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Abstract: Traditional limb kinematic analysis relies on manual goniometer measurements.
With computer vision advancements, integrating RGB cameras can minimize manual labor.
Although deep learning-based cameras aim to offer the same ease as manual goniometers,
previous approaches have prioritized accuracy over efficiency and cost on PC-based devices.
Nevertheless, healthcare providers require a high-performance, low-cost, camera-based tool
for assessing upper and lower limb range of motion (ROM). To address this, we propose
a lightweight, fast, deep learning model to estimate a human pose and utilize predicted
joints for limb ROM measurement. Furthermore, the proposed model is optimized for
deployment on resource-constrained edge devices, balancing accuracy and the benefits of
edge computing like cost-effectiveness and localized data processing. Our model uses a
compact neural network architecture with 8-bit quantized parameters for enhanced memory
efficiency and reduced latency. Evaluated on various upper and lower limb tasks, it runs
4.1 times faster and is 15.5 times smaller than a state-of-the-art model, achieving satisfactory
ROM measurement accuracy and agreement with a goniometer. We also conduct an
experiment on a Raspberry Pi, illustrating that the method can maintain accuracy while
reducing equipment and energy costs. This result indicates the potential for deployment on
other edge devices and provides the flexibility to adapt to various hardware environments,
depending on diverse needs and resources.

Keywords: joint range of motion; pose estimation; fast deep learning model; edge device;
clinical assessment; RGB camera

1. Introduction
The conventional method for measuring a patient’s upper or lower range of motion

(ROM) involves using a handheld goniometer by a surgeon or healthcare professional in
a clinical setting for medical purposes, such as musculoskeletal health. This necessitates
patient visits to clinics for postoperative ROM assessments after various procedures. A
handheld goniometer is user-friendly for trained professionals and relatively inexpen-
sive [1]. However, mastering its usage requires a learning curve, and achieving consistent
results with a goniometer can be challenging even for the same professional [2]. In recent
years, alternative approaches like deep learning-based cameras have been explored to
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provide ease and accessibility while improving ROM measurement consistency. Addition-
ally, there is a growing trend toward remote medical care applications, including limb
ROM assessments, instead of requiring patients to visit health centers or clinics. In this
context, resource-constrained edge devices, such as Internet of Things (IoT) devices or
mobile phones, are being increasingly employed to enable healthcare systems to efficiently
and affordably support near-real-time applications when processing large amounts of data
collected by sensors [3]. By providing remote access to patient data, such devices empower
healthcare providers to make informed decisions and design personalized treatment plans
while reducing operational costs. Moreover, processing data locally on these devices im-
proves data privacy and reduces latency resulting from internet communication, making
edge devices a compelling choice for healthcare applications [4].

To this end, this study aims to propose a deep learning-based method for human pose
estimation and subsequent limb range of motion assessment. The model should be compact
in size and have fast processing times while maintaining accuracy comparable to traditional
goniometer measurements for limb ROM assessment. Furthermore, the proposed model
should be deployable and executable on a regular desktop PC, which is widely available in
health centers and clinics, as well as on resource-constrained and budget-friendly devices in
cases of budget constraints or remote access requirements. Ultimately, the proposed model
design and the benefits of edge computing work together to make joint ROM assessment
more accessible, efficient, and adaptable, thereby improving patient care and outcomes in
the field of musculoskeletal health.

To estimate limb joints and assess the range of motion, some studies use an RGBD
(Red, Green, Blue, and Depth) camera, such as Microsoft Kinect [5,6]. A powerful computer
and an RGBD camera are required to obtain the HPE (human pose estimation), but this
hardware setup is way more expensive than a handheld goniometer. An alternative study
uses an RGB camera and a generic image classification convolutional neural network
(CNN) model named VGG16 to estimate a human pose. Nonetheless, VGG16’s accuracy
is insufficient [7], and the approach is not tailored for resource-constrained devices. As
a foundational and complex issue in computer vision [8], human pose estimation (HPE)
has garnered significant interest in recent years. Among the contemporary state-of-the-
art HPE networks is the hourglass model [9], which offers exceptional joint prediction
accuracy. However, constructing smaller networks is not cost-effective due to the high
number of channels per layer and increased training complexity. Moreover, models such
as the hourglass, designed for HPE tasks, utilize all major joints from both the upper and
lower human body to facilitate learning and prediction.

To address these challenges, we propose a lightweight and fast limb range of motion
assessment method utilizing a CNN architecture named hourglass. We propose a reduced
version of the full-size hourglass model by reducing the number of hourglass modules and
converting float point parameters in the model to 8-bit precision. Those changes make
the model size reduce about 16×. We evaluate the performance in terms of effectiveness
and efficiency on a desktop CPU. We also consider deploying the application with a cost-
effective solution for certain clinical requirements to meet needs, such as remote limb ROM
assessment at home. To achieve that, we explore various model design options suitable
for resource-constrained devices and implement the application on Raspberry Pi 4 (RPi4),
a popular and affordable resource-constrained device. Unlike other edge device-based
medical care solutions relying on cloud computing [10], our proposed model can locally
be deployed and executed on RPi4. This local data processing can offer faster response
times and more efficient ROM assessment and ensures sensitive information related to
joint movements. And ROM is managed at the edge and can lead to better user privacy
protection [11].
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The reduced and quantized hourglass model (RQ-HG) employed in the data process-
ing phase operates more efficiently and conserves memory space compared to the baseline
model [9] while still maintaining approximately 93.6% of the joint prediction accuracy
performance relative to the baseline. To assess the model’s comparability to a manual go-
niometer in conducting ROM evaluations, we devise targeted evaluation tasks that measure
limb ROM, including limb functions like elbow extension/flexion and lower limb functions.
We also experiment on a Raspberry Pi, a commonly used embedded prototype device,
demonstrating that the method retains accuracy while cutting equipment and energy costs.

This work presents the following contributions:

• We present a method for assessing limb ROM, emphasizing the model’s efficiency.
The proposed model achieves high accuracy and low overhead. We demonstrate
that the model can be deployed and executed on both a desktop computer and
a resource-constrained device, making it suitable for a wide range of limb ROM
assessment scenarios.

• The proposed deep learning model is lightweight and efficient compared to one of
the state-of-the-art CNN architectures. The reduced and quantized hourglass model
(RQ-HG) operates 4.1 times faster and requires 15.5 times less memory space than the
baseline model [9].

• We conduct comprehensive experiments to evaluate the effectiveness of our design.
The experimental results indicate that the proposed method yields RMSE values
ranging from 3.21◦ to 4.25◦ for upper and lower ROM measurements compared to
those obtained using a manual goniometer and exhibits a high degree of agreement
with traditional clinical ROM tool measurements.

This article is a revised and expanded version of a conference paper [12], presented at
ICMLA, Bahamas, 2022.

Organization: This work is organized as follows. Section 2 reviews the related work
on ROM tasks using traditional and deep learning methods. In Section 3, we present a
method for lightweight and fast limb ROM assessment, which comprises three key phases:
reduction of the hourglass model, quantization of the reduced model, and execution of the
ROM assessment. Additionally, we demonstrate the implementation of the proposed
method on a resource-constrained device, showcasing its adaptability and suitability
for a wide range of hardware environments. Section 4 details the implementation and
evaluation metrics of the proposed system. Finally, we draw conclusions and discuss
potential improvements in Section 5.

2. Related Work
2.1. ROM Assessment Using Camera-Based Systems
2.1.1. Non-Deep Learning Approach

We provide an overview of recent research on traditional 2D camera techniques
without the use of deep learning. Meislin et al. [2] delve into the examination of elbow
movement through static imagery. Their study contrasts findings from digit images and
goniometers and juxtaposes photographic captures sourced from both surgeons and test
subjects. It is worth noting that participants were photographed before any instructional
demonstration, resulting in variations in the representation of angles. However, the findings
reveal no discernible difference in measurements derived from surgeons or participants’
images. In a related vein, Santos et al. [13] explore the knee’s range of motion by comparing
data from a standard goniometer and a mobile goniometric tool. Other researchers probe
the dependability of smartphones in quantifying wrist action. Wagner et al. [1] confirm
a strong consistency between images procured by laypeople and experts. Their research
also highlights certain constraints, such as the requirement for patient familiarity with
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smartphones, potential challenges for elderly individuals, the inability to distinguish
between active and passive motion due to missing equipment, and the critical role of
safeguarding patient confidentiality as technology progresses.

2.1.2. Deep Learning Approach

Smartphone camera methodologies highlighted previously do not harness deep learn-
ing to ascertain joint positions or automated image analysis to aid surgeons in their as-
sessments. As deep learning-based HPE progresses [14,15], it can supersede conventional
photographic techniques, potentially conserving both time and expertise when assessing
ROM. The evolution of deep learning in computer vision now allows for the pinpointing
of joints solely using an RGB camera by pre-established datasets. Yahya et al. [7] con-
duct an investigative comparison of shoulder joint angle estimations between an RGB
camera rooted in machine learning and the Microsoft Kinect—an RGBD camera. Their
findings suggest that deep learning approaches are on par and have potential applications
like rehabilitation.

2.1.3. Recent Techniques and Systems for ROM

Recent advancements in ROM assessment have been marked by the introduction
of new techniques and systems, each showcasing unique strengths and confronting
specific limitations.

DigitalROM, developed by Muaremi et al., utilizes the Microsoft Kinect 3D camera for
shoulder ROM assessment with high accuracy [16]. Despite its efficacy, it faces challenges
like sensitivity to environmental factors such as lighting and space, as well as potential
inaccuracies in tracking complex movements or occlusions. Similarly, computer vision
solutions like Kinetisense and Goniometer Pro have demonstrated success in assessing
ROM in various joints [17]. These systems, while effective, may encounter issues with
calibration accuracy and require specific positioning, with potential errors in joint angle
estimations, especially in rapid or complex movements. The accuracy is also influenced by
the quality of smartphone cameras and the precision of software algorithms.

Additionally, multisensor methods, as explored by Beshara et al. in their study
combining kinematic and physiological sensors, provide a comprehensive evaluation of
limb mobility [18]. Research by Yahya et al. on shoulder joint angle estimations using
an RGB camera further highlights the advancements in deep learning applications in
ROM assessment [7]. The BumbleBee2 stereo camera system, used for upper extremity
workspace evaluation in patients with neuromuscular diseases [19], requires the attachment
of markers to the body. This can be cumbersome and may not accurately reflect natural
movement. Additionally, the system’s practicality is constrained by the need for specific
camera calibration and environmental setup.

The proposed model in this study, optimized for edge computing, balances accu-
racy and efficiency, signifying a shift toward efficient, cost-effective models suitable for
various healthcare settings. The integration of the IoT and edge computing in health-
care, as indicated in [20], underscores the significance of these technologies in modern
medical systems.

2.2. Model Compression

Improving the efficiency of HPE is essential, especially in applications necessitating
real-time response or deployment in resource-constrained environments [21]. Here is a
deep dive into various strategies to optimize HPE models for efficiency:

Network Pruning and Quantization: Pruning [22] is a technique that removes less im-
portant neurons, weights, or connections within a neural network, effectively reducing the
model size and computational demand without significant loss in accuracy. By identifying
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and eliminating redundant parameters, pruning allows for a more compact model while
retaining the critical features necessary for performance.

In conjunction with pruning, quantization of neural networks [23] involves converting
a model’s continuous-valued weights and activations into a discrete set of values, often
represented with lower precision. This process maps full-precision values (e.g., 32-bit
floating point) to a fixed set of levels, typically within a lower bit-width format, such as
1-bit or 8-bit integers.

From Nagel et al. [24], depending on many factors such as the requirement of ac-
curacy, training effort, design complexity, and supported hardware, quantization can be
further divided into two categories: (1) post-static/dynamic training, which quantizes an
already-trained float model, and (2) quantization-aware training, which performs quan-
tization during the training time and uses the reduced-bit model in the inference time.
Quantization-aware training models generally achieve higher accuracy compared to post-
quantization training approaches. Network quantization approaches can be used for tasks
in environments with resource-constrained devices, such as [25], or tasks where efficiency
matters [26]. For different applications, different methods can be selected based on their
need and resources.

Knowledge Distillation: Knowledge Distillation [27] is a model compression technique
where a smaller model, often referred to as the student, is trained to mimic the behavior
of a larger model, known as the teacher. Instead of learning from the original ground
truth labels, the student model is trained on the softer output distributions (probabilities)
of the teacher model. This softer distribution, which might contain information about
the relationships between different classes, can be more informative than the hard labels,
allowing the student to achieve better performance than if it were trained directly on the
ground truth. By distilling the knowledge from a large, accurate but computationally
intensive HPE model (teacher) into a smaller, faster model (student), it is possible to retain
much of the performance of the larger model while benefiting from the increased efficiency
of the smaller one as presented by Zhang et al. [26].

Neural Architecture Search [NAS]: NAS [28] automates the selection of optimal neural
network architectures for specific tasks. Using search strategies like reinforcement learning
or evolutionary algorithms, NAS explores a predefined architectural space, evaluating and
refining designs based on performance outcomes. In HPE application, NAS can efficiently
discover architectures that balance accuracy and computational efficiency, making them
ideal for real-time applications on resource-constrained devices. Tan [29] introduces an
EfficientNet achieving unparalleled accuracy and efficiency with substantially fewer pa-
rameters. This method scales ConvNets uniformly across depth, width, and resolution,
enhancing existing compact model performance.

2.3. Hourglass Model for HPE

Within the domain of deep learning, utilizing CNNs for image data processing has be-
come a norm [21]. These CNNs are characterized by several layers—namely, convolutional
layers, pooling layers, and upsampling layers—that collaborate to distill crucial visual
features tailored for specific tasks. In our endeavor, we have adopted the stacked hourglass
network, a leading-edge CNN blueprint for HPE undertakings, as our foundational model.
This design incorporates a plethora of such layers, systematically organized to resemble
an hourglass shape when graphically represented (refer to Figure 1). If we treat a singular
hourglass as one module, the model’s schematic entails a consecutive arrangement of these
hourglass modules, as illustrated in Figure 2. Each half of the hourglass structure consists
of layered blocks. A standard block predominantly comprises a convolutional layer, a
max-pooling layer, and ReLu activation functions.
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Visualized in Figure 2, the hourglass design is a composition of hourglass modules, se-
quenced and interconnected. Paired with a loss function introduced between every module,
this configuration facilitates intermittent supervision. Such a setup ensures that predic-
tions stem from intermediate loss metrics, empowering the model to iteratively refine its
predictions as the image transitions through the entirety of the stacked hourglass modules.

Figure 1. Single hourglass architecture [9].

Figure 2. Stacked hourglass architecture [9].

We use HPE algorithms to predict the upper and lower body joints shown in Figure 3.
The joints that are learned and predicted in the HPE task are marked in dark black.

Figure 3. The designed model can estimate the joints of a human body for upper and lower joint
movement, which are marked with dark black dots. L and R represent the left and right joints of the
human body.

The outputs of HPE are the locations of the joints in an image, while ROM assessment
needs to utilize the predicted joints and measure the moving range of an individual joint.
The joint links and movement of those links are required to be further processed in the
ROM task.
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2.4. Medical Care with Edge Computing

The medical ecosystem has undergone significant evolution with rapid advancements
in smart medical devices. Moreover, the progress of communication technologies has
transformed various medical services into accessible systems and remote distance appli-
cations. The modern Internet of Things (IoT) implementation in medical systems has
tremendously impacted public life and the healthcare industry [4,10]. While response
time, availability, security, and privacy remain critical issues in cloud-based systems [4,10],
edge computing serves as a key component of the IoT architecture, taking place directly
on devices to which sensors are connected or on gateway devices physically close to the
sensors. Examples of edge nodes include wearable devices such as smartphones and
smartwatches and embedded systems like single-board computers and microcontrollers.
Numerous studies [17,30–32] have demonstrated the effectiveness of resource-constrained
edge devices such as RPi4, Arduino, or ARM-based microcontrollers in various medical
care scenarios.

The research on limb range of motion assessment has seen significant advancements
due to the integration of computer vision and deep learning techniques. Traditional
approaches primarily relied on manual measurements using goniometers, which, while
reliable, are labor-intensive and subject to human error. Recent studies have explored the
use of advanced sensors and computer vision technologies to automate and improve the
accuracy of these assessments. For instance, a multisensor method combining kinematic
and physiological sensors like Kinect, inertial measurement units (IMUs), and surface
electromyogram (sEMG) has been proposed. This method enhances the accuracy of joint
movement classification and provides a comprehensive evaluation of muscle strength
and limb mobility. These approaches represent a shift from manual to automated, sensor-
based assessments, underscoring the evolving nature of kinematic analysis in healthcare
and rehabilitation.

3. Methodology
This section presents a deep learning-based limb ROM assessment system consisting of

three phases using 2D images. The proposed model consists of three main phases: reducing
the baseline CNN architecture, quantizing floating-point parameters to 8-bit, and measur-
ing the ROM from the predicted joints. By utilizing a reduced stacked hourglass model
and applying quantization-aware training, the method achieves faster computation and
lower resource requirements, making it suitable for deployment on resource-constrained
edge devices. This approach aims to improve the accessibility, efficiency, and adaptability
of ROM assessments in musculoskeletal health, ultimately enhancing patient care and
outcomes. An overview of the proposed system’s workflow is illustrated in Figure 4, which
demonstrates that the model training phase occurs on a desktop PC, while image capturing
and model inference can be performed on a resource-constrained edge device. This flexibil-
ity allows for efficient ROM assessment, adapting to various hardware environments to
meet the diverse needs of musculoskeletal health evaluations.

The model’s design is based on a CNN-derived hourglass architecture and applies
reduction and quantization techniques to make it lightweight and fast, which are essential
factors for suitability in edge computing. This is due to the limited computational resources
available on edge devices compared to regular desktop computers. Subsequently, we
deploy the proposed model on a low-power, ARM architecture-based edge device and
provide the model with input from a cost-effective 2D RGB camera.
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Figure 4. Workflow of the proposed deep learning-based limb ROM assessment system. The system
consists of three phases: (1) reducing the baseline CNN architecture and quantizing parameters
during model training, performed on a desktop PC; (2) real-time human pose estimation using 2D
images captured by a cost-effective RGB camera; and (3) ROM assessment from predicted joint
positions. Model inference and ROM assessment are deployed on resource-constrained edge devices,
enabling efficient computation and adaptability. The results can be shared to servers, cloud platforms,
or other endpoints for further use.

3.1. Model Design

Deploying a CNN with a large number of channels and layers can result in a sub-
optimal trade-off between the computational cost and the generalization capability. The
stacked hourglass model [9], used as our base model, proposes such a CNN architecture
with 8 hourglass modules where each has 9 residual blocks and 256 channels for each layer.

Zhang et al. [26] reveal that in the original hourglass model, the repeated hourglass
modules and redundant channels can be reduced to half, 4 modules, while the compact
architecture can still obtain enough generalization capability. Elhagry et al. [33] and Kim
et al. [34] experiment with different module configurations and report the same conclusion
that the original stacked hourglass model with 8 modules is redundant with poor cost-
effectiveness. From the aforementioned works, even single or two stacked hourglass
modules are capable of achieving 98% and 94% model performance, respectively. We
summarize the performance comparison in Table 1 [26] from the same hourglass network
structure but using different numbers of modules. The results are evaluated with the most
common evaluation metric for the MPII dataset: mean PCKh@0.5. PCKh@0.5 is also used in
the rest of this work, where PCK stands for the standard Percentage of Correct Keypoints,
as our evaluation metric, which reports the percentage of detections that fall within a
normalized distance of the ground truth. For the MPII dataset, the common practice is
to set 0.5 of the head size, referred to as PCKh@0.5. If a predicted joint falls within this
threshold, it is considered a successful prediction; otherwise, it is considered a failure.

The number of modules can be chosen depending on the computing budgets in
practical use; in this work, we use a lightweight version of the original model which
consists of 2 stacked hourglass modules. Compared to the original stacked hourglass
architecture, the reduced model takes advantage of stacking multiple hourglass structures
on top of each other, with only about 27% of (7/26) the number of parameters, which can
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significantly reduce the computational cost. Compared to the original design, the reduced
one still retains 98% of (90.5/91.9) model performance.

Table 1. Hourglass model cost-effectiveness.

# Modules Mean PCKh@0.5 # Param

8 91.9 26M
4 91.4 13M
2 90.5 7M
1 86.4 3M

3.1.1. Model Quantization

The objective is to design a lightweight model to fast assess the range of motions.
To accelerate inference and further reduce the model size, we apply quantization to the
aforementioned model. Then, the model can perform computations and store parameters
with lower bit widths instead of floating-point precision.

Our design quantifies the model with 8-bit for more compact model representation.
Many quantization mechanisms are able to offer fast inference as well as lower computa-
tional costs. However, some of them cannot provide enough accuracy, such as post-training
quantization. We make our reduced hourglass model quantized by quantization-aware
training. We also achieve faster inference time because inference computational cost is
saved while maintaining satisfactory accuracy performance without sacrificing too much
inference accuracy.

Generally, quantization in neural networks introduces information loss that leads to a
drop in accuracy compared to the floating-point model. To mitigate the accuracy decrease,
we use quantization-aware training that considers such a loss during training.

Quantization can map a 32-bit precision value x to an 8-bit precision value x8 in the
range of [α8, β8], where (α8, β8) = (−28−1, 28−1 − 1), if the integer type is signed INT8. The
quantization function [24] is as follows:

f8(x, s, z) = clip(round(
1
s
+ z), α8, β8), (1)

where s and z are the scales and zero point.
The de-quantization function is as follows:

fd(x8, s, z) = s(x8 − z), (2)

and the information loss ∆x, due to quantization, can be calculated as follows:

∆x = x − fd( fq(x, sx, zx), sx, zx)), (3)

By taking this loss into account during training, our quantized model is able to achieve
satisfying accuracy during inference. In our reduced hourglass network, all the activations
and weights are variables during the training. In the R-HG model from the previous phase,
for the convolution, max-pooling, and ReLu activation layers, we add a quantization and a
de-quantization layer for each layer.

In the training process, all the activations and weights are still floating points. For
the forward propagation, the data are quantized and immediately de-quantized to add
the information loss caused by quantization, which is similar to what might be encoun-
tered during quantized inference. For the backpropagation, there is a problem with the
quantization-aware training because quantization and de-quantization layers are not differ-
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entiable. The derivative approximation of straight-through estimation (STE) can solve this
issue [35].

∂x̂
∂x

=


0 for x ≥ β

1 for α < x < β

0 for x ≤ α

(4)

Considering the derivative approximation of STE, the quantization and de-quantization
function are treated as the same in the range [α, β] with result 1 and a constant function
outside the range with result 0.

After the training process, we obtain the quantized model for inference. Since all the
computations can be executed with 8-bit integer operations, the inference performance can
be much faster than counterpart models with floating-point operations.

3.1.2. ROM Measurement

Range of motion is the task of measuring the distance and direction a joint can move
to its full potential. From the previous human pose estimation algorithm, we are able to
estimate the joint position in images. There are upper and lower limb-related joints that
can be obtained from our model in Figure 3, left/right shoulder, elbow, and wrist, etc.,
which are marked in dark black in Figure 3 with the predicted (x, y) coordinates for each.
To measure the ROM for a functional task, such as elbow extension and flexion, we can
calculate angles in geometry using Equation (5), where v̄s and v̄e represent a starting and
ending position, respectively, for an elbow-to-wrist vector, and θ is the range of motion that
an elbow rotates from an extension position to a flexion position.

θ = cos−1(
v̄s · v̄e

∥v̄s∥∥v̄e∥
) (5)

3.2. Execution on Resource-Constrained Edge Devices
3.2.1. Data Captured from Camera

Joint range of motion assessment using 2D imagery has been extensively explored
in prior studies. In [1,2], the authors utilize smartphones to capture images of patients
instructed to move or rotate their arms and elbows, enabling the camera sensor to document
the movement and range of motion. Researchers subsequently analyze the captured images
on a desktop PC, manually delineating lines between joints to measure the range of motion
for shoulders, elbows, wrists, hips, and knees. Similar studies [13,36] have also demon-
strated the capability of camera sensors to measure lower limb ROM. All investigations
employing camera technology for joint ROM assessment have exhibited accuracies compa-
rable to handheld goniometer measurements with some manual intervention (identifying
joints from the image and measuring the ROM).

The proposed system optimizes the input size required by neural networks during
the data processing stage, thereby minimizing the processing workload on edge devices.
In our experiments and analysis, we found that using 360p resolution for input images
strikes an ideal balance. This resolution allows for real-time video recording on devices and
is well suited for our compact convolutional neural network. The choice of 360p ensures
efficient processing without compromising the ability to effectively perform tasks, such as
joint identification and motion analysis.

3.2.2. Model Inference on Device

CNN architectures excel at approximating complex and non-linear mapping functions
from arbitrary person images to joint locations, even in the presence of unconstrained
human body appearance, varying viewing conditions, and background noise [9,37]. How-
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ever, the advantages of model performance come at the cost of training and deploying
resource-intensive networks with large depth and width. This leads to inefficient model
inference, requiring a per-image computing cost at tens of floating-point operations (FLOPs)
and poor scalability, particularly on resource-constrained edge devices [26].

In Section 4.3, we investigate methods including reducing model design and compres-
sion techniques to address the challenges associated with deploying deep learning models
on resource-constrained devices. We experiment with reducing the number of hourglass
modules from 8 to 1, ultimately settling on 2 modules to maintain an optimal balance
between efficiency and effectiveness. Additionally, inspired by the parameters binarization
approach on the human pose estimation model presented in [38], we observe a significant
decrease in accuracy. To address this issue, we employ an 8-bit quantization-aware training
method to convert the model’s parameters from 32-bit to 8-bit. This approach enables
accelerated model execution while maintaining a lower degree of accuracy drop compared
to the aforementioned binarization method. These optimizations result in a model size
reduction to 1/16 of the original, enabling faster inference due to fewer parameters and
reduced multiply–accumulate operations on floating-point numbers. Consequently, the
proposed model is well suited for resource-constrained devices, making it deployable on a
wide range of edge devices.

Edge computing has emerged as a promising solution for joint range of motion assess-
ment applications due to its inherent advantages in terms of cost-effectiveness and localized
data processing. Cost-effectiveness: Resource-constrained edge devices, characterized by
their low equipment cost and low power consumption, make them an attractive option
in various scenarios, particularly in remote or underserved areas with limited access to
advanced healthcare infrastructure [39]. Medical professionals and patients can benefit
from more accessible and convenient ROM assessment solutions. Localized data processing:
Edge computing does not rely on a constant internet connection, allowing raw data to
be securely stored and processed locally. This ensures sensitive information related to
joint movements and ROM is managed at the edge and can lead to better user privacy
protection [11]. Moreover, local data processing significantly reduces latency, resulting in
faster response times and more efficient ROM assessment.

By leveraging the advantages of edge computing and the proposed model design,
joint ROM assessment can be made more accessible, efficient, and adaptable, ultimately
improving patient care and outcomes in the field of musculoskeletal health.

4. Experiments
In this section, we design four experiments to validate our design. (1) The first one is

to evaluate the effectiveness of the proposed model for joint estimation. We compare joint
prediction accuracy using the original hourglass network (HG), our reduced hourglass
network (R-HG), and our quantized and reduced hourglass network (QR-HG). (2) The
second experiment is to evaluate the efficiency of our model in terms of model size and
inference time. (3) With the predicted joints, the last experiment measures the ROM for
different limb functional tasks: elbow extension/flexion and shoulder extension/flexion.
We calculate the root mean square error (RMSE) for the designed tasks using different
measuring methods: a manual goniometer and the proposed camera with a deep learning
algorithm. We also use a Bland–Altman analysis to define the limits of agreement between
two measurement methods. (4) The fourth experiment is to discuss the cost-effectiveness
of RPi4, taking into consideration equipment and energy costs and evaluating the model’s
inference efficiency on the RPi4 platform.
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In the following, we report the hardware and software used in this work and an
input dataset used for training the designed model. We also report the ROM measurement
procedures using a goniometer and a proposed 2D camera.

4.1. Experiments Setup
4.1.1. Hardware and Software Setup

The experiments utilize a desktop CPU (AMD 3700x) and GPU (Nvidia RTX 2700
Super) to train the R-HG network, as proposed in design phase I of the data processing
subsystem. An AMD 3700x CPU is employed to retrain the R-HG using the quantization-
aware technique to obtain the QR-HG, wherein the weight parameters are converted to
8-bit. Both phases are implemented using Python 3.8 and the Pytorch 1.5 library. For data
acquisition and processing of the trained model, we use a RPi4 Model B and a Raspberry
Pi Camera Module V2-8 Megapixel. As a comparison to the edge device, we employ a
desktop CPU (AMD 3700x) to run the same model as deployed on the Raspberry Pi.

A 12-inch, 360-degree physical therapy goniometer was used to manually measure the
ROM in the experiment (see Section 4.5).

4.1.2. Training Dataset for Joint Estimation

In order to train and evaluate our joint estimation algorithm, we chose MPII
datasets [40] as our input data. This dataset is widely used in the human pose estimation
area. The MPII Human Pose dataset is a state-of-the-art benchmark for the evaluation of
articulated human pose estimation. The dataset includes around 25K images containing
over 40K people with annotated body joints. The images were systematically collected
using an established taxonomy of everyday human activities. The MPII dataset includes
410 diverse human activities, such as recreational, occupational, and household tasks,
captured from various viewpoints. These activities involve natural joint movements like
bending, reaching, and stretching, which are essential for training our ROM assessment
model. The dataset’s diversity and range of viewing angles enhance the model’s ability to
generalize to real-world scenarios, ensuring accurate and robust joint mobility evaluation
in clinical and everyday settings.

4.1.3. Limb Functional Tasks

We have developed six limb functional tasks, each designed to assess the mobility of
specific joints on both the left and right sides. The tasks focus on the elbow, shoulder, and
hip and include the following:

Elbow Extension/Flexion: Extension: This movement involves straightening the elbow
to decrease the angle between the forearm and the upper arm, typically reaching toward
a straightened position. Flexion: This refers to bending the elbow to increase the angle,
bringing the forearm closer to the upper arm.

Shoulder Adduction/Abduction: Adduction: This is movement of the shoulder that
brings the arm closer to the body’s midline, typically lowering the arm to the side. Abduc-
tion: This is lifting the arm away from the body’s midline, usually moving the arm out to
the side and up toward the head.

Hip Extension/Flexion: Extension: This involves moving the leg backward, away
from the front of the body, which increases the angle between the thigh and the torso.
Flexion: This is the act of bringing the thigh up toward the torso, decreasing the angle
between the front of the thigh and the torso.

These functional tasks are designed with practical applications in mind, commonly
utilized for the assessment of joint mobility in various real-world scenarios:

Elderly Individuals: The tasks can help evaluate joint mobility in elderly individuals
for the early detection of musculoskeletal issues, such as arthritis or joint stiffness. By
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identifying a reduced ROM in specific joints, clinicians can intervene early with tailored
physical therapy or medical treatments to maintain mobility and improve quality of life.
Athletes: For athletes, these tasks can monitor joint performance and flexibility, aiding
in injury prevention and performance optimization. For example, monitoring shoulder
abduction and adduction can help identify potential strain or imbalance, which could
lead to injuries such as rotator cuff tears. Rehabilitation Patients: The functional tasks
are particularly useful for assessing rehabilitation progress in patients recovering from
surgery or injuries. For example, monitoring hip extension and flexion can track recovery
in patients who have undergone hip replacement surgery or are recovering from a sports-
related hip injury. Regular assessments can guide adjustments in therapy programs to
ensure effective recovery.

For each of these functional tasks, we capture two digital photographs: one for the
initial position (start point) and another for the final position (endpoint) of the ROM
assessment. In parallel, we adhere to clinical standard procedures [2,41] to measure the
ROM of the elbow, shoulder, and hip using a goniometer. This method allows for the precise
quantification of joint angles, providing reliable data for evaluating joint functionality.

4.1.4. ROM Measurement Protocol

We enrolled two healthy participants (one male and one female), both aged between 30
and 40 years, with no known joint issues. The participants obtain 2D camera photographs
of full elbow flexion and extension. Then, the proposed deep learning algorithm is used to
predict the limb joints and measure the ROM. Meanwhile, as a comparison group, we obtain
the goniometric measurement of the same ROM for the same participants. This process is
repeated, and each participant obtained a set of 10 sets of 2D camera measurements and
goniometer measurements.

4.2. Experiment I: Joint Estimation Effectiveness

In this experiment, we demonstrate the effectiveness of the joint estimation algorithm
in Figure 5. The baseline model from [9] is denoted as HG, while the module number
reduced hourglass model is denoted as R-HG, and the quantization and reduction model is
denoted as QR-HG.

Figure 5. Model effectiveness comparison showing the accuracy (%) for different methods. Black
bars represent the HG method, gray bars represent the R-HG method, and white bars represent the
QR-HG method.

We evaluate the accuracy performance of the shoulders, elbows, and wrists, as well as
the accuracy of the limb joints. We choose the standard Percentage of Correct Keypoints
(PCKs) as our evaluation metric, which reports the percentage of detections that fall within
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a normalized distance of the ground truth. For the MPII dataset, the common practice is to
set 0.5 of the head size, referred to as PCKh@0.5. If the position of any predicted joint is
within this threshold, the joint prediction succeeds; otherwise, the prediction fails.

4.3. Model Design

Figure 5 compares the PCKh@0.5 accuracy results of the state-of-the-art methods with
R-HG and QR-HG on the test dataset of MPII. Though the model structure is simplified and
the precision of the parameters is reduced to 8-bit, R-HG or QR-HG does not compromise
the model generalization capability significantly. Compared to the baseline model HG, the
overall joint accuracies from R-HG and QR-HG drop 2.4% and 7.1%, respectively.

4.4. Experiment II: Efficiency Performance Evaluation

In this experiment, we evaluate the efficiency performance of the proposed model
compared to the baseline model. The model size and image inference time are analyzed.
The inference time is measured using the same desktop CPU for all three models. Since the
time complexity of calculating ROM is linear in Equation (5), the inference time of the joint
estimation algorithm is considered equal to the overall method (joint estimation + ROM
measurement) processing time.

As shown in Table 2, the R-HG model is 4 times smaller and 1.7 times faster than HG.
The QR-HG model is about 15.5 times smaller and 4.2 times faster than HG. Both R-HG and
QR-HG are more cost-efficient than HG and are easier to deploy to low-capacity devices.
From the previous experiment in Figure 5, R-HG is 4.6% more accurate than QR-HG in
general. So, depending on the accuracy, latency, and memory size requirement, there is a
trade-off between choosing R-HG or QR-HG with respect to the effectiveness and efficiency
in varying degrees.

Table 2. Efficiency performance.

HG R-HG QR-HG

Model Size (MB) 376 94 24.2
Inference Time (image/s) 4 6.8 16.7

4.5. Experiment III: ROM Assessment

In this experiment, we compare the measurements obtained by the goniometer with
those obtained from the QR-HG processed images to evaluate the ROM accuracy. The
mean arc and root mean difference (RMSE) of the ROM are calculated (manual goniometer-
obtained measurements and measurements based on the proposed method).

The Bland–Altman analysis [42] is used to assess the agreement between two quantita-
tive methods of measurement. The Bland–Altman analysis is to evaluate a bias between
the mean differences and to estimate an agreement interval that falls within 95% (+/− SD
1.96) of the differences between the second method, compared to the first one. To check
the assumptions of normality of differences and other characteristics, we used a graphical
approach as shown in Figures 6–8.

The Bland–Altman analysis shows that 37 out of 40 measurements for the elbow, 37
out of 40 for the shoulder, and 32 out of 40 for the hip fall within the 95% confidence
interval (CI) (Table 3 and Figures 6–8). While the majority of measurements demonstrate a
high degree of agreement between the two methods, there are minor fluctuations in the
data. These fluctuations may be attributed to variability in human anatomical structures or
slight discrepancies in image processing for more complex joint motions. The analysis also
reveals that the differences are randomly distributed without any systematic bias, further
supporting the reliability of the proposed method.
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Table 3. Comparison of the ROM measurements obtained on the goniometer and the proposed
method using a camera.

Variables RMSE in ROM
(Degree)

Bland–Altman Plots
(Within 95% CI)

Elbow (R + L) ROM 3.65 37/40
Shoulder (R + L) ROM 3.21 37/40
Hip (R + L) ROM 4.25 32/40

Overall, the Bland−Altman analysis confirms that the proposed method achieves a
high level of accuracy and agreement with traditional goniometer measurements, making
it suitable for practical ROM assessments.

Figure 6. Bland−Altman plot of elbow (R + L) range of motion.

Figure 7. Bland−Altman plot of shoulder (R + L) range of motion.

4.6. Experiment IV: Cost-Effectiveness and Efficiency of Raspberry Pi 4

In this experiment, we discuss the cost-effectiveness of RPi4, taking into considera-
tion equipment and energy costs and evaluating the model’s inference efficiency on the
RPi4 platform.

RPi4 equipment cost: The RPi4 setup has a relatively low cost of approximately one
hundred USD [43], which encompasses the RPi4 device, a Pi camera, an SD card, and a
power adapter. The RPi4 features a Quad-core Cortex-A72 (ARM v8) 64-bit SoC @ 1.8 GHz
processor and an LPDDR4-3200 SDRAM memory size of up to 8GB. Considering that a
general-purpose computer for healthcare centers or clinics typically comes with a higher
price tag, the RPi4 setup encourages medical professionals to explore alternative computing
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solutions that can satisfy budget constraints [39]. This cost-effective setup helps to promote
accessibility and affordability in medical care environments.

Figure 8. Bland−Altman plot of hip (R + L) range of motion.

RPi4 energy cost: Compared to a general-purpose desktop computer, the RPi4 is a
resource-constrained device that benefits from lower power consumption. We measure
the power consumption of the RPi4 using a USB wattage meter during both idle and
computation-intensive periods. The results revealed that the RPi4 consumes 3.1 watts
during idle periods and 7.2 watts while performing inference tasks. In contrast, our CPU-
based desktop setup demands approximately 100 to 200 watts of power, making the RPi4 a
significantly more energy-efficient option. These substantial power savings not only reduce
electricity costs but also enable the device to be operated using battery power, which is
particularly advantageous in scenarios where portability or remote access is required.

Accuracy performance of RPi4: In order to ensure consistent results, the proposed
RG-HG model has been implemented using the same programming language and deep
learning framework on both the RPi4 and the CPU-based desktop platforms. We con-
duct an evaluation of the model’s inference accuracy on these two platforms to identify
any potential disparities. Our findings indicated no significant difference in accuracy
between the RPi4 and the CPU-based desktop platforms, yielding a consistent range of
motion assessment accuracy across both systems. This consistency allows users to choose
either platform for deployment without worrying about potential discrepancies in ROM
assessment outcomes.

Efficiency performance of RPi4: To assess the efficiency performance of the RPi4,
we conduct an evaluation using the same tasks described in Section 4.1.3, which can
be processed on both the RPi4 and desktop platforms. During the evaluation, the RPi4
showcased its ability to process up to 18 static input images per second. To perform a
complete ROM assessment, two images are required: one for the starting position and
one for the end position. Consequently, this processing capability enables the assessment
of 9 functional tasks. This result highlights the RPi4’s potential for real-time processing
capabilities and its suitability for use in time-sensitive applications.

By evaluating the four factors in Table 4, we have demonstrated that the RPi4 can
perform ROM assessment tasks with the same accuracy as a CPU-based desktop computer
while offering superior equipment and energy cost-effectiveness. Given that the RPi4 and
camera are readily available consumer components, and their specifications are common in
many other IoT hardware platforms [10], we can reasonably expect our proposed RQ-HG
ROM assessment model to be compatible with other similar resource-constrained devices.
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This provides the flexibility to select various platforms for deployment, depending on the
users’ needs and available resources.

Table 4. ROM assessment tasks on Raspberry Pi 4 vs. CPU-Based Desktop.

Metric Raspberry Pi 4 CPU-Based Desktop

Equipment Cost Approximately USD100 Significantly higher
Energy Consumption 3.1 watts (idle)

7.2 watts (inference)
100–200 watts

Accuracy Performance Comparable to CPU-based
desktop Comparable to RPi4

Efficiency Performance Up to 18 static images per
second Not specified

5. Conclusions
This work proposes a deep learning-based model to assess ROM using photographs

captured by a 2D RGB camera. We design a compact, quantized CNN model to ensure
compatibility with resource-constrained devices, reducing latency and memory require-
ments. Unlike other HPE or ROM studies, our method focuses on both upper and lower
limb joints, enhancing joint estimation accuracy and further reducing latency.

We evaluate the proposed method on datasets collected from six ROM tasks. The
results show that our new method achieves a satisfying accuracy in ROM measurement
and a high degree of agreement with a goniometer. And our model can run 4.1 times
faster and is 15.5 times smaller than one of the most accurate human pose models in our
experiment. Additionally, we carry out an experiment on a Raspberry Pi, illustrating that
the method can maintain performance while reducing equipment and energy costs. This
offers flexibility for platform selection based on users’ needs and resources. This study
can serve as a valuable reference for researchers and developers seeking a camera-based,
budget-friendly, and high-performance solution for ROM assessment to improve patient
care and outcomes in the field of musculoskeletal health.

We acknowledge certain limitations in the current study. First, the number of par-
ticipants is limited to two healthy individuals, which may not fully demonstrate the
generalizability of the method. Although our study serves as a proof of concept by adher-
ing to clinical protocols, we plan to collaborate with medical schools or clinics to collect
data from a larger and more diverse group of volunteers. This will allow us to validate the
method’s performance across different populations, including elderly individuals, athletes,
and rehabilitation patients. Second, the current evaluation relies solely on the MPII dataset
due to its relevance and availability of annotated joint data. While the MPII dataset includes
approximately 25K images of over 40K individuals performing diverse activities, we plan
to extend the evaluation to additional publicly available datasets, such as COCO [44] and
Human3.6M [45]. This will help assess the generalizability of the proposed method in a
broader range of scenarios and demographic groups.

In future work, we will explore additional improvement strategies that can enhance
performance while maintaining the lightweight and fast advantages of our proposed
method. We also plan to develop a novel approach that considers data privacy within the
ROM assessment model. This method would incorporate privacy-preserving techniques to
protect sensitive patient data during the ROM assessment process. Another direction of our
future work is to incorporate both active and passive ROM assessment, where images may
include multiple individuals, such as the patient and a therapist. The proposed method
would involve developing a more advanced object detection and tracking system capable
of identifying and distinguishing between the object under test (the patient’s limb) and
external sources, such as the therapist’s hands.
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