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Abstract: This study introduces a radar-based model for estimating blood pressure (BP) in
a touch-free manner. The model accurately detects cardiac activity, allowing for contactless
and continuous BP monitoring. Cardiac motions are considered crucial components for
estimating blood pressure. Unfortunately, because these movements are extremely subtle
and can be readily obscured by breathing and background noise, accurately detecting these
motions with a radar system remains challenging. Our approach to radar-based blood
pressure monitoring in this research primarily focuses on cardiac feature extraction. Initially,
an integrated-spectrum waveform is implemented. The method is derived from the short-
time Fourier transform (STFT) and has the ability to capture and maintain minute cardiac
activities. The integrated spectrum concentrates on energy changes brought about by short
and high-frequency vibrations, in contrast to the pulse-wave signals used in previous works.
Hence, the interference caused by respiration, random noise, and heart contractile activity
can be effectively eliminated. Additionally, we present two approaches for estimating
cardiac characteristics. These methods involve the application of a hidden semi-Markov
model (HSMM) and a U-net model to extract features from the integrated spectrum. In our
approach, the accuracy of extracted cardiac features is highlighted by the notable decreases
in the root mean square error (RMSE) for the estimated interbeat intervals (IBIs), systolic
time, and diastolic time, which were reduced by 87.5%, 88.7%, and 73.1%. We reached a
comparable prediction accuracy even while our subject was breathing normally, despite
previous studies requiring the subject to hold their breath. The diastolic BP (DBP) error of
our model is 3.98 ± 5.81 mmHg (mean absolute difference ± standard deviation), and the
systolic BP (SBP) error is 6.52 ± 7.51 mmHg.

Keywords: blood pressure; Doppler radar; cardiac movement detection

1. Introduction
Globally, cardiovascular diseases (CVDs) are currently among the leading causes of

mortality and stroke [1]. Regular blood pressure monitoring is crucial for the early detection
and diagnosis of CVDs [2–4]. Nevertheless, conventional methods for monitoring blood
pressure (BP) typically involve the use of a mercury sphygmomanometer and a stethoscope
cuff, which might potentially cause inconvenience for the patient. Furthermore, it should
be noted that the cuff-based technique lacks the capability to monitor BP continuously. In
order to address this issue, researchers have been exploring the feasibility of calculating
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blood pressure (BP) using photoplethysmography (PPG) and electrocardiogram (ECG)
signals [5–7]. While certain studies achieved acceptable precision, these techniques still
need the placement of multiple electrodes and sensors on different regions of the subject’s
body, resulting in patient discomfort and inconvenience [8–10].

Consequently, scientists have been researching the practicality of performing blood
pressure measurements without physical contact [11–18]. They were inspired by the fact
that PPG and ECG signals are all related to cardiac and pulse activities. In recent years, there
has been considerable progress in the field of biomedical radar, resulting in its enhanced
ability to detect subtle body motions. Non-contact blood pressure measurement appears
to carry some potential. Specifically, the heart motion induces slight chest displacement,
which can be detected with Doppler radar.

The researchers claimed that there exists a correlation between the heart activity
captured by a radar system and BP measurements [11,12,19]. However, the identification
of chest displacement resulting from heart motions poses a major obstacle. Due to the
insignificance of these displacements in comparison with respiration and other body
movements, the accuracy of recorded cardiac motions may be susceptible to contamination.

In some previous works, the participants were asked to hold their breath and remain
still while the recordings were being made. Consequently, the influence of respiration is
eliminated, and the signal-to-noise ratio (SNR) of the pulse wave is preserved at a high level.
Most previous works obtain the pulse-wave signal by applying a band-pass filter (BPF)
within a certain frequency range (i.e., [0.75∼2.00] Hz). The output of this BPF was assumed
to be the pulse wave signal. This pulse wave signal was further used to extract cardiac
features. Nevertheless, certain arbitrary bodily movements and noises continue to persist
within the specified frequency range, and the pulse wave signal can only approximate the
real cardiac action.

This work presents two novel approaches for extracting cardiac timing features, which
can subsequently be utilized for non-contact blood pressure estimation. We prioritize de-
riving relatively precise cardiac features from raw radar signals, and the extracted precise
features can lead to improved accuracy in estimating blood pressure. In our previous
work [20], we employed the hidden semi-Markov model (HSMM) to estimate cardiac
timing, achieving accurate blood pressure estimations. In this study, we introduce the
U-net model for cardiac timing estimation. This new approach surpasses HSMM as it
incorporates an innovative loss function, enhancing the overall accuracy of our predictions.
The accuracy of the cardiac features is evaluated through a comparison with the gold
standard electrocardiogram (ECG) signals, and the resulting estimation of BP is also pre-
sented. The experimental results indicate that the features obtained through our suggested
methodology closely resemble those of the electrocardiogram (ECG) signals. Furthermore,
the features produced by our suggested method obtain greater prediction accuracy when the
same features are applied to BP prediction. Our contributions can be summarized as follows:

• Our research concentrates on high-frequency vibrations of the chest associated with
cardiac activity. These high-frequency vibrations experience relatively less noise
interference, allowing for a more accurate capture of cardiac movements.

• We utilize the hidden semi-Markov model (HSMM) to estimate systolic and diastolic
times, taking advantage of probability changes in high-frequency signals.

• We enhance HSMM’s performance by integrating a new loss function within the U-net
model, thereby improving the accuracy of cardiac timing feature detection.

The structure of this paper is as follows: Section 2 summarizes and discusses related
work. Subsequently, the preliminary work is presented in Section 3. The proposed method
is described in Section 4. In Section 5, we evaluate the performance of our proposed method
and discuss its strengths and limitations. Finally, we conclude this paper in Section 6.
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2. Related Work
This section presents the latest developments in BP estimation using radar-based

methods. Presently, the majority of studies have employed the calibration-based approach.
Many studies have concluded that the pulse transit time (PTT) has a significant impact

on BP values. Buxi et al. [13] used electrocardiogram (ECG) and radar signals to derive
PTT and pulse arrival time (PAT). A linear regression model was subsequently employed
to achieve calibration between PTT, PAT, systolic blood pressure (SBP), and diastolic blood
pressure (DBP). Kuwahara et al. [21] computed the pulse wave velocity (PWV) using PTT
and assessed the associations between PWV and BP. Nevertheless, the utilization of several
sensor attachments remains difficult and inappropriate for the purpose of long-term blood
pressure monitoring. Heng et al. [12] introduced a PTT extraction technique that utilizes
simply one Doppler radar to mitigate the inconvenience caused by sensor attachments.
In their method, the raw signal was first processed by BPF to generate the pulse wave,
from which PTT was extracted. Via calibrating methods, they also discovered a linear
relationship between PTT and BP.

The significance of time duration factors in addition to PTT has been mentioned in
other previous works. Ohata et al. [14] obtained and exploited the systolic and diastolic
times of each heartbeat. Strong correlations were observed between the two cardiac timings
and BP. Kawasaki et al. [15] similarly observed a linear correlation between cardiac timing
and blood pressure values within the same participant. Moreover, they utilized the corre-
lation to estimate the fluctuations in BP for the study subject. While the aforementioned
approaches demonstrate the ability to estimate blood pressure, it is important to note that
each of these methods demands a calibration stage for each test subject. However, the
linear relationship between a single feature and blood pressure values varies from subject
to subject, leading to models that have limited generalization ability.

To address this problem, researchers explored machine learning methods to estimate
blood pressure without relying on a calibration process. In a work proposed by Jung et al. [16],
multiple features were derived from the radar signal. Other than the time domain, feature
engineering is also applied to the frequency domain as well. These features are later used as
inputs to a support vector machine for BP value estimations. Nevertheless, the evaluation
conducted in their work has solely focused on the mean related error (MRE), and the precise
accuracy of blood pressure value remains uncertain. Shi et al. [17] manually chose six features
from the pulse wave signal, and assessed the importance of every feature by calculating the
correlation coefficient for each feature and the BP values. The three most important features
were further used as input to a random forest model for BP value estimation.

The performance was evaluated by mean absolute error (MAE) and standard devi-
ation (STD). Zheng et al. [18] introduced a blood pressure estimate technique utilizing
dual radar. The wrist and chest pulses are subjected to feature engineering. The chosen
features are then fed to an artificial neural network (ANN) to enable calibration-free blood
pressure prediction. Radar-based systems have gained attention for their ability to measure
physiological parameters non-invasively. Vysotskaya et al. [22] demonstrated the feasibility
of using 60 GHz radar to monitor blood pressure by detecting the mechanical movements
of the skin due to arterial pulsations. However, their study highlights the challenges of
achieving clinical accuracy, suggesting the need for the further optimization of sensor tech-
nology and signal processing algorithms. Shi et al. [23] proposed to evaluate signal quality
indices for radar-based blood pressure monitoring. Unlike traditional methods that may
discard entire datasets due to poor signal quality, their technique evaluates each pulse wave
individually, allowing for the retention of valuable data by excluding only those pulses
that fail to meet quality standards. This method filters out low-quality pulse data without
requiring a complete dataset rejection. Ye Qiu et al. [24] utilized a stacked deformable
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convolution network (RSD-Net) to enhance feature extraction from radar signals. This
approach combines Kalman filtering, multiscale band-pass filters, and a periodic extraction
method to pre-process the signals, capturing fine details of chest micro-variations indicative
of cardiac motions, achieving Pearson correlation coefficients (PCCs) of 0.838 for systolic
and 0.797 for diastolic blood pressure.

According to previously stated works, Ohata et al. [14] established a mathematical
model describing the relationship between BP values and cardiac time features (i.e., systolic
diastolic duration). Similarly, Shi et al. [17], Jung et al. [16], and Kawasaki et al. [15]
also included cardiac timing features for calculating BP values IBI (i.e., systolic diastolic
duration, IBI). Nevertheless, the actual cardiac activities can only be approximated by their
feature extraction techniques.

The systolic time refers to the period during which the heart contracts and releases
blood, while the diastolic time describes the duration during which the heart relaxes
following the contraction. Multiple previous works like [14] applied a BPF in the frequency
range of [0.75∼2.00] Hz to obtain the pulse wave signal from raw radar data. These
approaches were established based on the hypothesis that the phase signal of the chest area
reduces during cardiac contraction, and then assumed this period as the systolic duration.
In the same way, it was presumed that the heart undergoes expansion as the phase signal
increases, triggering the capture of the diastolic time. Figure 1a shows an example of the
feature extraction method used in previous works. However, the systolic phase of the heart
actually begins with the contraction of the ventricles and ends with the closure of the aortic
and pulmonary valves [25]. Both activities result in the generation of brief, high-frequency
vibrations inside the chest cavity. Furthermore, it should be noted that systole is observed
immediately following the R-peaks of the ECG, whereas diastole is synchronized with the
end of the T-wave in the ECG signal [26].
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Figure 1. An illustration of (a) conventional assumption on systolic and diastolic timing extraction
and (b) actual systolic and diastolic timings from ECG waveform.
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Overall, multiple works have acknowledged the significance of both diastolic and
systolic times in BP estimation tasks. The timing durations obtained from previous studies
may still exhibit noise and temporal delays. Furthermore, they can only approximate the
true cardiac features. This paper is an extended version of our previous work [20], which
has introduced machine learning techniques for a more accurate cardiac timing estimation.
In this study, we leveraged the robust segmentation capability of the U-net structure to
enhance the estimation of cardiac timing features. Utilizing these improved features, we
subsequently achieved better performance in blood pressure estimation.

3. Preliminaries
Doppler Sensor Functioning

In Figure 2, we show the system model and the setup of the Doppler sensor for
capturing the heartbeat signal. The Doppler sensor, as suggested by its name, makes use of
the Doppler effect to detect phase and frequency changes. In such a system, a transmitter
Tx emits a microwave signal T(t) as follows:

T(t) = cos
(
2π f t + Φ(t)

)
, (1)

where f and Φ(t) are the carrier frequency and the initial phase, respectively. The signal
bounces on the moving object (i.e., the chest), and the reflected signal is captured by the
receiving antenna Rx. The received phase signal R(t) is expressed as follows:

R(t) = cos
(

2π f t − 4πd0

λ
− 4πx(t)

λ
+ Φ(t − 2d0

c
)
)

, (2)

where d0 is the distance between the Doppler sensor and the moving object, λ is the
wavelength of the carrier, and x(t) is the variation with reference to d0. By down-converting
the received signal R(t), it is possible to obtain the baseband signal as follows:

B(t) = cos
(

θ +
4πx(t)

λ
+ ∆Φ(t)

)
, (3)

where θ is the default phase shift, which can be calculated using d0 and f , and ∆Φ(t)
is the total residual noise. The quadrature mixer shifts the phase of B(t) by π/2, allow-
ing for acquiring the components I(t) and Q(t) with a phase difference of π/2, where
I(t) and Q(t) denote the in-phase and quadrature components, respectively. The in-phase
component I(t) corresponds to the real part of the complex signal and is in phase with
the transmitted radar signal. The quadrature component Q(t) represents the imaginary
part and is orthogonal to I(t). These components allow for the extraction of amplitude and
phase information from the radar signal. By analyzing the variations and interactions of
I(t) and Q(t), we can obtain the dynamics of the observed targets, such as speed, distance,
and angular position. I(t) and Q(t) are expressed as follows:

I(t) = cos
(

θ +
4πx(t)

λ
+ ∆Φ(t)

)
, (4)

Q(t) = cos
(

θ − 4πx(t)
λ

+ ∆Φ(t)
)

. (5)

As can be seen in the system given in Figure 2, a band-pass filter (BPF) is used to
roughly remove undesired frequencies that do not include movement-related information.
An operational amplifier (OP-AMP) is finally used to amplify the signals I(t) and Q(t).
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Figure 2. The system model and the setup of the Doppler sensor for capturing the heartbeat signal.

In the current work, we use the I(t) and Q(t) signals individually, and further combine
them into a complex signal S(t) defined as follows:

S(t) = I(t) + j · Q(t), (6)

where j is the imaginary number satisfying j2 = −1. S(t) can therefore be expressed also as

S(t) = ej
(
± 4πvt

λ +Φ(t)
)

, (7)

where v is the speed of the target, and ± indicates the direction of the motion. The frequency
shift value fshi f t induced by the object movement is

fshi f t =
4πvt

λ
· 1

2πt
=

2v
λ

. (8)

4. Proposed Method
This section presents a calibration-free blood pressure measurement method utilizing

Doppler radar, which operates while the subject maintains normal respiration. Under such
conditions, the cardiac-induced displacements in the thoracic surface are comparatively
insignificant when compared with those induced by respiration or bodily movements.
Consequently, pulse wave signals are susceptible to contamination from breathing and
surrounding noise.

We focus on the higher-frequency vibrations generated by the cardiac muscle activities
in the thoracic region, as opposed to the pulse wave utilized in previous research. Specifi-
cally, as shown in Figure 3, each heartbeat is introduced by systole and diastole behaviors.

The heart’s ventricle contraction triggers the systole activity, and it ends with the
sealing of the aortic and pulmonary valves [25]. The above-mentioned activities introduce
vibrations in the chest area. Moreover, the extraction of cardiac features is conducted
based on the high-frequency vibrations. We propose to use the integrated spectrum as
input to depict the vibration signals for feature engineering. The energy changes in the
subject’s chest area during high-frequency vibration can be more accurately captured
by the integrated spectrum. Two machine learning algorithms are proposed for cardiac
timing estimation using the integrated spectrum as input. The results demonstrated that
our proposed methodology can improve the accuracy significantly in predicting cardiac
duration features. Compared with the features extracted by pulse wave signals, our
features could achieve higher BP estimation accuracy. A flowchart of our proposed method
is shown in Figure 4. Here, the proposed method consists of three steps: (i) pre-processing
and spectrum integration, (ii) cardiac feature estimation, and (iii) BP estimation.
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Figure 3. An illustration of the heart parts.

Figure 4. Flowchart of the proposed method.

4.1. Pre-Processing and Spectrum Integration
4.1.1. Band-Pass Filter

The first step is applying a BPF. As previously established, the frequency range of
[0.5∼3.0] Hz contains the heart rate information and generated pulse wave signal. Previous
works [14–16] have all applied feature engineering to the pulse wave signal obtained
through roughly such frequency bands. However, the onset of systolic activity is marked
by the contraction of the heart’s ventricles and ends with the closure of the aortic and
pulmonary valves [25]. This process generates brief, high-frequency vibrations in the chest
region. That being the case, our work concentrates on the high-frequency oscillations in the
chest area, which are triggered by the heart muscle movements. Here, a BPF with a higher
frequency band [8.0∼30.0] Hz was applied, and the results contain important information
related to cardiovascular activities, specifically systolic and diastolic time duration.

In addition, this range is carefully chosen as it predominantly includes the frequencies
at which cardiovascular movements occur. Cardiovascular movements, unlike large body
movements or respiratory functions, exhibit periodic behavior that is more predictable
and isolated within this higher-frequency band. Moreover, this frequency range also
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excludes the high-frequency noise components in the radar hardware, which ensures that
the data acquisition process is less susceptible to the random noise typically associated with
electronic devices and external environmental factors. By filtering our signal to capture
only these frequencies, we significantly reduce the interference from non-cardiovascular
sources, enhancing the reliability of our measurements.

4.1.2. Short-Time Fourier Transform

A short-time Fourier transform (STFT) is then applied to the filtered signal output
from the previous step. The STFT has several parameters that need to be tuned to capture
the information needed to obtain the heart muscle movements that allow for accurately
obtaining the cardiac activities. The main parameters of the STFT are as follows:

• The length of the segment (window) over which the Fourier transform is calculated,
referred to as Wst f t.

• The step size indicates the distance between the starting points of two consecutive
windows. This can be inferred otherwise from the amount of overlapping between
the segments. The step size is referred to as Sst f t.

For the window length in STFT, it is advisable to use a relatively short window length and
step size as they can provide better temporal resolution. The time window should also be shorter
than the interbeat interval (IBI) to ensure that each window captures only one heartbeat. In our
approach, the window length Wst f t is set to 256 ms, and the step size Sst f t is 1 ms.

Initially, we compare the spectrogram of the traditional pulse wave signal [27] with our
signal that has been filtered for higher frequencies. As shown in Figure 5, the spectrogram of
the traditional pulse wave contains noise beyond cardiac activities, while our filtered signal
exhibits distinct energy scattering that aligns with the cardiac cycle. Systole and diastole
are two essential phases of the cardiac cycle. Identifying when these phases occur can yield
accurate cardiac motion. We employ an integrated spectrum waveform derived from STFT
for this purpose. The integrated spectrum is calculated by summing the energy across the
frequency spectrum for each step within the range of [5∼30 Hz], as shown in Figure 6.
Referring to Figure 6, the cardiac movement in the pulse wave signal appears distorted as
it fails to align with the ground-truth ECG. In contrast, our integrated spectrum reveals two
distinct peaks in each heartbeat. When aligned with synchronous ground-truth ECG signals,
the first peak in the integrated spectrum emerges immediately after the R-peaks, while the
second peak appears at the conclusion of the T-wave. These occurrences coincide with the
phases of systole and diastole. From this, we can deduce that the initial peak may be caused by
the synchronized contraction of the heart muscle before systole, and the latter peak may result
from the vibrations due to the closing of the valves, marking the start of diastole. Further
analysis can be conducted by extracting features based on the systolic and diastolic durations.

In this work, the integrated spectrum is first segmented, defining that the duration is
set to 10 s each. Feature extraction is applied on each segment, utilizing the average values
of the features and BP for each segment to create the training data. The preparation of
ECG signals involves a necessary pre-processing step. To derive the ground-truth ECG,
the raw signal is subjected to a band-pass filter that operates within the [0.24∼31.25 Hz]
frequency range.
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Figure 5. (a) The spectrogram of the conventional pulse wave signal; (b) the spectrogram of the
higher-frequency radar signal selected in our work.

Comparison of Integrated Spectrum, ECG, pulse wave

Figure 6. Integrated spectrum and pulse wave with ECG as gold standard.

4.1.3. Spectrogram Integration

Integrating the spectrogram refers to the operation of summing the energy over a certain
range of frequencies, resulting in a time-domain signal. The integrated signal is rich of heart
muscle movement features. As it stands, this signal contains enough information to reconstruct
the ECG signal, though it might contain noise, making the detection of R-peaks not always
accurate. A copy of this output signal is kept for the evaluation of the ECG reconstruction.

4.2. Cardiac Feature Estimation

Drawing from the previously discussed details, the integrated spectrum offers the
capability to precisely identify the timing of systole and diastole. This work proposes a
logistic regression-based hidden semi-Markov model (HSMM), inspired by the method-
ology in [26], to determine the timings of cardiac activities such as systolic time, diastolic
time, and the interbeat interval (IBI) [28]. Furthermore, a deep learning algorithm for signal
segmentation has also been employed to estimate features relevant to cardiac timing.

4.2.1. Hidden Semi-Markov Model

Based on the previously stated information, the integrated spectrum offers the poten-
tial to accurately determine the timings of systole and diastole. In this regard, we propose a
logistic regression-based hidden semi-Markov model (HSMM), inspired by [26], to estimate
the timings of cardiac activities, specifically the systolic time, diastolic time, and IBI. Here,
our HSMM model has similar concepts to a state duration dependency hidden Markov
model, as proposed in [28]. In particular, the matrix A in the traditional Markov model
represents the transition matrix. In our scenario, the matrix A exhibits a “nonergodic”
characteristic, as each state can only be reached from one specific preceding state. This
means that the progression of states follows a predetermined sequence. The probability
of transitioning from one state to another is solely dependent on the duration for which
the current state has persisted and on the observations from the integrated spectrum. The
probability of a state transition increases with the length of time the system remains in its
current state.



Sensors 2025, 25, 619 10 of 20

In our study, we begin by discussing the conventional hidden Markov model (HMM),
which serves as the groundwork for our more complex model adaptations. The original
HMM framework is defined by

λ = (A, B, π).

In this model, A serves as the matrix that depicts the transitions between states, B
describes the probability distribution of observations, and π specifies the distribution of
states at the start. The sequence of observations is represented by O = O1, O2, . . . , OT , with
Ot being the specific observation vector at the time step t.

A =
{

aij
}

.

The matrix A determines the probability of transitioning between states at each time
step. For example, if the current state is i and the current time step is t, state transitions
occur when the system moves from state i to the next state j at the following time step t + 1.

B =
{

bj(Ot)
}

.

The matrix B specifies the probability of observing Ot given that the system is in state
j. Define δt(j) as the most likely sequence of states for the initial t observations, and it ends
in state j at time t. The initial value δ1(j) can be determined as πjbj(O1). By taking into
account the information from previous time steps, δt(j) for the conventional HMM can be
iteratively calculated by

δt(j) =
[

max
(1≤i≤N)

δt−1(i)aij

]
· bj(Ot).

Transitioning from this traditional approach, our model introduces modifications that
transform the standard HMM into a hidden Semi-Markov model (HSMM). In the HSMM,
the transition probabilities and state durations are governed by a modified transition matrix
A and a duration-dependent parameter p, enhancing the model’s ability to account for time-
based characteristics specific to cardiac activities. Specifically, the matrix A in our HSMM
is adapted to reflect nonergodic properties, and an additional parameter p is required to
describe the relationship between the duration of time spent in a state and the likelihood of
transitioning to another state. By incorporating the probability density of duration, δt(j)
for the HSMM can be defined as follows [28]:

δt(j) = max
d

[
max

i ̸=j

[
δt−d(i) · aij

]
· pj(d) ·

d−1

∏
s=0

bj(Ot−s)

]
.

Here, p = {pi(d)} denotes the probability of staying in the same state i for a duration
equal to d. Figure 7 presents an example of our HSMM algorithm. In this approach,
a four-state HSMM is employed to estimate the duration of various activities within a
single heartbeat.

Our HSMM model is inspired by similar approaches [26] that employ contact devices
to segment the heart sound. In these methods, a typical set of states is usually used.
They include (1) the initial chest vibration, (2) the systolic time duration (i.e., the duration
separating the second chest vibration from the first one), (3) the second chest vibration, and
(4) the diastolic time duration (i.e., the duration separating the next initial chest vibration
from the current second one). Furthermore, these states follow a predetermined sequence,
with each state being accessible only from a specific preceding state. For instance, the
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systolic period can only be entered following the first chest vibration and is not accessible
from any other state.

In this study, the HSMM is solely focused on predicting the time steps at which
transitions between states occur. Given the fixed order of state changes, a sequence of
state transitions can be generated from an initial state using the predicted time steps. The
resulting sequence of state changes, and the corresponding integrated spectrum is depicted
in Figure 8. As HSMM goes, we first calculate the state transition probability at each
time step. The Viterbi algorithm is then employed and takes as input these calculated
probabilities to determine the most likely sequence of state changes (i.e., one that yields the
highest overall probability). The calculation of the probability of a state transition at each
time step takes into account both the observations from our integrated spectrum and the
duration of the current state.

𝑜𝑜1 𝑜𝑜2 𝑜𝑜3 𝑜𝑜4 𝑜𝑜5 𝑜𝑜𝑇𝑇

𝑏𝑏1(𝑜𝑜) 𝑏𝑏2(𝑜𝑜) 𝑏𝑏𝑁𝑁(𝑜𝑜)

𝑆𝑆1 𝑆𝑆2 𝑆𝑆𝑁𝑁

……

……
𝑎𝑎12 𝑎𝑎23 𝑎𝑎𝑁𝑁−1𝑁𝑁

𝑝𝑝1(𝑑𝑑) 𝑝𝑝2(𝑑𝑑) 𝑝𝑝𝑁𝑁(𝑑𝑑)

𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖(𝑑𝑑) 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖(𝑑𝑑) 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖(𝑑𝑑)

Observations

HSMM States

Figure 7. Example of an HSMM algorithm.

Figure 8. The estimated state change generated by HSMM.

4.2.2. U-Net

Building upon the foundational knowledge that the HSMM serves as a machine
learning algorithm specifically tailored for signal segmentation, we introduce a modified
U-net architecture. U-net is a deep learning algorithm composed of convolutional neural
networks and was originally designed for tasks in image segmentation. This modified
U-net architecture is tailored to surpass the HSMM in estimation accuracy, and incorporates
enhancements suited for the complexities and specific requirements of signal segmentation.

U-net is a convolutional neural network architecture that was originally developed
for biomedical image segmentation tasks. The architecture is characterized by its unique
‘U’-shaped structure, which comprises two main parts: a contracting (downsampling) path
and an expansive (upsampling) path, as shown in Figure 9.

Contracting path: This part of the network follows the typical architecture of a convo-
lutional neural network. It consists of a repeated application of convolutions, each followed
by a ReLU and a max pooling operation for downsampling. With each downsampling step,
the network increases the number of feature channels.
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Convolution + Relu

Max pooling

Upsampling

Copy + Concatenate

Convolution + Softmax

Figure 9. Example of a U-net structure.

Expansive path: The second half of the network involves upsampling of the feature
map, followed by convolutional operations. This part of the network also includes “skip
connections” from the contracting path. These connections provide the expansive path with
context information from the contracting path, which is crucial for the precise localization
in image segmentation tasks.

The purpose of the U-net architecture is to provide a precise and efficient way of
performing image segmentation, particularly useful in medical imaging where the accurate
delineation of boundaries is crucial. The effectiveness of U-net comes from its ability to
capture the context from the entire image while maintaining the ability to focus on fine
details in specific areas of the image. We applied U-net for the following reasons:

Handling noise: One of the key challenges in processing integrated spectrum is the
presence of various types of noise, such as muscle artifacts, baseline wander, and random
noise in the high-frequency range. U-net’s multiple layers and depth help in learning to
differentiate between noise and actual signal components. The network can learn to ignore
or filter out irrelevant noise features through training, focusing instead on meaningful
signal patterns.

Learning from variability: Our integrated spectrum can vary significantly between
individuals due to differences in heart size, position, and health conditions. U-net’s capacity
to learn from a wide range of examples allows it to generalize well across different types
of cardiac movement signals. Training helps the network develop a robust model that
can accurately process signals even when they deviate from the “typical” patterns seen in
training data.

Enhanced by skip connections: These connections not only assist in preserving impor-
tant details but also help in reinforcing the learning against noise. By reintegrating early
signal representations directly with deeper layers, the network maintains access to raw, less
abstracted features that can provide checks against over-generalization or misinterpretation
of noisy data.

In this work, the U-net structure is customized to perform the segmentation task on
our 1D signal data. Specifically, several key modifications were implemented to optimize
the model for integrated spectrogram segmentation as follows:

• Convolutional layers: The standard 2D convolutional layers (Conv2D) were replaced
with 1D convolutional layers (Conv1D). This alteration enables the network to effec-
tively process time-series data along the temporal dimension.

• Pooling and upsampling: Traditional 2D pooling and upsampling operations were re-
placed with 1D variants to preserve the integrity of the temporal information through-
out the network’s processing pipeline.
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• Output layer adjustments: The output layer was specifically tailored to produce a
1D output that accurately corresponds to the segmented regions of the ECG signal,
distinguishing between systole and diastole periods effectively.

The ground-truth label is generated through the ECG signal; specifically, in every
heartbeat, the value of systole time is set to 0, while the value of diastole time is set to 1,
as shown in Figure 10. The loss function we applied is MAE (mean absolute error), and
finally, the U-net structure is employed. The detailed structure of the network is displayed
in Table 1. In training our models, we utilized the Adam optimizer with an initial learning
rate of 0.001. The network was trained using a batch size of 256 over 100 epochs, with mean
absolute error (MAE) as the loss function and mean squared error (MSE) as an additional
monitoring metric.

Figure 10. An illustration of (A) shows the label are generated from the ECG signal. (B) shows the
comparison between Integrated spectrum and the generated label.

Table 1. Detailed U-net architecture.

Layer Operation and Configuration Output Size

Input Layer Input: Single-channel input signal (1024, 1)

Contracting Path

Convolutional Blocks

Repeated operations for each block:

• 2 × Conv1D with increasing filters (32, 64, 128),
size 3, ReLU, same padding, batch normalization

• Pooling: MaxPooling1D, pool size 2

(512, 32)
(256, 64)

(128, 128)

Bottom Block 2 × Conv1D with 256 filters, size 3, ReLU, same
padding, batch normalization (128, 256)

Expansive Path

Up-sampling Blocks

Each block includes the following:

• Up-sampling: concatenate with output from
corresponding contracting block

• 2 × Conv1D with reducing filters (128, 64, 32),
size 3, ReLU, same padding, batch normalization

(256, 128)
(512, 64)

(1024, 32)

Final Convolutional Layer Operation: Conv1D with 1 filter, size 1 (1024, 1)

4.3. BP Estimation

Prior research [14,29] has established a strong correlation between the IBI, systolic time,
and diastolic time with BP. In this study, these features can be accurately extracted using the
outputs from our HSMM algorithm and U-net, both demonstrating a relatively low error
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rate. With the HSMM algorithm, the durations of systole and diastole are discerned at the
time step of state transition. Beyond these temporal features, the width of the pulse wave
at a level that is 25% of its maximum peak is also incorporated as an additional feature.

A random forest model utilizes these extracted features to estimate SBP and DBP.
Moreover, a grid search method is employed to determine the most effective combination of
hyperparameters. The evaluation of performance across potential sets of hyperparameters
is conducted, and the set yielding the highest accuracy is chosen.

5. Results and Discussion
5.1. Experimental Results

Within this section, we deploy our suggested methodology across several experiments
to evaluate the significance of the features captured by our method. First, we provide a
concise overview of the dataset employed in this study. Second, we assess the precision of
the time durations associated with cardiac activities. Next, we evaluate the impact that the
cardiac features, as estimated by our method, have on the task of blood pressure estimation.
Last, we compare the accuracies of our blood pressure predictions with those from existing
research to draw a clear conclusion.

5.1.1. Dataset

To evaluate our BP estimation technique, we used the open-sourced medical dataset
offered in [27]. In this dataset, the Doppler radar signals were recorded using two Doppler
radars whose carrier frequencies are 24.25 GHz (New Japan Radio, NJR4262, Tokyo, Japan).
Simultaneously, the ECG data (along with other vital signals) were recorded using a
contact device attached to the subjects’ bodies. In addition, the synchronized non-invasive
continuous BP data were also collected using a Task Force Monitor (TFM). A total of
25 subjects’ data were used in our experiments, 18 of whom were males and 7 were females.
The participants had an average age of 30.7 ± 9.9 years and an average body mass index
(BMI) of 23.2 ± 3.3 kg/m2. They were selected based on health screenings to ensure that
they were free from any chronic illnesses and were not taking any medications known to
influence cardiovascular functions. This healthy cohort was chosen to establish baseline
cardiac timing and blood pressure estimations in a controlled environment, providing a
foundation for further research in populations with varied health conditions. The subjects’
data were recorded while they were resting on a bed in a supine position. The data using
the different devices were collected at a sampling frequency equal to 1 KHz, and were
16-bits-coded. For each subject, 10 min’s worth of data were recorded. The data were
down-sampled to 125 Hz and split into segments of 10 s, with 5 s overlapping between
consecutive segments. After removing recordings with low quality, we were left with
7069 usable data segments. We employed 80% of these for training purposes and used
the remaining 20% for testing. Each generated sample was pre-processed to extract the
following components, which we used later for evaluation:

• The subject ID: This is used later to divide our dataset during cross-validation to make
sure that samples of the same subject do not leak from the training set to the validation
set. In other words, samples from the same subject should be used exclusively in the
training or the validation set.

• ECG signal: This is the raw ECG signal cleaned by applying a simple BPF with cutoff
frequencies equal to 0.85 and 4 Hz.

• Raw I and Q signals: These are the raw Doppler I and Q signals with no filtering or
pre-processing applied.

• Filtered I and Q signal: These are the Doppler I and Q signals filtered with a BPF
whose cutoff frequencies are set to 0.5 and 2 Hz.
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• Integrated spectrogram: The Doppler I and Q signals are first filtered with a BPF
whose cutoff frequencies are set to 8.0 and 30.0 Hz, and spectrogram Integration is
described in Sections 4.1.2 and 4.1.3.

• Blood pressure value: The non-invasive continuous BP value recorded by the Task
Force Monitor.

5.1.2. Cardiac Timing Estimation Accuracy

Here, we assess the effectiveness of the HSMM and U-net models we have proposed.
In this study, to evaluate the adaptability and robustness of our model across different
physiological profiles, we employed a subject-specific five-fold cross-validation method.
The dataset consisted of recordings from 25 subjects. In each fold, the data from 5 unique
subjects were designated as the test set, while the data from the remaining 20 subjects
formed the training set. This partitioning was strategically planned to ensure that each
subject’s data were utilized as a test set in exactly one fold. The model’s performance
was evaluated based on metrics calculated separately for each test set, and the overall
performance was derived as an average of these results across all folds. This cross-validation
scheme not only prevented data leakage but also ensured that the performance metrics
reflected the model’s efficacy in handling variations across different subjects. The root mean
square error (RMSE) and mean absolute error (MAE) for the estimated IBI, systolic time,
and diastolic time were calculated, with the true values obtained from the ECG signal’s
R-peaks and T-wave ends. A comparison of cardiac state transitions and the outputs from
our U-net model against the actual ECG signal is presented in Figure 11. Additionally, we
calculated RMSE and MAE for these cardiac features using the pulse wave data generated
from BPF following the approach suggested by [14]. In Table 2, we present a comparison of
our proposal with the conventional methods. As can be seen from the results presented
in the table, our method performs much better than the conventional ones, reaching error
values that are largely lower than those of the conventional ones. For instance, the MAE
of our U-net-based method for the systolic and diastolic time durations reached 0.0049 s
and 0.0059 s, respectively. For reference, these error values in the case of the BPF-based
method, reached 0.1913 s and 0.1013 s, respectively, Similarly, the IBI MAE using the U-net
reached only 0.0048 s, whereas it reached 0.1053 s for the BPF-based method. A similar
pattern was observed for the RMSE as well. Our approach demonstrates precise detection
and estimation of cardiac timing features, surpassing previous methodologies.

Table 2. Cardiac duration evaluation.

Error Compared with ECG
MAE (s) RMSE (s)

Systolic (BPF) 0.1913 0.2218
Systolic (HSMM) 0.0381 0.0592
Systolic (U-net) 0.0049 0.0047

Diastolic (BPF) 0.1013 0.2783
Diastolic (HSMM) 0.0485 0.0820
Diastolic (U-net) 0.0059 0.0086

IBI (BPF) 0.1053 0.1384
IBI (HSMM) 0.0179 0.0616
IBI (U-net) 0.0048 0.0068
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Figure 11. The integrated spectrum, state changes, and U-net results compared with the R-peaks and
end of the T-wave in the ECG.

5.1.3. Radar-Based BP Estimation

In our study, we utilized the random forest algorithm for estimating blood pressure
(BP) values using the previously acquired cardiac features. We employed the grid search
technique to tune the hyperparameters, iterating through multiple combinations of hyper-
parameter sets and selecting the one that yielded the lowest error rate. To demonstrate
the usefulness of the features and to highlight the superiority of our feature estimation
method in BP prediction, we compared the performances of these features when estimated
using different techniques from the literature to ours. The performance was measured in
terms of BP prediction error. Note that, while the features in all the methods were the same,
the estimation of these features differed from one work to another. These features include
systolic time, diastolic time, IBI, and the width of the pulse wave at 25% of its peak height,
obtained using different methods: BPF, HSMM, U-net, and ECG.

Once the hyperparameters were chosen, the different methods’ generated sets of
feature values were input to our random forest regressor to predict the subject’s BP. We
evaluated the performance using mean absolute error (MAE) and standard deviation
(STD). The results are presented in Table 3. As expected, the features derived from the
actual ECG signal showed the greatest accuracy. In comparison, the features we precisely
estimated surpassed those acquired through BPF, underscoring the importance of these
cardiac timings in predicting BP. Additionally, the outcomes suggest that the cardiac timings
produced by the HSMM and U-net methods are more precise, enabling our approach to
attain a lower BP estimation error.

Table 3. The mean absolute error and standard deviation for different feature sets.

MAE + STD (mmHg)
DBP SBP

BPF 4.78 ± 6.52 7.93 ± 10.51
HSMM 4.27 ± 5.84 6.63 ± 8.95
U-net 3.98 ± 5.81 6.52 ± 7.51
ECG 3.95 ± 5.36 6.46 ± 7.23

5.1.4. Comparison with Previous Works

A comparison between our proposed method and some of the existing calibration-free
methods proposed in the literature is given in Table 4. Our method has outperformed the
results reported in [18]. When compared with [17], our method demonstrates competitive
performance in terms of error rates (i.e., MAE and STD) of DBP and SBP, even in cases of
normal breathing. This could be attributed to the fact that the features extracted in previous
studies are not as accurate or representative. Earlier works used simple filtering techniques
such as applying a BPF as a proxy for the participant’s pulse wave. However, the signals
produced by these methods are only a rough approximation of actual cardiac activities and
still contain noise and time lag. In contrast, our approach uses the integrated spectrum to
eliminate the effects of respiration and random noise. Two machine learning algorithms
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result in more precise cardiac timings. By comparing our performance with that of other
studies, it is evident that our method generates more accurate and representative features
for BP estimation.

Table 4. Comparison between the performance of the proposed method and those of previous
works (mmHg).

Dataset Requirement Method STD (DBP) MAE (DBP) STD (SBP) MAE (SBP)

Shi [17] Closed source, 25 subjects Hold breath Filtering + Random Forest 3.85 6.30 6.73 7.20
Zheng [18] Closed source, 27 subjects Normal breathing Filtering + ANN 8.12 6.69 12.13 9.51
Ours Open source, 25 subjects Normal breathing HSMM + Random Forest 5.84 4.27 8.95 6.63
Ours Open source, 25 subjects Normal breathing U-net + Random Forest 5.81 3.82 7.51 4.84

5.2. Discussion

To the best of our knowledge, no prior work used the high-frequency components of
the Doppler signal to extract the systolic time and diastolic time the way we do. Not only
is our work the first to incorporate them, but also the processing that comes along is part of
the contribution of this paper.

In addition, it is important to acknowledge a few limitations. The dataset used in
this study is exceptionally high quality, with minimal noise or interference. Although
the subjects were breathing normally, they remained still and the background was free of
distractions. The experimental setup included the use of radar technology, which, while
highly sensitive to the subtle high-frequency movements associated with the heartbeat,
requires precise positioning close to the subject’s chest to ensure accurate data capture. This
proximity is necessary due to the radar’s susceptibility to external oscillating noises and its
need to isolate minute cardiovascular movements from other noises. These methodological
choices and the radar’s technical limitations were critical in shaping the study’s design and
have informed the interpretation of our findings and the planning of future research direc-
tions. Real-world scenarios are significantly different, often involving varying distances,
background interference, subject movement, and other noise factors. Consequently, the
performance demonstrated in this study may not fully generalize to real-world data, where
these challenges are more prevalent. Further validation on diverse and less controlled
datasets is necessary to assess the robustness of our approach in practical applications. It
is also important to note that the estimated BP values obtained through our approach are
not intended to replace the standard mercury sphygmomanometer. Instead, the goal is to
provide a non-contact BP measurement method capable of enabling long-term monitoring
and facilitating the early detection of abnormalities. Finally, the BP estimation performance
may decrease for unseen subjects. This is because, while systolic time and diastolic time
have been shown to be effective features for BP estimation, the relationship between these
time durations and BP values varies from person to person. This individual variability
poses a challenge in achieving consistent accuracy across diverse subjects.

While the current study effectively utilizes a high-frequency band (8–30 Hz) to focus
on cardiovascular movements and minimize interference from larger body movements and
respiration, the challenge of patient movement during measurements remains a significant
concern. To further enhance the accuracy and robustness of our radar-based blood pressure
measurements in the presence of such movements, we have identified two promising
techniques slated for exploration in our future research:

Ellipse Fitting for Enhanced Signal Quality: We plan to explore the application of
ellipse fitting techniques in our signal processing framework. This method aims to more
precisely model and extract periodic cardiovascular signals, even in the presence of back-
ground noise caused by patient movements. Ellipse fitting could provide a more accurate
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geometrical representation of the cardiovascular waveform, leading to better isolation and
analysis of the relevant signals.

Application of Diffusion Models: Additionally, we intend to integrate diffusion models
to refine the signal processing approach. These models are anticipated to effectively differ-
entiate physiological signal changes from noise associated with movements, smoothing the
radar data to focus more closely on genuine cardiovascular dynamics. This approach will
be crucial for ensuring that our measurements reflect true blood pressure variations rather
than artifacts introduced by extraneous movements.

By addressing these technical challenges through advanced signal processing tech-
niques, our future studies will seek to improve the reliability and applicability of non-
contact blood pressure monitoring systems in clinical and everyday settings. These en-
hancements will not only bolster the accuracy of our current model but also expand its
utility across a broader range of operational scenarios.

6. Conclusions
In conclusion, this study presents a novel approach for blood pressure estimation that

uses the integrated spectrum derived from the Doppler radar signal as input to a U-net and
an HSMM algorithm to extract accurate cardiac timing features. Our method demonstrates
superior performance in comparison with previous calibration-free works, particularly
in terms of feature accuracy and representativeness. The features used in these works
are extracted only with reference to the pulse wave and cannot, therefore, capture useful
information related to the cardiac movements. This leads to a less accurate prediction of the
BP. Our method, on the other hand, makes use of the integrated spectrum as input for two
kinds of machine learning algorithms to estimate the cardiac features. The two algorithms
used are the HSMM and a custom U-net that we made to account for the nature and size
of the input data. The results indicate that precise extraction of cardiac timings, such as
systolic time, diastolic time, and IBI, is crucial for reliable blood pressure estimation.

Our study focused on healthy individuals, predominantly aged 30 ± 10 years, which
provides a controlled baseline for developing and validating our novel methodology for
cardiac timing and blood pressure estimation. However, it is important to note that the
physiological relationship between these parameters may differ significantly in populations
with cardiovascular conditions due to factors like arterial stiffness and impaired baroreflex.
Recognizing this, future applications of our method in clinical settings should consider
the necessity for model recalibration or re-training tailored to specific patient profiles
upon admittance. Such adaptations are essential to ensure that our methodology can
be generalized effectively across varied patient demographics and conditions, thereby
enhancing its clinical utility and accuracy.

In future work, we will try to explore the detection of additional cardiac features
using the radar system, particularly those that are correlated with blood pressure values.
While the focus on systolic time, diastolic time, and IBI has proven effective, there may
be other physiological markers that can further enhance the accuracy and reliability of
blood pressure estimation. Investigating a broader range of cardiac features could provide
a more comprehensive understanding of cardiovascular health and improve the overall
performance of non-contact blood pressure monitoring systems.
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