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Abstract: With the rise of modern healthcare monitoring, heart rate (HR) estimation
using remote photoplethysmography (rPPG) has gained attention for its non-contact,
continuous tracking capabilities. However, most HR estimation methods rely on stable,
fixed sampling intervals, while practical image capture often involves irregular frame rates
and missing data, leading to inaccuracies in HR measurements. This study addresses these
issues by introducing low-complexity timing correction methods, including linear, cubic,
and filter interpolation, to improve HR estimation from rPPG signals under conditions
of irregular sampling and data loss. Through a comparative analysis, this study offers
insights into efficient timing correction techniques for enhancing HR estimation from rPPG,
particularly suitable for edge-computing applications where low computational complexity
is essential. Cubic interpolation can provide robust performance in reconstructing signals
but requires higher computational resources, while linear and filter interpolation offer more
efficient solutions. The proposed low-complexity timing correction methods improve the
reliability of rPPG-based HR estimation, making it a more robust solution for real-world
healthcare applications.

Keywords: remote photoplethysmography (rPPG); remote heart rate estimation; timing
correction

1. Introduction
With the rise of modern healthcare monitoring, heart rate has become a key indicator

of cardiovascular health, physical fitness, and stress levels, making it essential for assessing
overall well-being. However, traditional heart rate (HR) measurement methods require
specialized equipment or in-person consultations, which can be inconvenient, especially
during pandemic restrictions or in remote areas. For instance, although electrocardio-
graphy (ECG) is widely used to accurately estimate heart rate, it requires specialized
equipment, such as electrodes, which makes it inconvenient for developing remote health-
care systems [1]. Photoplethysmography (PPG) provides an effective means of collecting
physiological information in a non-invasive manner using small-sized sensors. However,
its estimation capability is vulnerable to low-perfusion states [2], and it still requires contact
with a sensor, which can increase the risk of transmission caused by viruses. Although
ballistocardiograph (BCG) enables us to collect physiological data in a non-invasive and
contactless manner, it is highly susceptible to noise from body movements or external vi-
brations [3,4]. To overcome these challenges, remote photoplethysmography (rPPG) offers
a non-contact method that accurately estimates heart rate by analyzing subtle skin color
changes captured in video images [5–7]. The rPPG signal, derived from these images, can
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detect subtle changes in microvascular blood volume caused by heartbeats, enabling non-
invasive data collection [8–10]. Due to its non-invasive nature and compact design, rPPG
supports telemonitoring via mobile devices and is increasingly used in various healthcare
platforms [11,12].

To accurately estimate heart rate, various rPPG analysis algorithms have been devel-
oped to extract HR information, each with distinct strategies and benefits. Typical methods
involve face tracking and skin segmentation to define regions of interest (ROIs), followed
by signal processing and feature extraction for HR estimation [13–15]. Once the ROI is
set, signal analysis techniques like independent component analysis (ICA) can be used to
separate the pulse signal from noise by isolating independent components from the mixed
RGB channels, thereby improving the accuracy of heart rate estimation [16]. Similarly,
principal component analysis (PCA) can be employed to reduce the dimensionality of
the data, simplifying the signal processing and lowering computational complexity while
retaining key features essential for accurate HR estimation [17]. To address motion arti-
facts that often occur during rPPG measurement, model-based techniques can combine
signal processing with physiological models to effectively separate the pulse signal from
these disturbances [13]. Additionally, effective illumination normalization methods can
improve ROI detection by maintaining consistent lighting conditions, thereby enhancing
face tracking accuracy and reducing the impact of motion artifacts [18].

Recent rPPG research has applied deep learning (DL) to directly estimate HR from
camera images, reducing the need for multiple processing stages and automating feature
selection. Although DL-based algorithms require larger training datasets, they have the
potential to achieve higher accuracy in HR estimation compared to traditional methods. For
example, HR-CNN [19] uses convolutional neural networks (CNNs) to extract rPPG signals
and estimate heart rate, while DeepPhys [20] employs convolutional attention networks
with a motion-based model to improve accuracy under varied motion conditions. Beyond
CNNs, long short-term memory (LSTM) networks can further enhance HR estimation by
capturing temporal dependencies in time-series data, effectively reducing noise in rPPG
signals [21,22]. Combining CNNs and LSTMs has also proven effective, as CNNs excel at
detecting ROI in individual frames and LSTMs capture temporal patterns across frames,
leading to more accurate heart rate estimation [23]. Transformers have recently emerged as
a prominent focus in deep learning research, with applications in processing rPPG signals
and HR estimation. Their exceptional ability to handle one-dimensional sequences, such as
natural language and time-series data, has led to the development of specialized versions,
like video transformers, which are designed to effectively process video frames and extract
rPPG signals. For instance, the instantaneous transformer utilizes a spatial backbone
based on DeepPhys and incorporates a temporal aggregation module to capture temporal
correspondences within the signals [24]. PhysFormer employs a temporal difference
transformer to enhance quasi-periodic rPPG features using temporal difference-guided
global attention and further refines the local spatio-temporal representation to mitigate
interference [25,26]. After the success of the transformer in rPPG signal estimation, several
additional algorithms have been proposed, including Radiant [27], EfficientPhys [28],
RhythmFormer [29], MaskFusionNet [30], and PhysMamba [31]. Furthermore, an open-
source framework has been introduced, integrating advanced algorithms for rPPG signal
estimation and providing benchmark datasets, serving as a valuable resource for advancing
research for further research in this field [32].

However, these approaches generally assume consistent interframe durations without
missing frames. In practice, video capture can often experience irregular sampling rates
and frame drops, leading to inaccuracies in HR estimation. Furthermore, there is limited
research focusing on timing correction for heart rate estimation under such conditions. This
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study introduces a timing correction method designed to address accuracy challenges in
HR estimation using rPPG. The proposed low-complexity approach is ideal for lightweight
devices that lack precise imaging equipment or the capacity for complex computations,
enhancing the precision and reliability of HR estimation.

2. Materials and Methods
In practical applications, video capture for rPPG is often subject to irregular sampling

intervals due to frame drops or inconsistent frame rates. Heart rate estimation is typically
performed by detecting peaks in the frequency of the rPPG signal corresponding to indi-
vidual heartbeats. These irregularities can lead to inaccuracies in heart rate estimation, as
most HR estimation methods assume a consistent sampling rate. To address this issue, we
present low-complexity time correction methods for HR estimation based on interpolation.
Interpolation methods, including linear, cubic spline, and cascaded integrator–comb filter
interpolation, offer computational complexity of O(n), where n represents the number of
data samples [33–35]. These techniques can efficiently normalize the sampling intervals of
the rPPG signal, ensuring reliable and accurate HR estimation.

2.1. Interpolation

The HR estimation process involves capturing video frames using a camera and
simultaneously logging the exact timestamps of each captured frame. To correct irregular
sampling, we apply interpolation techniques, as illustrated in Figure 1, on the recorded
rPPG signal based on the logged timestamps. Interpolation allows us to estimate signal
values at uniformly spaced time intervals, ensuring that the rPPG signal is resampled at a
consistent rate. Let s1, s2, . . . , sn represent the original, irregular timestamps, and let x(si)

represent the rPPG signal values sampled at timestamp si. We define a uniformly spaced set
of target timestamps t1, t2, . . . , tn, where ti represents the ith uniformly spaced timestamp
in the corrected time domain. The rPPG signal is then resampled to estimate the value x(ti)

corresponding to the target uniformly spaced timestamp.

a)

b)

c)

Figure 1. (a) Irregular timing samples. (b) Linear interpolation. (c) Cubic spline interpolation.

Linear interpolation is a quick approximation used to interpolate values between
two sampled data points by assuming a linear relationship between them. The interpolation
formula is as follows:

x(ti) = x(si) +
x(si+1)− x(si)

si+1 − si
× (ti − si), (1)
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where si ≤ ti < si+1, and ti is the target time point at which the resampled value x(ti) is
calculated. Unlike linear interpolation, which connects points with straight lines, cubic
spline interpolation ensures that the curve is smooth at the sampled data points by using
cubic polynomial curves. For each sample interval (si, si+1), the cubic spline is represented
by a polynomial of the following form:

xi(ti) = ai(ti − si)
3 + bi(ti − si)

2 + ci(ti − si) + di, (2)

where ai, bi, ci, di are the coefficients to be determined using boundary conditions, along
with the continuity of the first and second derivatives at sample points. By maintaining
derivative continuity, cubic spline interpolation provides a smooth and continuous curve
through the sample points.

2.2. Filter Interpolation

Filter interpolation estimates values between discrete sample points by applying a
filtering process. This approach is commonly used in signal processing to create smooth
transitions between sampled points or to reconstruct a continuous signal from discrete
samples. Furthermore, filter interpolation can reduce noise, minimize aliasing, and it
generate a smoother and more coherent signal. For low-complexity applications, cascaded
integrator–comb (CIC) filters are an efficient solution for interpolation. CIC filters are
digital filters that do not require multipliers, making them highly suitable for hardware im-
plementations due to their computational efficiency. As illustrated in Figure 2, the sampled
data are first upsampled by inserting zeros between data points to increase the resolution.
The upsampled signal is passed through a cascade of N-th order integrators, which smooth
out the sharp transitions caused by the zero insertion. After integration, the signal is
downsampled by a factor of R and then passed through a cascade of N-th order comb
filters. These comb filters act as differentiators by subtracting signals delayed by M, thereby
refining the signal and producing the resampled target signal. By combining decimation
with a simple filter structure that requires no multipliers, CIC filters significantly reduce
computational complexity. This makes CIC filters especially advantageous in interpolation
applications that demand high data throughput with minimal computational overhead.

RR
X(n) Y(n)

N-th order 

Integrator
N-th order 

Comb

Z
-1

Z
-M

Integrator Comb(a) (b)

(c)

Figure 2. CIC filter. (a) The integrator filter accumulates the input signal by summing its current and
previous values, effectively smoothing the signal and applying a low-pass filtering effect. (b) The
comb filter functions as a differentiator by subtracting the delayed signal from the current signal,
with the delay determined by parameter M. (c) CIC filter with up/down sampling rate R. The
CIC filter structure consists of upsampling by a factor R, followed by cascaded N-order integrator
filters. After downsampling, the signal is passed through N-order comb filters, effectively achieving
filter interpolation.

3. Results
In practical applications, signals are typically sampled at regular intervals. However,

hardware limitations, such as insufficient processing power, limited memory capacity,
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or low-quality image sensors, can lead to irregular sampling times or missing data. For
instance, devices with low processing power may struggle to process high-resolution image
frames in real time, resulting in dropped or delayed frames. Similarly, limited buffer sizes
or network bandwidth in streaming scenarios can cause frame loss or irregular intervals
during data transmission. These inconsistencies can degrade the accuracy and reliability
of signal processing tasks, ultimately affecting HR estimation. Though higher-quality
sensors or hardware with enhanced processing power and memory can improve data
reliability, environmental factors still introduce uncontrollable variables. Therefore, we
adopt signal processing algorithms for timing correction to improve HR estimation under
such conditions. To evaluate the impact of irregular sampling intervals and missing samples
on signal reconstruction and HR estimation, we compare the performance of various
reconstruction techniques, including linear interpolation, cubic spline interpolation, and
filter interpolation. For CIC filter interpolation, the resample rate R is set to 10, a cascaded
order of N = 4, and a subtracting delay of M = 2 in the comb filter. Although there are no
official normal limits for resting heart rate, we focus on signals with a frequency bandwidth
between 0.8 and 1.8 Hz, corresponding to a resting heart rate range of 50 to 100 beats per
minute for normal adults [36,37]. The comparison emphasizes key metrics such as root
mean squared error (RMSE) and heart rate estimation precision under varying conditions.
These methods are applied to simulated datasets with different levels of irregularity and
missing data to assess their effectiveness. As the number of missing samples increases, a
corresponding rise in RMSE is observed, underscoring the degradation in signal fidelity.
The cubic spline exhibits a more robust performance against increasing gaps in data.

3.1. Signal Interpolation Evaluation

We assess the performance of various interpolation methods under conditions of
missing samples and irregular sampling intervals. Each trial begins by generating signals
at a sampling rate of 1 kHz, characterized by unit power and a random phase within the
frequency bandwidth corresponding to the resting heart rate. Under normal sampling
conditions, the signals are regularly sampled at a target rate of 25 Hz, resulting in a fixed
time interval of 40 ms between samples. Otherwise, irregular timing samples occur when
sampling bias introduces variations in these intervals. During each trial, the sampling
times are recorded over a 30 s duration. The evaluation is conducted under two conditions:
one in which samples are missing from the signal and another where a fixed proportion
of the signal exhibits sampling bias. The irregular sampling bias is modeled as a normal
random distribution, with a standard deviation equal to the target sampling period, and
the maximum bias is constrained to the sampling period. To assess signal distortion
in the frequency domain, we compare the effects of varying rates of irregular sampling
and the counts of loss samples. Across 1000 trials, we compare signals sampled under the
normal condition with those reconstructed under a specific non-ideal condition by applying
interpolation methods for timing correction. RMSE is used to quantify the difference,
reflecting how effectively interpolation restores signals under non-ideal conditions. Figure 3
illustrates the relationship between the RMSE and the count of loss samples, providing
a quantitative analysis of how data loss affects the accuracy of the signal reconstruction
across different interpolation methods. Without applying a timing correction method, even
a small number of sample losses can result in an average error ranging from 0.3 to 1.1 of the
signal amplitude. However, the proposed timing correction method significantly reduces
distortion. For instance, even with 10 sample losses, the RMSE achieved using the proposed
method is notably smaller compared to cases without timing correction. Figure 4 shows the
relationship between the RMSE and the irregular sample ratio, highlighting the impact of
non-uniform sampling on reconstruction accuracy. While the effects of irregular sampling
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are less severe than those of data loss, they still cause notable signal distortion. Severe
signal distortion is likely to occur and alter the main components of the signal without
any processing. The cubic spline interpolation exhibits a more robust performance against
increasing losses and irregular samples in data, but it requires high computational effort
to reconstruct smooth signals. In contrast, CIC filter interpolation has low computational
complexity, with minor discrepancies depending on its resampling rate. It remains capable
of restoring the signal to an adequately low error level.

1 2 3 4 5 6 7 8 9 10

Loss sample count

10-5

10-4

10-3

10-2

10-1

100
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Figure 3. Root mean squared error (RMSE) versus the count of lost samples, comparing signal
reconstruction accuracy with no processing and different interpolation methods. Each simulation
was conducted for a specific loss sample count, comparing signals sampled under normal conditions
with unprocessed signals and those reconstructed using interpolation methods.
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Figure 4. Root mean squared error (RMSE) versus the irregular sample ratio, comparing signal
reconstruction accuracy with no processing and different interpolation methods. Each simulation was
conducted for a specific irregular sample ratio, comparing signals sampled under normal conditions
with unprocessed signals and those reconstructed using interpolation methods.

3.2. Heart Rate Evaluation

Accurate heart rate monitoring is crucial for numerous medical and fitness appli-
cations, as it provides key insights into cardiovascular health status. We evaluated the
performance of different interpolation methods for HR estimation under irregular sampling
intervals and missing data. The dataset consists of recordings from 22 adult subjects, pri-
marily aged between 20 and 23, of Asian ethnicity, with a gender distribution of one-third
female and two-thirds male. The measurements were conducted in an indoor setting at a
temperature range of 26–27 °C and a relative humidity of 45–55 %. The camera primarily
focused on capturing the subject’s face, maintaining a distance of less than 1 meter. Data
were captured using a Realtek USB2.0 HD UVC WebCam (Realtek Semiconductor Corp.,
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Hsinchu, Taiwan), operated via the Python (version 3.8.2) OpenCV module, with a nominal
sampling rate of 25 frames per second (fps, Ts = 40 ms) and a resolution of 640 × 480.
Additional settings used for data capture are detailed in Table 1. The subjects were recorded
at rest while maintaining stable heart rates, with timestamps logged for each frame. Once
the measurement conditions stabilized, a 32 s recording was conducted for HR estimation.
The actual sampling rate ranged between 20 and 30 fps, exhibiting an irregular sampling
bias with a mean of 0.03Ts and a standard deviation 0.13Ts. Additionally, two subjects
experienced sample loss, accounting for approximately 1.2% of the recording samples. The
recording parameters are summarized in Table 2. Although the experiments were limited
to a small group of individuals with similar ages and skin tones, the primary objective
of this study was to evaluate the effectiveness of timing correction in enhancing HR es-
timation. Each subject wore a wrist-based blood pressure monitor to provide heart rate
measurements, which served as a reference for evaluating the impact of timing correction
under timing-related issues. Figure 5 illustrates the steps involved in the heart rate (HR)
estimation process using rPPG. The rPPG signal is primarily derived from the facial re-
gion between the eyes and mouth, where heart rate predictability is most prominent [38].
Furthermore, the average of the green channel is used for HR estimation, as it provides
the most reliable rPPG information related to blood volume changes compared to other
channels [6]. Timing correction is applied to address irregular time sampling and sample
loss, ensuring consistent time intervals for accurate analysis, as illustrated in Figure 5b,c.
FFT is then used to analyze the component frequency of the corrected rPPG signal, and
the heart rate in beats per minute is determined by identifying the dominant frequency
of the rPPG signal. Figure 6 illustrates the actual rPPG signal with sample loss alongside
the interpolated signals obtained using linear, cubic spline, and CIC filter interpolation
methods. Linear interpolation connects sample points with straight lines, while cubic
spline interpolation creates smooth connections using cubic polynomial curves. CIC filter
interpolation reconstructs signals by applying low-pass filters to reduce high-frequency
noise and smooth the signal.

To evaluate the impact of irregular timing samples and sample loss on HR estimation,
we conducted the following simulations: For each simulation, specific numbers of samples
were randomly dropped from the actual rPPG signal, and a 30 s rPPG signal was analyzed
to test HR estimation using different timing correction methods. To assess performance,
RMSE and MAE were calculated for each simulation. RMSE, due to its quadratic nature,
emphasizes larger errors and is sensitive to outliers, while MAE provides the average of ab-
solute errors, offering a straightforward measure of overall error magnitude when outliers
are less influential. A total of 1000 simulations were performed, and the final averaged
results are summarized in Table 3. Figure 7 presents the RMSE and the mean absolute error
(MAE) metric for different interpolation methods applied to the rPPG signals. As HR esti-
mation is based on identifying the dominant frequency with maximum power, it exhibits a
certain level of resistance to sample loss and irregular timing samples. The instability of the
sampling frame rate has little impact on the determination of heart rate from the dominant
frequency, as accuracy can be maintained even without the use of interpolation methods.
However, sampling loss can lead to errors in heart rate estimation without interpolation
correction. By applying interpolation methods, a certain level of accuracy in heart rate
estimation can be maintained, even with significant sampling loss. The estimated signal
remains stable without introducing sample loss in the simulation, leading to consistent
HR estimation without variation. Linear and cubic spline interpolation demonstrate better
signal reconstruction, resulting in more accurate HR estimation even under conditions
with significant sample loss. CIC filter interpolation exhibits slightly higher reconstruction
errors and variation as sample loss increases. For edge computing applications requiring
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extremely low computational complexity, linear and CIC interpolation can provide efficient
interpolations. Additionally, if low-pass filtering is required for further processing of the
rPPG signal, CIC filter interpolation serves as a suitable solution for achieving reliable
HR estimation.

Table 1. Detailed camera settings used for data capture.

Parameter Value

Brightness 55
Saturation 64
Contrast 50

Hue 0
Exposure −6(EV)
Gamma 300

Table 2. Summary of the parameters for the experimental recordings, including the number of
subjects, sampling rates, recording period, and total number of recorded samples.

Parameter Value

Subjects 22
Actual sampling rate 20–30 fps
Nominal sampling rate 25 fps
Recording duration 32 s
Recording samples 800
FFT samples 750

Extract the Average Green Channel Signal

Timing Correction for rPPG Signal

Perform Component Frequency Analysis 

Using FFT

Capture Region of Interest (ROI)

Output HR based on Max Amplitude

(a) Flowchart of the HR estimation process.
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(b) Irregular time samples and loss.
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(c) Timing corrected samples.

Figure 5. Timing correction for rPPG signal. (a) The flowchart illustrates the steps in HR estimation,
including ROI extraction, green channel averaging, timing correction, frequency analysis using FFT,
and HR determination based on the maximum amplitude. (b) The rPPG signal with irregular time
samples and sample loss. (c) Timing correction improves HR estimation by interpolating rPPG
samples to create a signal with consistent time intervals.
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Figure 6. Comparison of the actual rPPG signal with sample loss alongside the interpolated signals
obtained using linear, cubic spline, and CIC filter interpolation methods.
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(a) RMSE for timing correction methods.
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(b) MAE for timing correction methods.

Figure 7. Comparison of interpolation methods for rPPG signals. (a) RMSE and (b) MAE metrics for
various interpolation methods applied to rPPG signals, demonstrating the comparative accuracy of
each approach in HR estimation.
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Table 3. Comparison of RMSE and MAE results for different timing correction methods in HR
estimation under specific sample loss conditions.

RMSE (Mean/Standard Deviation)

Loss Count No Processing CIC IP Linear IP Cubic IP

0 5.11/0.00 5.11/0.00 5.11/0.00 5.11/0.00
10 11.20/1.35 5.80/1.42 4.99/0.25 5.13/0.38
20 14.23/1.47 6.52/1.74 5.05/0.50 5.32/0.74
30 15.36/1.37 7.19/1.89 5.19/0.78 5.54/0.97
40 18.78/1.36 7.60/1.97 5.24/0.83 5.81/1.21
50 20.25/1.20 8.11/2.11 5.44/1.06 6.00/1.31

MAE (Mean/Standard Deviation)

Loss Count No Processing CIC IP Linear IP Cubic IP

0 3.41/0.00 3.41/0.00 3.41/0.00 3.41/0.00
10 6.96/0.84 3.64/0.64 3.30/0.22 3.42/0.24
20 9.40/1.17 3.99/0.84 3.32/0.28 3.50/0.39
30 10.88/1.10 4.36/0.94 3.36/0.36 3.60/0.48
40 14.03/1.18 4.61/1.05 3.39/0.38 3.72/0.59
50 15.69/1.22 4.95/1.17 3.48/0.49 3.80/0.63

4. Discussion
This study focuses on timing correction as a front-end processing step for HR measure-

ment using rPPG. Effective timing correction methods enable accurate reconstruction of
rPPG signals and HR estimation, even under conditions of irregular sampling and sample
loss. The proposed methods are designed with low computational complexity, making
them suitable for implementing various healthcare services using rPPG on mobile and edge
computing devices.

We analyze the effect of timing correction on the RMSE and MAE of HR estimation, as
heart rate monitoring is an increasingly important application of rPPG in remote healthcare
services and wearable technologies. This study investigates the effects of frame loss and
timing correction on the accuracy of heart rate estimation using rPPG signals, filling a gap in
the existing literature. Direct comparisons with previous studies are challenging due to the
lack of research on timing correction algorithms for rPPG signals. However, benchmarking
datasets show that state-of-the-art algorithms achieve RMSE and MAE values of less than
10 for HR estimation [39–41]. Similarly, studies like Ze Yang et al. [42] report an MAE of
less than 9 and an RMSE of less than 13 under low-illumination conditions, which can
have a similar effect to frame loss. Based on the results of related studies, cutting-edge
algorithms achieve MAE and RMSE values for heart rate estimation of less than 5 and 10,
respectively. Our experimental results show that the RMSE and MAE gradually increase
with frame loss, which can exceed acceptable limits when frame loss exceeds 10 frames in
practical conditions. However, the proposed timing correction method can reduce RMSE to
less than 8, ensuring practical usability. Moreover, without timing correction, MAE exhibits
an approximately linear increase with frame loss, while the proposed algorithm minimizes
its sensitivity to frame loss. These RMSE and MAE values demonstrate the importance of
the timing correction method for accurately estimating heart rate using rPPG signals in
practical applications.

To further expand the scope of this research and enhance the applicability of these
timing correction methods across diverse rPPG applications, this study discusses current
limitations and explores potential future research directions. First, incorporating a more
diverse population with varying skin tones and age groups would provide valuable insights
into the robustness of the proposed methods. For instance, rPPG signals captured from
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individuals with darker skin tones often show higher accuracy because darker skin makes
blood vessels more visible [43]. However, this study primarily collected data from Asian
participants with similar skin tones, limiting the evaluation of how skin color affects the
effectiveness of timing correction. Expanding the dataset to include individuals with
diverse dermatological characteristics would facilitate a more comprehensive assessment
of timing correction methods and their adaptability across broader populations.

Additionally, the applicability of the proposed methods can be enhanced by assessing
their performance in real-world conditions involving motion artifacts and varying light
conditions. Although rPPG provides a non-invasive solution for HR estimation, it remains
vulnerable to interference from these factors. Investigating the interaction between timing
correction, motion artifacts, and reconstructed signals under such conditions is essential for
improving robustness. Furthermore, incorporating auxiliary equipment like near-infrared
cameras could enhance rPPG accuracy in low-light environments [44,45]. Future studies
could evaluate the effectiveness of timing correction on datasets collected under these
challenging conditions, providing insights into its adaptability to diverse and complex
scenarios. Lastly, the impact of timing correction on estimating additional physiological
parameters, such as blood pressure and blood oxygen saturation (SPO2), could be ex-
plored [46–48]. These additional studies could further enhance the versatility of the rPPG
technique and the proposed timing correction method.

5. Conclusions
This study evaluates heart rate (HR) estimation under irregular sampling intervals

and missing data, both of which can distort rPPG signals. While frame rate variations
have a minor impact on detecting the dominant frequency of the rPPG signal, missing
samples can shift the main frequency and cause significant errors without interpolation,
leading to inaccurate HR estimates. Without timing correction, RMSE increases rapidly
from 5.1 to 19.5, and MAE rises from 3.4 to 15.1 as sample loss increases. However,
applying timing correction using interpolation effectively controls RMSE within 7.1 and
MAE within 4.5, maintaining HR accuracy even under significant sample loss. While
cubic spline interpolation provides robust performance in reconstructing signals with
gaps and irregularities, its high computational demand may limit its practical use in real-
time applications. In contrast, linear and CIC interpolation offer efficient, low-complexity
solutions. CIC filter interpolation, in particular, offers a reliable solution when low-pass
filtering of rPPG signals is needed for further processing. Overall, applying interpolation
methods enhances reliable HR monitoring, particularly in situations with inconsistent data
capture. Choosing the appropriate interpolation technique can effectively balance accuracy
and efficiency, offering valuable insights for improving HR estimation from rPPG signals.
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