 [1,1,1, [1,1,1,
- ‘887.794']  ‘32.000']  ‘257.635']  ‘146.425'] ‘3901.882] ‘135.282’]  ‘60.055']  ‘51.528]  ‘731.290']  ‘55.751’] “3.045'] '—9.219']
TBL102 512 11, 111, L2, (1,16, [6,1,2, 1,11, 211, 31,5, 7,11, [1,1,3, 1,11,
- ‘2788.047°'] ‘1168.088'] ‘390.724’] 219.561’] 10221.411"] ‘409.388'] ‘211.116] 124.576’] 4170.125’]  “166.367'] ‘1.027"] ‘—14.126']
T8I 103 &L2 8L 913  [412  [1011  [L19  [715  [3L1 1011  [612  [211  [LL1,
- 2542.697°]  ‘8422.112'] ‘2832.935’] ‘1384.877'] ‘59606.024’] ‘4707.190'] ‘1614.544’] ‘791.598'] 27946.372’]  “55.531’] ‘—193.827'] ‘—193.076]
TBL104 |, &L2 7110, 313, (11,1, 1,14, 1,11, 1,12, 2,12, 91,1, 1,12, 11,2 1,11,
- ‘3715.331']  “1789.902'] ‘601.941'] ‘337.912’] ‘16471.188’] “486.303'] ‘80.663’] 22.752'] 7244.001'] ‘242.016'] ‘1.158] ‘—14.056’]
tBI 105 6L1L  L12 313  [,11  [LL8  [L,12  [L,12  [213 (312  [LL1  [LL1  [512
- 2386.668"]  ‘1976.162']  “770.934’] 374.930’] “13743.443’] ‘737.405'] ‘359.042] 184.929’] 14.000] 204.868’] ‘—3.069'] ‘—31.658']
BL106 1L 13,1,5 912, 3,15, 1,19, 81,9, 2,11, 3,11, [4,1,1, 11, 21,1, [1,1,5,
- ‘5618.687'] ‘1840.146'] ‘696.184'] ‘330.1817] 16364.647] ‘—964.441"] ‘—407.916"] ‘—209.424'] “—2092.997’] ‘458.617'] ‘30.024'] ‘—16.1507]
B 107 OLL 516 214  [L,L1  [LL6  [5L1  [211  [LL1  [8L1  [LL1  [LL1  [LL1,
- ‘6173.907'] ‘1661.255'] ‘574.528’] ‘318.744"] ‘14679.800"] ‘—602.737'] ‘—215.790'] ‘—105.277'] ‘—466.665'] ‘545.032’] ‘86.081’] 11.488’]
B 108 ILL3 0 LLL o [L,L1,  [,13  [218  [L1,1  [313  [LL1, (L1 211  [LL1  [LL1],
- 2004.242'] ‘648.972’]  ‘266.534’]  ‘140.861]  ‘5369.098'] ‘—625.873'] ‘—153.625"] ‘—72.004'] ‘—5104.216'] ‘96.404'] = ‘—25264’] ‘—32.791']
TBI 100 1613 [LL1, {1012  [§14  [LL8 313  [L11  [LL1  [313  [L16  [LL1  [61L1,
- 276.721'] ‘335.184’] ‘107.985’] 45.989’] 771.134’] 14.186'] 22.349] 13.994'] ‘—79.196'] ‘55.569’] 7.995"] ‘—5.137"]
T8I 110 | &L6 418 819  [5L5  [LL7 615 (21,10, [3L1 (811  [L,12  [LL5  [314
- 44703921 ‘2406.468'] ‘812.468']  ‘440.770'] = ‘18946.739'] ‘369.640'] = ‘94.481']  ‘59.186'] = ‘917.587']  ‘367.743'] ‘—35.338'] ‘—65.701']
L, 2L 1511, L11, LL1, 81,2, 511, 1,11, (51,5 31,9, 1,11, 1,11, 1,11,
- ‘—884.091"] ‘3183.328'] ‘1111.862"] ‘574.672’] 16406.020'] “1905.199'] ‘702.719'] ‘359.829’] '6931.459] ‘—224.253’] ‘—191.500"] ‘—121.690']
eI 12 BLL 1217, 513 216  [916  [9110, [411,  [LL2 (517  [311 1,12  [L13
- “1860.804] ‘1897.303'] “838.261'] 485.937’] ‘8815.433"] ‘—324.208"] ‘81.606'] 77.601] ‘—9640.931'] ‘58.025] ‘—87.276'] ‘—78.763']

Appendix E. Residuals, ACE, and PACF Plots of Residuals and Analysis

This appendix contains the figures and tables for the evaluation of the median optimal
ARIMA models. Included are comparative ACF/PACEF plots of the residuals (original vs.
post-ARIMA) for a single patient’s ICP and AMP data at both minute-by-minute and hour-
by-hour resolutions. Additionally, the variance of the overall data, the residual variance,
and the count of significant spikes are provided both for an individual patient and as a
summary of the entire population to demonstrate effective data modeling.

ACF, autocorrelative function; AMP, pulse amplitude of ICP; ARIMA, auto-regressive
integrated moving average; ICP, intracranial pressure; PACEF, partial ACF; RAP, compen-
satory reserve index.

The figure corresponds to the ACF and PACF plots of residuals of the ICP signal (a)
before and (b) after ARIMA (5, 1, 1), demonstrating that the model moderately accounts for
the ICP structure.

The figure documents the ACF and PACEF of the residuals of the ICP-mapped ARIMA
structure in the (a) 10-min-by-10-min, (b) 30-min-by-30-min, and (c) hour-by-hour relationships.

The figure corresponds to the ACF and PACEF plots of residuals of the AMP signal (a)
before and (b) after ARIMA (3, 1, 5), demonstrating that the model moderately accounts for
the AMP structure.
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Figure A1. ACF and PACEF plots for ICP at minute-by-minute resolution for an individual. (a) RAP
pre-ARIMA plots, (b) RAP post-ARIMA (5, 1, 1) plots.
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Figure A2. ACF and PACF plots for ICP at different resolutions for an individual. (a) At 10-min-by-
10-min resolution with ARIMA (2, 1, 2), (b) at 30-min-by-30-min resolution with ARIMA (2, 1, 2),
(c) at hour-by-hour resolution with ARIMA (2, 1, 2).
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Figure A3. ACF and PACF plots for AMP at minute-by-minute resolution for an individual. (a) AMP
pre-ARIMA plots, (b) AMP post-ARIMA (3, 1, 5) plots.
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Figure A4. ACF and PACEF plots for AMP at different resolutions for an individual. (a) At 10-min-
by-10-min resolution with ARIMA (2, 1, 3), (b) at 30-min-by-30-min resolution with ARIMA (2, 1, 2),
(c) at hour-by-hour resolution with ARIMA (1, 1, 1).

The figure documents the ACF and PACF of the residuals of the AMP-mapped ARIMA
structure in the (a) 10-min-by-10-min, (b) 30-min-by-30-min, and (c) hour-by-hour relationships.

This figure documents the ACF and PACEF of the residuals of RAP-mapped AMIRA
structure at the minute-by-minute resolution for a particular patient.
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Figure A5. ACF/PACEF plots for TBI_071 patient at minute-by-minute resolution.

Table A25. Summary of data variance, residual variance, and significant spike counts (single patient
at minute-by-minute resolution).

Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes PACF_Model_Spikes
0.094394 0.067213 7 2 1 1

Table A26. Summary of data variance, residual variance, and significant spike counts (single patient
at hour-by-hour resolution).

Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes PACF_Model_Spikes
0.022591 0.026622 5 4 0 0

Table A27. Summary of data variance, residual variance, and significant spike counts (all patients at
minute-by-minute resolution for ICP).

Patient Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes = PACF_Model_Spikes
TBI_001 25.48364436 3.63261979 40 10 6 6
TBI_002 25.99239918 3.778211379 40 10 3 4
TBI_003 5.832911742 0.356290631 40 6 3 3
TBI_004 1.54749846 2.001749317 6 7 0 1
TBI_007 22.17284736 3.71386495 40 2 0 0
TBI_008 22.45823401 0.697897216 40 3 2 2
TBI_009 23.04243095 0.596444037 40 12 7 7
TBI_010 29.64771327 0.891392079 40 11 8 7
TBI_011 22.05212994 4.220736902 40 25 4 4
TBI_012 8.013360239 1.38645657 40 9 5 5
TBI_013 11.92649002 1.011265432 40 5 0 0
TBI_014 206.3275595 0.610974052 40 3 1 1
TBI_015 29.38595765 1.487679455 40 8 3 6
TBI_016 28.67873462 3.962485758 40 11 2 3
TBI_017 4.884287991 1.247570184 40 9 5 5
TBI_018 30.26943771 0.710362582 40 9 2 2
TBI_019 64.84611485 3.392462708 40 13 4 7
TBI_020 34.66444142 0.812315036 40 10 8 7
TBI_021 12.99958649 0.304253507 40 8 8 10
TBI_022 41.26722995 0.78598675 40 16 4 4
TBI_023 8.39310931 0.96030019 40 6 0 0
TBI_024 9.937736888 0.737050098 40 6 0 0
TBI_025 5.6131576 0.131189605 40 5 1 1
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Table A27. Cont.

Patient Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes = PACF_Model_Spikes
TBI_026 13.6038047 3.197814484 40 16 3 3
TBI_027 218.8180735 11.78564682 33 2 0 0
TBI_028 44.69377387 3.839957714 40 9 8 13
TBI_029 153.6065005 2.604778911 40 11 5 5
TBI_030 17.70042196 1.864784494 40 5 1 1
TBI_031 147.8990394 3.600599954 19 14 0 1
TBI_032 123.15142 4.647488278 40 11 4 5
TBI_033 6.812439381 1.480322155 40 4 0 0
TBI_034 5.133167901 0.410004545 40 6 5 4
TBI_036 23.65478526 1.112019449 40 21 16 18
TBI_037 26.11314189 4.098089686 40 15 3 3
TBI_038 30.29076485 2.577853074 40 13 7 12
TBI_039 13.49696824 2.099302804 40 7 1 1
TBI_040 18.745057 1.784692725 40 17 0 0
TBI_041 11.31047671 1.123032534 40 14 7 7
TBI_042 24.22023835 4.499294917 40 9 4 4
TBI_043 2.586822103 0.35153109 40 11 2 2
TBI_044 35.55668495 1.533421164 40 4 1 1
TBI_045 18.5711965 1.337769803 40 8 5 5
TBI_046 47.47698993 1.477596291 40 6 0 0
TBI_047 25.41274556 2.654093577 40 9 3 4
TBI_048 41.20398957 2.262642035 40 6 1 3
TBI_049 6.126654845 0.713296488 40 13 4 3
TBI_050 7.785341194 2.311403027 37 5 4 4
TBI_051 139.8629741 1.426159636 40 3 1 1
TBI_052 33.71746377 1.110466773 40 9 0 0
TBI_053 10.76379679 0.356262064 40 11 3 3
TBI_054 7.084499918 0.976554498 40 8 3 4
TBI_055 10.90634253 1.650016163 40 13 4 5
TBI_056 0.804043501 0.891392712 3 3 0 0
TBI_057 48.87681393 2.8263661 40 16 2 2
TBI_058 16.03008498 0.809140693 40 9 3 3
TBI_059 10.0463926 0.446258303 40 5 0 0
TBI_060 21.93151746 2.3508094 39 4 0 0
TBI_061 1.574957371 0.460113272 40 7 0 0
TBI_062 21.71215414 0.904106032 40 9 4 5
TBI_063 7.333539552 1.204839187 40 10 3 3
TBI_064 8.221775923 2506947257 40 10 2 3
TBI_065 14.54504238 1.197050539 40 11 3 4
TBI_066 8.034627278 0.383159191 40 13 5 6
TBI_067 5.070425724 1.817565311 40 6 2 2
TBI_068 6.864396674 0.848308599 40 14 0 0
TBI_069 35.0070712 5.026144838 40 22 0 0
TBI_070 48.96745992 1.081846427 40 2 0 0
TBI_071 15.38350768 1.259515207 40 12 4 3
TBI_072 47.61696074 1.285824876 40 6 4 5
TBI_073 11.84341251 0.814264356 40 13 3 3
TBI_074 10.06801951 1.190310723 40 9 1 2
TBI_075 37.67464427 4.419093731 40 5 2 2
TBI_076 25.36052945 3.646337932 40 21 6 4
TBI_077 21.07924879 3.761648412 40 7 3 2
TBI_078 10.01677573 1.160522021 40 6 1 1
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Table A27. Cont.

Patient Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes = PACF_Model_Spikes
TBI_079 13.38632912 1.168007936 40 21 2 2
TBI_080 12.18723944 1.092091969 40 15 1 1
TBI_081 25.36549213 3.134550556 40 16 6 7
TBI_082 18.58540624 0.866971965 40 5 0 0
TBI_083 6.191120424 0.522826621 40 8 0 0
TBI_084 2.633460518 0.084481815 40 8 1 1
TBI_085 21.4099627 2.655752348 40 17 4 4
TBI_086 18.14679215 1.561314381 40 12 2 2
TBI_087 17.38688637 0.275156772 40 8 0 0
TBI_088 13.49917336 2.496028662 40 11 5 4
TBI_089 11.29641513 2.409699601 40 17 0 0
TBI_090 33.01801939 2.613315144 40 12 3 3
TBI_091 53.72778243 3.253103561 40 18 11 10
TBI_092 31.4890452 3.335741747 40 12 4 4
TBI_093 44.3391171 13.77693402 40 14 3 5
TBI_094 5.349989672 1.557513561 40 12 1 1
TBI_095 17.53414062 2.005922702 40 11 6 6
TBI_096 4.949354682 5.212009008 2 2 0 1
TBI_097 3.614231929 0.188247537 40 10 0 2
TBI_098 5.924771008 0.363675998 40 8 0 0
TBI_099 2.475207307 0.268928986 40 17 1 1
TBI_100 89.16902401 1.661882098 40 8 5 4
TBI_101 87.41789332 1.418430854 40 5 0 0
TBI_102 14.0938089 1.427338644 40 14 4 3
TBI_103 45.75361448 3.819852429 40 9 4 4
TBI_104 20.5961258 2.816142324 40 13 0 1
TBI_105 50.47620147 1.197399697 40 10 4 5
TBI_106 4.879338329 0.657268511 40 18 2 2
TBI_107 40.24937834 0.962644128 40 18 3 3
TBI_108 2.319360483 0.353460811 40 10 0 1
TBI_109 8.947088338 1.604656406 16 6 1 5
TBI_110 8.727249953 1.257566832 40 16 0 0
TBI_111 62.13325546 5.096635243 40 6 3 3
TBI_112 73.74613264 0.351517298 40 5 2 3
Table A28. Summary of data variance, residual variance, and significant spike counts (all patients at
minute-by-minute resolution for AMP).
Patient Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes =~ PACF_Model_Spikes
TBI_001 1.343340132 0.328208076 40 16 3 4
TBI_002 2.293270228 0.277561938 40 4 2 2
TBI_003 0.033950971 0.0034604 40 14 2 2
TBI_004 0.098123741 0.120967039 0 0 1 1
TBI_007 0.421577478 0.065190038 40 8 3 3
TBI_008 0.043892222 0.005038925 40 11 1 1
TBI_009 0.996906165 0.032187021 40 15 6 6
TBI_010 6.347041183 0.129213776 40 6 2 3
TBI_011 1.312277596 0.213840339 40 15 3 3
TBI_012 0.462132863 0.080305173 40 7 0 0
TBI_013 1.157081169 0.118919687 40 9 0 0
TBI_014 6.235668395 0.039473745 40 8 2 2
TBI_015 0.373739971 0.036940885 40 16 7 14
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Table A28. Cont.

Patient Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes = PACF_Model_Spikes
TBI_016 0.535529751 0.173978637 40 12 3 6
TBI_017 0.129681475 0.05467037 40 16 8 10
TBI_018 0.244679665 0.031328531 40 10 4 6
TBI_019 0.53535602 0.043162029 40 9 2 2
TBI_020 0.418860809 0.012523453 40 10 6 6
TBI_021 0.360069051 0.009375457 40 8 3 3
TBI_022 0.087812623 0.00649149 40 17 4 3
TBI_023 0.298002913 0.015042653 40 8 2 3
TBI_024 0.375828388 0.022713953 40 9 4 4
TBI_025 0.014143672 0.000972211 40 6 0 0
TBI_026 0.870126311 0.337256464 40 20 4 4
TBI_027 11.92212472 0.571789381 34 2 0 0
TBI_028 0.428491724 0.072199329 40 5 4 4
TBI_029 9.222276076 0.702653347 40 12 3 3
TBI_030 0.678317463 0.09170899 40 9 3 1
TBI_031 3.879065959 0.131475377 22 9 3 6
TBI_032 2.693738731 0.156684223 40 9 3 4
TBI_033 0.031237055 0.013479086 40 9 5 5
TBI_034 0.013505549 0.000891985 40 10 6 6
TBI_036 0.458545478 0.033138241 40 33 20 19
TBI_037 0.726783589 0.112287341 40 16 7 7
TBI_038 1.415467662 0.158541956 40 10 2 3
TBI_039 0.754187829 0.129954483 40 4 1 1
TBI_040 2.199989172 0.060258868 40 11 0 0
TBI_041 0.312547527 0.025969651 40 15 6 6
TBI_042 0.387784218 0.176371158 40 12 4 4
TBI_043 0.009088899 0.002822772 40 12 3 3
TBI_044 1.406372939 0.048415965 40 5 0 0
TBI_045 0.357953808 0.028984966 40 9 7 7
TBI_046 2.831491488 0.046052391 40 5 0 0
TBI_047 0.603317169 0.055163774 40 16 8 10
TBI_048 0.229417096 0.028562629 40 6 3 3
TBI_049 0.092535061 0.012429916 40 16 5 5
TBI_050 0.131344992 0.048349435 40 10 5 5
TBI_051 0.272216109 0.005253891 40 8 3 3
TBI_052 0.178086479 0.041510795 40 9 0 0
TBI_053 0.17703771 0.007135714 40 13 9 11
TBI_054 0.120238129 0.01331251 40 5 1 1
TBI_055 0.04458949 0.004439325 40 8 4 5
TBI_056 0.014316729 0.012281975 3 2 0 0
TBI_057 3.569392538 0.197457524 40 22 10 11
TBI_058 0.440942255 0.029971244 40 9 3 3
TBI_059 0.06431319 0.032033161 40 16 1 3
TBI_060 0.948292182 0.10982955 40 5 0 0
TBI_061 0.007634516 0.003148153 40 13 1 1
TBI_062 0.155563678 0.011886941 40 8 4 4
TBI_063 0.307571865 0.03461314 40 8 0 0
TBI_064 0.18061462 0.020803133 40 8 0 0
TBI_065 0.753440961 0.057827397 40 14 7 6
TBI_066 0.073513213 0.005912603 40 17 7 8
TBI_067 0.979082546 0.086219373 40 3 1 1
TBI_068 0.641463939 0.013394464 40 13 1 1
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Table A29. Summary of data variance, residual variance, and significant spike counts (all patients at

minute-by-minute resolution for AMP).

Patient Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes = PACF_Model_Spikes
TBI_069 1.318329346 0.101846174 40 23 1 1
TBI_070 0.185022046 0.02727362 40 4 0 1
TBI_071 2.530668095 0.067842403 40 10 3 3
TBI_072 6.710503387 0.214237447 40 14 8 10
TBI_073 0.484636139 0.011947037 40 12 7 7
TBI_074 0.277096685 0.095297557 40 18 7 7
TBI_075 1.486125557 0.116571414 40 4 0 0
TBI_076 0.645418044 0.148216566 40 23 2 2
TBI_077 0.629424092 0.133246137 40 9 1 1
TBI_078 0.019209186 0.00221262 40 8 1 1
TBI_079 0.417676325 0.057531593 40 14 3 3
TBI_080 0.044791897 0.017220055 40 21 1 1
TBI_081 1.183804719 0.082886153 40 15 8 8
TBI_082 0.103996832 0.018424478 40 7 0 0
TBI_083 0.04395137 0.013358484 40 16 2 2
TBI_084 0.016857147 0.007414626 40 17 1 1
TBI_085 0.61498222 0.052421746 40 17 9 9
TBI_086 0.190603289 0.026546363 40 10 5 5
TBI_087 0.373547952 0.010920271 40 15 2 1
TBI_088 0.427141836 0.068219118 40 11 3 3
TBI_089 0.198899172 0.019610697 40 12 2 3
TBI_090 1.384396796 0.077851899 40 14 10 12
TBI_091 3.328747757 0.130482218 40 16 10 9
TBI_092 1.823582958 0.121793733 40 11 2 1
TBI_093 0.630876397 0.199425558 40 20 2 2
TBI_094 0.280304083 0.148654574 40 6 0 0
TBI_095 0.359190123 0.043814102 40 13 5 5
TBI_096 0.140210439 0.252006422 3 4 0 0
TBI_097 0.063993143 0.003781466 40 9 1 1
TBI_098 0.034260407 0.010855786 40 19 3 3
TBI_099 0.022710951 0.004343759 40 17 2 1
TBI_100 4.757124998 0.09389492 40 13 6 7
TBI_101 0.44398893 0.111418776 40 12 6 6
TBI_102 3.341908617 0.229569975 40 14 3 3
TBI_103 4.664995835 0.417131024 40 16 7 6
TBI_104 0.582508647 0.31994129 40 17 2 3
TBI_105 2.726413542 0.056364906 40 9 3 3
TBI_106 0.077123613 0.042809749 40 27 1 1
TBI_107 0.079593997 0.054014426 40 17 7 7
TBI_108 0.040924208 0.010816167 40 8 0 0
TBI_109 0.078921504 0.052309563 26 5 1 1
TBI_110 0.275766739 0.069077438 40 14 1 1
TBI_111 7.722836378 0.385442009 40 7 2 3
TBI_112 0.274307466 0.008567303 40 13 4 4




Sensors 2025, 25, 586

45 of 54

Table A30. Summary of data variance, residual variance, and significant spike counts (all patients at

minute-by-minute resolution for RAP).

Patient Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes = PACF_Model_Spikes
TBI_001 0.1412515 0.070159938 40 17 6 6
TBI_002 0.129468786 0.070973082 22 6 4 5
TBI_003 0.303736781 0.099534592 40 8 2 2
TBI_004 0.081088963 0.081802522 1 1 0 0
TBI_007 0.220394564 0.104454374 25 4 3 4
TBI_008 0.243247676 0.131983562 11 4 2 2
TBI_009 0.265758508 0.128971031 40 15 3 2
TBI_010 0.065567075 0.041179102 8 4 0 0
TBI_011 0.156122664 0.075908695 40 18 10 9
TBI_012 0.137185019 0.062191102 21 4 2 1
TBI_013 0.038380234 0.020769834 6 0 0
TBI_014 0.226988344 0.097216753 20 6 7 7
TBI_015 0.249062888 0.114315375 40 9 7 7
TBI_016 0.245432782 0.103552744 40 10 3 3
TBI_017 0.270157474 0.141310431 33 1 1 2
TBI_018 0.433322242 0.122960649 40 8 1 3
TBI_019 0.270802434 0.097354065 40 11 2 3
TBI_020 0.178845439 0.06900749 40 25 7 6
TBI_021 0.1592727 0.068723601 40 18 6 5
TBI_022 0.241727085 0.108595488 40 15 7 7
TBI_023 0.199574822 0.087205538 35 8 0 0
TBI_024 0.150651424 0.071601673 40 8 3 3
TBI_025 0.360465375 0.160011105 13 6 6 7
TBI_026 0.248670542 0.128177218 40 8 3 4
TBI_027 0.198875002 0.080355394 19 7 2 2
TBI_028 0.267335613 0.124469042 40 9 5 5
TBI_029 0.228487805 0.129658932 40 14 2 2
TBI_030 0.168989639 0.072832695 23 1 2 3
TBI_031 0.570832286 0.121785389 35 6 2 4
TBI_032 0.223697803 0.119528482 25 4 2 2
TBI_033 0.357154683 0.169029392 20 4 3 3
TBI_034 0.299954673 0.146083555 40 5 0 0
TBI_036 0.139018384 0.065390222 40 9 3 3
TBI_037 0.201542126 0.081334675 40 18 5 3
TBI_038 0.159896225 0.069844247 40 12 0 0
TBI_039 0.215899736 0.091512222 34 7 2 3
TBI_040 0.160825525 0.072372323 40 9 4 5
TBI_041 0.180018002 0.081199784 39 6 4 5
TBI_042 0.281391818 0.132910462 40 9 2 3
TBI_043 0.292297839 0.146629363 40 8 5 5
TBI_044 0.201556902 0.099458121 22 6 1 2
TBI_045 0.163299125 0.079140004 40 10 5 6
TBI_046 0.087890007 0.045085374 10 3 3 3
TBI_047 0.294378248 0.141437383 36 4 1 1
TBI_048 0.329537719 0.150167293 37 1 1
TBI_049 0.354216239 0.168793758 40 14 6 5
TBI_050 0.237448831 0.127893757 12 6 2 3
TBI_051 0.38789464 0.185095875 25 5 4 3
TBI_052 0.451801269 0.137452089 40 6 1 1
TBI_053 0.29948899 0.097003591 40 14 3 4
TBI_054 0.094393531 0.067212536 10 3 2 2
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Table A30. Cont.

Patient Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes = PACF_Model_Spikes
TBI_055 0.331569396 0.144918929 40 11 4 5
TBI_056 0.415221004 0.288936762 7 7 1 3
TBI_057 0.12107862 0.060243334 40 20 9 8
TBI_058 0.269206065 0.119063577 40 19 8 8
TBI_059 0.239644162 0.119257502 40 3 0 0
TBI_060 0.183222724 0.106193035 28 3 0 0
TBI_061 0.263170505 0.12546849 32 5 3 3
TBI_062 0.373968292 0.157995046 16 5 1 1
TBI_063 0.189257062 0.098562334 27 4 2 2
TBI_064 0.416873558 0.189968092 36 4 2 3
TBI_065 0.177895434 0.085929203 29 5 3 3
TBI_066 0.22758353 0.106378819 40 14 8 7
TBI_067 0.161076046 0.085550426 12 4 3 3
TBI_068 0.31934334 0.138317772 40 8 3 3
TBI_069 0.147241898 0.072484398 38 10 2 2
TBI_070 0.364200356 0.156315925 17 3 0 0
TBI_071 0.1287753 0.058878032 34 4 4
TBI_072 0.250563826 0.106217166 38 4 2 3
TBI_073 0.211912393 0.097517151 40 14 5 5
TBI_074 0.235383185 0.112651905 40 8 2 2
TBI_075 0.251232415 0.105233391 40 8 3 4
TBI_076 0.150319996 0.07557991 40 10 2 3
TBI_077 0.202743169 0.099692366 40 8 2 2
TBI_078 0.350487187 0.181963517 4 3 0 0
TBI_079 0.168253314 0.069700859 35 9 4 4
TBI_080 0.315216263 0.1683715 40 8 4 4
TBI_081 0.146978659 0.057566577 40 11 5 5
TBI_082 0.263233461 0.12987111 14 6 3 3
TBI_083 0.358715999 0.147852695 29 9 6 7
TBI_084 0.315127065 0.141740705 30 11 6 5
TBI_085 0.134127951 0.070830416 39 6 3 3
TBI_086 0.196843926 0.08764298 40 18 5 6
TBI_087 0.18085509 0.081993391 40 15 6 4
TBI_088 0.084775108 0.043740211 35 12 6 7
TBI_089 0.283335967 0.123453535 40 18 2 2
TBI_090 0.222956546 0.076929373 40 17 3 3
TBI_091 0.090112254 0.039253186 40 22 3 3
TBI_092 0.203595545 0.084275289 40 18 4 4
TBI_093 0.190981587 0.085474574 40 12 6 6
TBI_094 0.306490751 0.164434451 18 3 2 2
TBI_095 0.144113211 0.066675476 40 5 1 1
TBI_096 0.301859576 0.158155105 9 6 0 2
TBI_097 0.231525838 0.106497988 40 8 1 1
TBI_098 0.277038629 0.131407275 39 12 5 5
TBI_099 0.259310022 0.141085614 38 8 2 2
TBI_100 0.120183335 0.05448055 40 22 7 7
TBI_101 0.256311834 0.119121748 40 8 2 3
TBI_102 0.289243285 0.137082761 40 15 2 2
TBI_103 0.154182022 0.070261691 40 15 8 7
TBI_104 0.297232126 0.140985497 40 14 0 0
TBI_105 0.288800164 0.10316541 40 15 1 0
TBI_106 0.284772004 0.136019806 40 6 1 0
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Table A30. Cont.

Patient Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes = PACF_Model_Spikes
TBI_107 0.425581549 0.186041656 40 14 7 8
TBI_108 0.205362702 0.113394438 36 4 0 0
TBI_109 0.375330545 0.217200451 8 4 5 9
TBI_110 0.242788623 0.120073816 40 6 4 4
TBL_111 0.108203624 0.046197093 27 8 4 4
TBI_112 0.176414156 0.085018341 40 7 1 1
Table A31. Median of the data variance, residual variance, and significant spike counts for total
population at min-by-min resolution.
Parameters Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes =~ PACF_Model_Spikes
ICP 18.57120 1.41843 40 9 2 3
AMP 0.41768 0.04842 40 11 3 3
RAP 0.23153 0.10523 40 8 3 3
Table A32. Mean of the data variance, residual variance, and significant spike counts for total
population at min-by-min resolution.
Parameters Var_Data Var_Model_Res ACF_Org_Spikes PACF_Org_Spikes ACF_Model_Spikes = PACF_Model_Spikes
ICP 29.78738 2.00069 38.48624 10.05505 2.72477 3.07339
AMP 1.15358 0.08891 38.60550 11.56881 3.35780 3.63303
RAP 0.23621 0.10882 32.44954 9 316514 3.34862
Table A33. Median of residuals at different resolutions.
Parameter Minute-by-Minute 10-min-by-10-min 30-min-by-30-min Hour-by-Hour
ICP 0.17941 0.28646 0.37397 0.41906
AMP 0.13549 021710 0.19870 0.19970
RAP 0.12564 0.18085 0.14078 0.11851
Appendix F. A Comparative Analysis Between Clean and Artifact Data
Using Optimal ARIMA

This appendix presents the optimal ARIMA models for artifact segments for each
patient at both minute-by-minute and 10 min intervals, selected based on the lowest AIC
value. Each cell displays four values—the p-, d-, and g-orders, along with the model’s
AIC score. m refers to minute. Comparative tables and figures between clean and artifact
profiles are also provided, showing median and mean values of the optimal ARIMA model
orders, as well as scatterplots of these orders.

AIC, Akaike information criterion;, AMP, pulse amplitude of ICP; ARIMA, auto-
regressive integrated moving average; ICP, intracranial pressure; p-, d-, and g-orders, three
components of ARIMA model, defining autoregression, integrated, and a moving average
part, respectively; RAP, compensatory reserve index.

Table A34. Optimal ARIMA models of artifact segments.
Patient ICP m by m ICP 10 m by 10 m AMP m by m AMP 10 m by 10 m RAP m by m RAP 10 m by 10 m
TBI_001 (1,1,1,216.851'] [6,1,1,4255.733'] [1,1,6,911.386'] [6,1,1,1332.552'] [1,1,6,59.114] [6,1,5,'~192.534]
TBI_002 [1,1,1,195.969'] [3,1,1,798.246'] [4,1,4,20.000'] [1,1,2,390.750'] [2,1,9,366.023'] [2,1,1,'~52.852']
TBI_003 3,1,3,151.597] [4,1,3,609.108'] [1,1,1,654.294'] (2,1,2,'~613.493'] [1,1,1,341.556'] [3,1,4,'102.301']
TBI_004 (1,1, 1,380.408'] [8,1,5,19.483'] [1,1,2,1958.890'] [10,1,1,-83371  [1,1,9,'~184.189'] [1,1,1,7.550']
TBI_007 (1,1,1,260.029'] [1,1,1,341.530'] [1,1,5,1457.070'] [1,1,1,'~42.308'] [10,1, 1, 804.155'] [1,1,1,29.447']
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Patient ICP m by m ICP 10 m by 10 m AMP m by m AMP 10 m by 10 m RAP m by m RAP 10 m by 10 m
TBI_008 [2,1,4,1253.486] [6,1,7,640.823] [5,1, 8, “4040.300'] [1,1,5,-234.704'] [1,1,3,°~1014.547] [1,1,1,133.499']
TBL_009 [1,1,5,1390.931] [3,1,1,2728.697'] [8, 1,8, 4457.610] [2,1,5,'~198.338] [4,1, 10, ‘838.514’] [2,1, 3, “405.306]
TBL 010 13,1, 4, 302.078'] [2,1,8,829.657'] [1,1,2,1253.633'] [8,1,2,421.414] 13,1, 2, 582.267'] [2,1,4,—123.974]
TBI_011 [4,1,1,432.608'] [4,1,1,3969.556'] [9,1,5,1860.488'] [5,1,5,1322.034'] [3,1,1,1183.942'] [9,1,1,'—66.064]
TBI_012 [5,1,3,1207.493] [3,1,3,7932.354'] [10, 1, 10, ‘5313.922"] [3,1,4,170.531"] [9,1, 10, '2074.735'] [1,1,1,34.510"]
TBL 013 [6,1,6,90.568] [1,1,1,285.451] [9,1,5,75.752] [1,1,1,116.816] [3,1,1,11.060] [1,1,1,~111.659]
TBL 014 [6,1,1,981.569] [6,1,2,705.939'] [10, 1, 10, “4907.600’] [4,1,1,170.705] [9, 1,10, 319.266] [1,1,1,149.620']
TBI_015 [1,1,4,1744.311] [4,1, 10, 3273.361'] [8,1,3,7903.675'] [6,1,7,887.067'] [9,1,1,1431.264'] [4,1,1,325.832']
TBI_016 [1,1,1,221.447'] [4,1,5,577.298'] [5,1, 10, ‘821.869'] [2,1,6,92.695'] [6,1,1,564.081'] [3,1,5,35.309']
TBI_017 [1,1,1,260.924'] [1,1,2,°841.047'] [4,1,1,2207.630'] [5,1,6,°—46.309'] [8,1,4,28.000'] [5,1,5,144.457']
TBL 018 [1,1,1,162.2207] [1,1,3,433.669] [3,1,2,1149.084'] [1,1,2,—13.491] [1,1,1,404.283] [3,1,3,89.550]
TBL_019 [5,1,2, 26.560] [2,1, 6, 408.893] [1,1,1,27.672] [4,1,3,13.428] 2,1,1,'—74.780] [8,1,7,18.908]
TBI_020 [1,1,3,71008.423'] [8,1, 3, 4486.602] [5,1, 3, “4279.900] [1,1,3,5.157] [9,1,9,1891.217'] [3,1,1,°—23.169']
TBI 021 [3,1,1, 541.141'] [1,1,2,2075.738'] [9,1,2,1821.910'] [1,1,3,—1094.246'] [1,1,2,511.206'] [1,1,2, —105.751"]
TBI_022 [1,1,4,672.260'] [3,1,4,2732.960'] [7,1,9,2462.705'] [6,1,3,°~1294.473'] [3,1,6,839.036'] [1,1,2,339.065']
TBL_023 [1,1,1,251.917] [5,1, 8, 2102.452’] [1,1,4,949.311'] [2,1,2,286.001] [2,1,5,503.681] [1,1,1,140.425]
TBI 024 13,1,7,630.735'] [2,1,2,1977.338'] [10,1, 8, “2840.440'] [3,1,7,213.528] [7,1,9, '770.870'] [5,1,1,46.978']
TBI_025 [1,1,4,268.862'] [5,1,7,673.930"] [6,1, 3,940.446] [2,1,1,'—187.712'] [4,1,10,161.285"] [1,1,1,182.025"]
TBL 026 [4,1,1,366.193'] [3,1,1, 3079.708'] [2,1,5, 1669.426] [4,1,7,'884.406'] [6,1,7, 845.558'] [2,1,1,282.125]
TBL_027 [10, 1, 1, “4099.958'] [6,1,6,3432.804] [3,1,3,18617.367'] [8,1,9,1810.299] [9,1,9, 6422.273] [3, 1,2, “46.304]
TBL 028 [3,1, 8, 1982.529'] [6,1,5,2481.023']  [10,1, 10, ‘1639.158] [1,1,1,558.722'] [10, 1,7, ‘3723.586] [1,1,1,228.778]
TBL 029 [2,1,4,1868.183'] [9,1,9, 3676.162'] [7,1,5, 8724.573'] 14,1, 6,1817.830'] [7,1,7, '4065.914'] [3,1,1,323.412]
TBL 030 [1,1,1,840.829'] [2,1,5, 1440.883'] [1,1,2,4871.952] [2,1,1,"424.745] [2,1,4,2217.295] [1,1,1,125.002']
TBI_031 [6,1,1,3583.410°] [1,1,1,116.934'] [4,1,4,11342.088'] [9,1,1,65.009'] [9,1, 10, '5250.503'] [10,1,1,12.878']
TBL 032 [3,1,2,629.617] [4,1,6,1243.360] [1,1,9,3071.748'] [8, 1, 6,414.222] [3,1,1,871.735] [1,1,1,90.492]
TBIL_033 2,1,2,99.774] [1,1,2,556.279'] [2,1, 4, 420.894] [1,1,1,~196.827] [2,1,1,235.039] [1,1,1,134.205]
TBI_034 [1,1,2,880.048'] [2,1,5,608.336] [6,1,2,3311.861"] [2,1,1,—560.840"] [1,1,1,1979.590'] [1,1,1,118.680']
TBL 036 [1,1,1, 603.420] [5,1, 7, '6284.400'] [2,1,2,2793.023'] [10,1, 8, 2447.168'] [6,1, 10, 812.963'] [1,1,1,"—40.093]
TBI_037 [6,1,1,1049.940'] [1,1,1,3174.555'] [1,1,9,6439.643'] [1,1,2,692.762] [1,1,1,2653.677'] [6,1,7,186.534]
TBL 038 [1,1,2,327.503] [3,1, 10, “3651.071] [1,1,1,1631.377'] [2,1,8,1418.069'] [2,1,5,793.073'] [1,1,1,163.865]
TBI_039 [1,1,3,248.396] [1,1,1,1373.530"] [3,1, 10, "1548.009'] [1,1,2,461.798'] [7,1,5,699.469'] [1,1,1,°147.763']
TBI_040 [2,1,2,597.103'] [1,1,3,2388.786'] [7,1,9,2358.536'] [3,1,4,507.213'] [6,1,9,853.780'] [1,1,2,98.532']
TBI_041 [7,1,1,624.256'] [1,1,1,2322.222'] [1,1,1,4350.928'] [1,1,3,218.837'] [1,1,3,1400.580"] [3,1,1,215.685]
TBL_042 [1,1,1,132.493] [1,1,1,1491.790] [1,1,1,846.594] [4,1,1,275.034] [4,1,7,370.171] [2,1,3,229.795]
TBIL_043 [6,1,1,3412.524] [1,1,1,583.359'] [9, 1, 10, “4393.327] [1,1,1,'—742371"]  [8,1,8,’—10858.220'] [1,1,2,159.959']
TBI_044 [5,1,1,899.183"] [3,1,4,712.394'] [10,1,1, '8831.879'] [2,1,1,7165.178'] [6,1,1,1444.800'] [6,1,1,70.514']
TBL 045 12,1, 6, 688.985'] [4,1,3, 1595.632'] [1,1,1,3162.513'] [2,1,1,"125.979] [1,1,4,"—2944.605'] [2,1,5,13.006']
TBI_046 [1,1,4,57.821"] [2,1,8,745.024] [1,1,1,125.272'] [2,1,10, 340.444'] [1,1,1,°-21.288'] [2,1,2,/-91.2107]
TBL 047 [1,1,4,95.827] [1,1,1,233.857] [1,1,1,725.657] [1,1,2,‘—20.787] [1,1,1,249.664] [3,1,2,43.998]
TBIL_048 2,1,1,"—9.0271] [1,1,3,1656.563] [10,1, 1,68.995] 2,1,1,"—669.049] [10,1, 1,“33.094] [1,1,2,436.151]
TBI_049 [1,1,2,488.865'] [2,1,4,°543.931"] [1,1,1,2721.889'] [6,1,9,7.473] [9,1,2,875.675"] [2,1,4,75.450"]
TBL 050 [1,1,1,117.525] [2,1,2,779.306'] [1,1,1, 767.686'] [2,1,1,—239.027'] [1,1,1,210.167'] [1,1,2,129.049"]
TBI_051 [1,1,5,414.880'] [1,1,1,420.971] [1,1, 4, 2888.338'] [2,1,10,"~111.112'] [4,1,1,248.949'] [1,1,1,120.369']
TBL 052 [5,1,5,136.822] [4,1,8,1055.686] [1,1,2,665.639] [8,1, 10, ‘—414.364] [1,1,2,291.463'] [3,1,7,171.868]
TBI_053 [2,1,3,105.092'] [4,1, 3,248.705'] [1,1,1,230.665'] [2,1,2,'—69.739] [1,1,1,"—60.925"] [2,1,3,—34.805]
TBI 054 [1,1,1,134.648] [1,1,1,1387.897'] [3,1,1,'~1697.984']  [1,1,4,'—662.759]  [1,1,2,'—1830.949] [2,1,1,240.594']
TBI_055 [6,1,1,495.105'] [8,1,1,26.408'] [9,1,3,28.000'] [6,1,1,°~13.890"] [5,1,8,203.978'] [9,1,1,17.316']
TBL_056 2,1,1,327.771] [9,1,9,7011.416'] [1,1,2, 2266.753] [7,1,1,2779.937'] [1,1,8,968.387] [5,1, 1, ‘443.905]
TBIL_057 [4,1,3,2222.079'] [1,1,1,1432.209'] [5,1,5,10260.114] [2,1,2,—44.341"] [3,1,5,3337.734] [1,1,1,146.171]
TBI_058 [2,1,1,/322.791"] [2,1,2,383.868'] [1,1,1,°2050.290"] [1,1,1,—221.804"] [1,1,1,599.655'] [1,1,1,°73.161"]
TBL 059 [3,1,1,58.209'] [1,1,2,1363.277'] [1,1,5,189.682'] [1,1,5,471.852] [2,1,1,87.081] [2,1,4,35.108']
TBI_060 [2,1,1,143.785'] [3,1,2,258.540"] [2,1,5,453.600'] [1,1,7,-451.396"] [2,1,5,204.925'] [2,1,1,84.490']
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Table A34. Cont.

Patient ICP m by m ICP 10 m by 10 m AMP m by m AMP 10 m by 10 m RAP m by m RAP 10 m by 10 m
TBI_061 [4,1,3,95.894'] [1,1,1,401.476] [3,1,2,195.117'] [3,1,7,719.553"] [1,1,1,°-149.068'] [3,1,3,88.883']
TBL 062 [4,1,2,92.239] [1,1,1,1489.315] [2,1,1,—887.826'] [1,1,2,35.883] [4,1,1,~721.733'] [2,1,2,40.785]
TBIL_063 14,1, 1, 467.747"] [1,1,1,274.303] [5,1, 10, “3628.414] [2,1,2,'~79.875'] [1,1,1,1415.880’] [1,1,1,76.839']
TBL 064 [1,1,1,194.979] [1,1,2,465.404] [5,1, 4, 22.000'] [1,1,1,120.083] [1,1,1, 241.505'] [1,1,1,10.605]
TBL 065 [5,1,1, 239.342'] [4,1,3, 1368.894'] [1,1,1,1666.025] [2,1,1,—896.379'] [1,1,1, 782.385'] [1,1,1,150.551]
TBI_066 [1,1,1,240.558'] [7,1,1,385.927'] [1,1,1,1617.437'] [2,1,10, 158.461°] [1,1,1,563.820'] [1,1,1,33.999']
TBL_067 [3,1, 3, ‘645.248'] [1,1,1,1229.778] [1,1,1,4416.943'] [1,1,3,—217.419] [1,1,2,1180.296'] [3,1,3,296.879']
TBL 068 [1,1,4,146.175] [3,1, 4, 4544.290'] [1,1,1,906.955] [1,1,2,1296.419'] [1,1,1,290.948'] [10,1,1, 15.428]
TBL_069 [2,1,1,605.122] [1,1,4,126.313] [7,1, 4, "4050.266'] [1,1,1,"—26.652'] [1,1,2, 1771.818'] [2,1,1,49.412]
TBI_070 [4,1,1,73.125"] [7,1,4,6316.318'] [1,1,1,°-93.274'] [2,1,2,2622.449'] [2,1,1,°=71.552'] [1,1,1,~38.552']
TBL 071 [3,1,3,304.884] [7,1,9,36.0007] [5, 1,2, 1276.778] [6,1,9,288.003] [4,1,1,552.057] [3,1,1,75.470']
TBL_072 [1,1,1,155.511] [2,1,3,5265.377'] [4,1,2,16.0007] [3,1,5,'~1026.621'] [1,1,2,309.501] [1,1,1,602.585]
TBI_073 [2,1,4,307.419'] [1,1,2,2353.766] [10, 1, 5, 34.000"] [6,1, 10, —38.469] [1,1,2,755.731"] [1,1,1,72.476']
TBI_074 [3,1,3,126.786'] [8,1, 10, “40.000] [1,1,1,—50.894'] [3,1,6,244.269'] [1,1,1,—639.540"] [3,1,3,93.193']
TBI_075 [3,1,3,323.676'] [1,1,2,3795.065'] [1,1,5,2518.804'] [6,1,5,668.983'] [5,1,1,401.281"] [3,1,1,37.733']
TBL 076 [2,1,2,153.266'] [1,1,1,2098.357'] [1,1,3,1149.362'] [3, 1,3, 643.225] [1,1,3,347.456'] [3,1,1,119.313]
TBL 077 12,1, 6,235.293'] [1,1,1,561.375] [1,1,1,1869.856] [3,1,9, '—312.053] [1,1,1,433.423'] [1,1,1,131.781]
TBL 078 [10, 1, 8, 40.000'] [1,1,1,989.1217] [5,1, 4, 22.000'] [1,1,1,140.132] [1,1,10, ‘—4685.873'] [4,1,1,37.465"]
TBL 079 [4,1, 6, 200.652'] [3,1,1, 2914.104'] [4,1,1, 630.640'] [1,1,1,—1450.861'] [5,1,5, '—53.220'] [1,1,2,532.785]
TBL_080 [2,1,2,526.633'] [8, 1, 8,‘5232.541'] [9,1,7, 1413.642'] [3,1,4,1931.642] [2,1,4,'~95.125] [1,1,1,49.576']
TBIL_081 [1,1,1,410.170"] [2,1,2,324.380] [1,1,2,1671.767'] [1,1,3,'—106.536] [6,1,1,326.753'] [1,1,1,76.542]
TBL 082 [1,1,1,142.962'] [4,1,4,615.931] [8,1, 4, 701.148'] [1,1,1,/—480.234'] [1,1,7,16.887] [1,1,6,182.994']
TBI_083 [4,1,2,192.671'] [1,1,1,254.656'] [3,1,3,519.270'] [1,1,1,°—724.082] [1,1,1,-70.222'] [1,1,1,227.432']
TBI_084 [7,1,2,176.973'] [9,1,8,3805.534'] [1,1,1,1396.861'] [8,1,7,282.638] [1,1,1,675.169'] [1,1,1,~56.330"]
TBL 085 [4,1,5,164.428] [4,1,9,4333.346] [1,1,1,794.102] [4,1,1,43.771] [5,1,1,141.663'] [1,1,2,148.433]
TBIL_086 [1,1,3,653.506'] [1,1,2,2362.099'] [1,1,1,2196.813'] [4,1,2,'—1591.208] [1,1,1,'~8.758] [1,1,1,99.391]
TBI_087 [3,1,1,254.955'] [3,1,4,°5733.186] [9,1,2,350.266"] [7,1,1,71185.601] [9,1, 10, “—338.154] [1,1,1,'-719.332]
TBL 088 [2,1,1,313.831'] [1,1,2,2767.672'] [3,1,4, 2097.287'] [1,1,1,'—898.413] [1,1,1,799.464'] [1,1,1,361.6207]
TBI_089 [5,1,5,374.758'] [2,1,7,°2391.440'] [2,1,2,3375.603'] [7,1,3,605.383'] [1,1,3,1499.648'] [1,1,1,212.776]
TBL_090 [2,1,9,627.030] [7,1,2,6128.983] [6,1,9, “4000.068’] [5,1,7,2342.235] [1,1,7,980.755] [6,1,8,‘—668.544]
TBI_091 [1,1,4,492.351'] [1,1,5,3760.560'] [1,1,1,4113.294] [3,1, 4, 1543.450'] [2,1,9, 2720.688'] [7,1,2,261.090"]
TBIL 092 [3,1,1,377.535'] [1,1,2,5118.541'] [2,1,1,2346.761] [3,1,1,1003.610'] [1,1,1,802.367’] [1,1,2,279.230"]
TBIL_093 [1,1,1, 440.220'] [6,1, 6,"394.269] [1,1,1,2516.182] [1,1,1, 54.721'] [2,1,1,1282.904] [1,1,1,127.756']
TBIL_094 [4,1,2,244.423] [1,1,1,2364.346'] [1,1,5,692.869] [1,1,3,126.146'] [4,1,3,418.360] [4,1,9,9.800]
TBL_095 [1,1,1,222.588] [1,1,1,96.413] [10, 1, 8, “40.000] [1,1,2,34.204] [2,1,3,317.848] [1,1,4,4.547]
TBI_096 [1,1,4,1859.860'] [2,1,7,539.291] [1,1,6,6557.346'] [3,1,3,'—861.808'] [1,1,3,3169.689'] [2,1,1,164.963']
TBI_097 [4,1,3,197.839'] [1,1,2,°1453.918] [4,1,2,768.896'] [9,1,6,'—722.735] [1,1,1,545.407'] [3,1,1,291.945"]
TBI_098 [1,1,4,341.200°] [4,1,6,1044.266'] [1,1,1,°2084.600'] [5,1,5,~1355.549'] [6,1,6,642.491'] [4,1,4,28.276']
TBL_099 [4,1, 4, 296.096] [5,1,1,5978.417] [1,1,1,2039.579'] [2,1,9,2860.168] [1,1,2,960.570"] [4,1,6,'—204.319]
TBL_100 [6,1,1,1032.526] [8,1,6,32.0007] [8, 1,8, 4341.087'] [1,1,3,135.282] [7,1,3,1694.936'] [1,1,2,55.751]
TBI_101 [5,1,1,833.134'] [1,1,1,1168.088'] [1,1,2,5578.883'] [6,1,2,409.388'] [1,1,3,1230.939'] [7,1,1,166.367']
TBI_102 [9,1,1,21.916'] [8,1,8,8422.112] [2,1,2,"118.470°] [1,1,9,4707.190'] [2,1,1,106.422°] [6,1,2,55.531"]
TBI_103 [9, 1,10, 42.000'] [7,1,10,1789.902'] [1,1,1,1871.172'] [1,1,1,486.303'] [3,1,1,953.341"] [1,1,2,242.016']
TBL 104 [4,1,3,170.430] [1,1,2,1976.162'] [8,1,5,763.837] [1,1,2,737.405] [9,1,7,169.564'] [1,1,1,204.868]
TBL 105 [1,1,4,531.766'] [3,1,5, 1840.146'] [3,1,3, 2150.159'] [8,1,9, '—964.441] [10,1, 8, 932.014'] [1,1,1,458.617]
TBI_106 [3,1,3,126.549'] [5,1,6,1661.255'] [3,1,1,470.235"] [5,1,1,—602.737'] [1,1,1,101.765'] [1,1,1,°545.032']
TBI_107 [10,1,7,"38.000"] [1,1,1,648.972] [4,1,8,2108.791"] [1,1,1,~625.873"] [10,1, 2, "1380.588'] [2,1,1,96.404']
TBIL_108 [1,1,1,176.033] [1,1,1,335.184] [9, 1,10, '516.831] [3,1,3,14.186] [8,1,4,141.479] [1,1,6,55.569]
TBL_109 [1,1,1,212.494] [4,1, 8, 2406.468'] [10, 1, 10, “998.789’] [6, 1, 5,369.640] [5,1, 5,396.094] [1,1,2,367.743]
TBI_110 [5,1, 6,398.988] [5,1,1,°3183.328'] [2,1,4,1697.653] [5,1,1,71905.199'] [7,1,7,71046.452'] [1,1,1,—224.253]
TBL 111 [5,1,1, 1689.427'] [2,1,7,1897.303'] [1,1,4, 12588.356']  [9, 1,10, ‘—324.208] [3,1,1,1771.921'] [3,1,1,58.025]
TBI_112 [1,1,2,930.173'] [3,1,1,1124.876'] [10,1, 8,3149.498'] [7,1,10,1.010°] [8,1,7,~708.170"] [1,1,1,179.101]
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Table A35. Median of the orders of optimal ARIMA models.
Minute-by-Minute 10-min-by-10-min
Parameter Clean Artifact Clean Artifact
p-Order q-Order p-Order q-Order p-Order q-Order p-Order q-Order
icp 3 5 2 3 3 3 2 1
AMP 3 3 2 2 2 3 1 1
RAP 5 1 2 2 1 1 1 1
Table A36. Mean of the orders of optimal ARIMA models.
Minute-by-Minute 10-min-by-10-min
Parameter Clean Artifact Clean Artifact
p-Order q-Order p-Order q-Order p-Order q-Order p-Order q-Order
Icp 3.91743 5.28440 3.82569 3.78899 3.23077 3.69231 3.65385 1.87500
AMP 4.49541 4.20183 3.57798 3.72477 3.26923 3.72115 3.34615 2.35577
RAP 5.12844 2.06422 295413 2.62385 2.34615 2.02885 2.93269 2.44231
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Figure A6. Scatterplots for ICP p-orders and g-orders at different resolutions for each patient. (a) is
minute-by-minute resolution and (b) is 10-mine-by-min resolution.

The figure demonstrates the value of the p-orders and g-orders from the optimal
ARIMA models of ICP’s clean vs. artifact data at (a) minute-by-minute resolution and (b)
10-min-by-10-min resolution. The blue circles correspond to the orders of the clean data,
whereas the red crosses represent the orders of the artifact segment. If a red cross overlaps
a blue circle, the value of the order for that patient is the same. If they do not overlap, the

values differ.
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Figure A7. Scatterplots for AMP p-orders and g-orders at different resolutions for each patient. (a) is
minute-by-minute resolution and (b) is 10-min-by-min resolution.

The figure demonstrates the value of the g orders from the optimal ARIMA models
of RAP’s clean vs. artifact group at (a) minute-by-minute resolution and (b) 10-min-by-
10-min resolution.
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Figure A8. Scatterplots for RAP g-orders at different resolutions for each patient. (a) is minute-by-

minute resolution and (b) is 10-min-by-min resolution.

The figure demonstrates the values of the g-orders from the optimal ARIMA models

of RAP’s clean vs. artifact group at (a) minute-by-minute resolution and (b) 10-min-by-

10-min resolution.
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Appendix G. Evaluation of the Potential Features for
Identifying Artifacts

This appendix presents the values of the evaluation parameters for the potential
features used in identifying artifacts at the minute-by-minute resolution and 10-min-by-
10-min resolution.

AMP, pulse amplitude of ICP; ARIMA, auto-regressive integrated moving average;
ICP, intracranial pressure, RAP, compensatory reserve index; RAP-ICP, cross-correlation
between residuals of RAP and ICP; RAP-AMP, cross-correlation between residuals of RAP
and AMP.

Table A37. Evaluation of potential features at the minute-by-minute resolution.

Total Data True Artifacts Predicted Artifacts False Positives Success Rate (%)
Difference of the optimal ARIMA models
ICp 155 2398 65.258
AMP 4129 238 148 2335 62.115
RAP 200 2212 84.038

Medians of the variance of residuals

ICP 167 1997 70.212
AMP 4129 238 136 1897 56.916
RAP 218 1846 91.666

Median of the maximum cross-correlation of residuals

RAP-ICP 88 1985 37.011
R E— 4129 238
RAP-AMP 146 1856 61.6

Table A38. Evaluation of potential features at the 10-min-by-10-min resolution.

Parameter Total Data True Artifacts Predicted Artifacts False Positives Success Rate (%)
Difference of the optimal ARIMA models
ICP 11 290 55.336
AMP 415 19 10 298 54.128
RAP 8 312 43.089

Medians of the variance of residuals

ICp 16 223 85.092
AMP 415 19 14 222 74.264
RAP 16 219 84.411

Median of the maximum cross-correlation of residuals

RAP-ICP 1 240 6.512
B E——— 415 19
RAP-AMP 7 240 35.829
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