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Abstract: In response to the issues of slow convergence and the tendency to fall into local op-
tima in traditional iterative closest point (ICP) point cloud registration algorithms, this study
presents a fast registration algorithm for laser point clouds based on 3D scale-invariant fea-
ture transform (3D-SIFT) feature extraction. First, feature points are preliminarily extracted
using a normal vector threshold; then, more high-quality feature points are extracted using
the 3D-SIFT algorithm, effectively reducing the number of point cloud registrations. Based
on the extracted feature points, a coarse registration of the point cloud is performed using
the fast point feature histogram (FPFH) descriptor combined with the sample consensus
initial alignment (SAC-IA) algorithm, followed by fine registration using the point-to-plane
ICP algorithm with a symmetric target function. The experimental results show that this
algorithm significantly improved the registration efficiency. Compared with the traditional
SAC−IA+ICP algorithm, the registration accuracy of this algorithm increased by 29.55%
in experiments on a public dataset, and the registration time was reduced by 81.01%. In
experiments on actual collected data, the registration accuracy increased by 41.72%, and the
registration time was reduced by 67.65%. The algorithm presented in this paper maintains
a high registration accuracy while greatly reducing the registration speed.

Keywords: point cloud registration; 3D-SIFT feature extraction; fast point feature histogram;
sampling consensus; symmetric target function; iterative closest point

1. Introduction
Three-dimensional laser point cloud registration is widely used in various fields such

as industrial production [1]; the medical and military fields, urban planning, cultural
heritage protection, film, and entertainment [2]; and autonomous driving [3]. The latest
research advancements across various fields are described in detail below. In the industrial
production sector, registration techniques are utilized to detect workpiece defects and
shapes [4], and terrestrial laser scanning methods have been applied in the digitalization of
bridge infrastructure [5]. In the medical field, the application of point cloud registration
in multimodal medical imaging has been explored, for example, in the integration of
MRI and CT scan data [6], while in the field of cultural heritage preservation, the use of
transformer-enhanced point cloud registration has been investigated for the protection
of cultural sites such as the Terracotta Army [7]. Due to the influence of measurement
devices, the measurement environment, and object occlusion, it is not feasible to acquire
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data on an object’s surface information in a single experiment. Thus, to obtain complete
three-dimensional point cloud data of an object, it is usually necessary to measure it from
multiple angles and then register or stitch the laser point clouds from different angles
together to obtain a complete point cloud that contains the object’s information. Point cloud
registration is the process of transforming point clouds from different angles through the
calculation of rotation and translation matrices to the same coordinate system. Point cloud
registration is a key challenge in computer vision and robotics, and is used to establish
similarities between point cloud data captured from different viewpoints or at different
instances in time and thus to generate accurate point cloud models.

The most classic method of point cloud registration is the iterative closest point (ICP)
algorithm [8]. This algorithm iteratively finds the best transformation relationship between
two-point clouds by minimizing the distance between corresponding points. However, this
algorithm has problems such as sensitivity to initial transformation, slow convergence, poor
robustness, and susceptibility to local optima. In recent years, researchers have proposed
various optimization methods for the ICP algorithm. For example, the authors of [9]
proposed a point-to-line ICP algorithm called PLICP, which uses the distance from points to
lines to calculate the target function, considering the local structure information of the point
cloud to improve registration accuracies. The authors of [10] proposed the generalized
iterative closest point (GICP) algorithm, which introduces probability distributions and uses
the covariance of the point cloud surface to construct the target function. By incorporating
the normal vector information of the point cloud, it more effectively manages rotations and
scale transformations. The authors of [11] proposed the outlier-trimmed iterative closest
point (LieTrICP) algorithm, which is a robust registration method based on the outlier
parameterization of two point sets, combining the advantages of outlier parameterization
and trimmed ICPs and making the algorithm more robust and accurate. Compared to
the ICP algorithm, the GICP and LieTrICP algorithms exhibit slower registration speeds
but are relatively more complex to implement. The authors of [12] proposed the normal
iterative closest point (NICP) algorithm, which considers the normal vector information
of the point cloud and improves the registration process by combining the geometric
features and local curvature information of the points. This method performs better in
utilizing the local structure information of the point cloud, but it has stringent requirements
for the initial pose. The authors of [13] proposed the global optimal iterative closest
point (Go-ICP) algorithm, which integrates the local ICP algorithm into the branch and
bound (BnB) algorithm, ensuring global optimality while accelerating the algorithm’s
speed. The authors of [14] proposed an improved ICP algorithm, introducing a symmetric
target function and considering the normals of corresponding points to improve the target
function, further enhancing the accuracy and efficiency of the ICP algorithm. The authors
of [15] proposed the vectorized generalized iterative closest point (VGICP) algorithm,
utilizing the single instruction, multiple data (SIMD) instruction set of modern CPUs,
converting traditional point-by-point calculations into vectorized calculations, designing a
multicore parallel processing mechanism, and fully utilizing the computational power of
multicore processors, thereby improving computational efficiency. However, it is essential
to note that this method requires specific hardware support. The various optimization
methods for ICP mentioned above have improved the registration effectiveness to a certain
extent. However, they come with a higher computational complexity and require more
sophisticated approaches to suppress noise, density variations, and outliers. This, in turn,
will increase the computational burden. Other researchers have also proposed registration
methods that are different from the ICP algorithm, such as the 3D normal distribution
transform (3D-NDT) algorithm based on probability density distribution [16], which does
not require the calculation of neighboring point pairs compared to the ICP algorithm
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and has faster registration speeds and higher accuracies when registering a large amount
of data. Nevertheless, there is an inherent susceptibility to becoming trapped in local
optima. The 4-point congruent sets (4PCS) algorithm [17], by constructing and matching
the distance matrix of four-point pairs, reduces the spatial matching process, accelerating
the registration process. This approach exhibits robustness against noise and outliers and
is not sensitive to the initial pose. However, it is less effective for point clouds with high
degrees of overlap compared to other algorithms.

Research into point cloud registration algorithms is progressing, with novel opti-
mization techniques enhancing the efficacy of the registration process. Nonetheless, these
advancements concurrently lead to increased computational complexity and necessitate
the employment of more complex methodologies to mitigate the effects of noise, variations
in point density, and the presence of outliers. Currently, researchers are further improv-
ing the registration accuracy and robustness by using coarse registration combined with
fine registration. The authors of [18] proposed a feature descriptor based on the rotation
volume ratio and then used coarse registration to obtain a good initial transformation
matrix, finally completing the registration using an improved ICP algorithm. The authors
of [19] proposed the fast point feature histogram (FPFH) descriptor and then used the
improved k-dimensional (K-D) tree neighborhood query method (best-bin-first, BBF) for
data dimensionality reduction, greatly reducing the running complexity. The authors of [20]
proposed the sample consensus initial alignment (SAC-IA) algorithm for coarse registration,
followed by ICP based on the point-to-plane distance. The aforementioned algorithm is
feature-based [21] and does not directly compute point pairs between the source and target
point clouds. Instead, it first extracts feature points and then describes them using feature
descriptors. However, the selection of feature points and descriptors will definitely affect
the registration outcome. Often, point clouds lack representativeness or have insufficient
feature points, leading to a lower registration accuracy.

Based on the above literature review, this study combines the 3D scale-invariant fea-
ture transform (3D-SIFT) feature extraction algorithm and the FPFH feature descriptor to
construct a fast registration algorithm for laser point clouds based on 3D-SIFT features.
Unlike existing optimization-based methods, it makes two main contributions to improve
the efficiency and accuracy of point cloud registration. (1) Innovation in feature extraction:
By integrating normal vector preprocessing and the 3D-SIFT feature extraction algorithm,
feature points with rich information are extracted. These feature points are more concise
in quantity, avoiding the need for iteration over each point, effectively reducing the com-
putational load and further decreasing the time and space complexity. (2) Optimization
of the registration algorithm: A two-stage registration process is proposed, combining a
sampling consistency-based (SAC-IA) coarse registration algorithm and a point-to-plane
ICP (iterative closest point) fine registration algorithm based on a symmetric objective
function. This improves the convergence speed and enhances the algorithm’s robustness
to noise and outliers. This combination method not only leverages the scale invariance of
3D-SIFT in feature extraction and the ability of FPFH descriptors to capture local geometric
features but also effectively addresses the limitations of traditional ICP algorithms through
the coarse registration of SAC-IA algorithm and the fine registration of the ICP algorithm
with a symmetric target function.

The rest of this paper is structured as follows. Section 2 introduces the proposed
algorithm’s process. Section 3 provides a detailed explanation of the principles behind
the five main steps of the proposed algorithm. Section 4 discusses the registration results
and comparative results for the proposed algorithm with other algorithms on four sets of
light detection and ranging (LiDAR) point cloud data. Finally, Section 5 focuses on the
conclusions of this study.
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2. Algorithm Design
The point cloud registration algorithm presented in this paper mainly includes five

processes. Firstly, feature points are preliminarily extracted using the normal vector neigh-
borhood angle, primarily by estimating the point cloud’s normal vectors with different
neighborhood radii and extracting feature points based on the normal vector neighborhood
angle. Thus, points that do not possess surface variations are removed. Secondly, the
3D-SIFT feature extraction algorithm is utilized to construct the scale-space of the point
cloud after the initial feature point extraction. Detecting extremum points through the dif-
ference of Gaussian functions, extracting features at different scales, and precisely locating
feature points through extremum detection and the Taylor fitting formula, further feature
extraction is carried out to obtain points with rich, informative features. 3D-SIFT feature
extraction provides key points and feature descriptors for subsequent steps, while also
reducing the computational load for registration and enhancing computational efficiency.
Next, the FPFH feature descriptor is used to describe the extracted feature points, capturing
the local geometric features of point clouds, further enriching the information of the feature
points, and making the matching between point clouds more accurate; then, the SAC-IA
algorithm is used for coarse registration to obtain the optimal transformation matrix, which
provides a favorable initial estimate for the iterative closest point (ICP) algorithm. This
approach effectively reduces the computational load of the fine registration algorithm and
enhances the success rate of registration. Finally, the point-to-plane ICP algorithm based
on the symmetric target function is used, which provides constraints for point clouds with
rich surface information, realizing the fine registration of the point cloud. The SAC-IA
algorithm in the coarse registration phase and the symmetric target function ICP algorithm
in the fine registration phase work together to accelerate the convergence of the registration
process and improve the registration speed. By integrating process one (normal vector
preprocessing) and process two (3D-SIFT) for feature extraction, high-quality feature points
are obtained. The coarse and fine point cloud registration algorithms are combined through
parts three, four, and five, achieving registration algorithm optimization. By combining the
aforementioned algorithms, the computational load is reduced, robustness is improved,
convergence is accelerated, and accuracy is enhanced, significantly increasing the effi-
ciency and accuracy of point cloud registration. The flowchart of the algorithm is shown
in Figure 1.
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Figure 1. Algorithm flowchart.

3. Algorithm Principle
3.1. Normal Vector Preliminary Feature Extraction

Due to the large volume of point cloud data, preliminary feature extraction using
normal vectors can effectively reduce the number of points, eliminating those that do
not exhibit surface variation, as well as some noisy points. A normal vector is a vector
perpendicular to the object’s surface. First, the normal vectors of the point cloud are
estimated using different neighborhood radii, and the principal component analysis method
is used to estimate the surface normal vectors of the point cloud. Feature points are then
extracted based on the normal vector neighborhood angle.

The normal estimation at any point pi in the point cloud data is approximated using
the normal of a tangent plane relative to the estimated surface, that is, the least squares
fitting plane. The direction vector of this plane is the normal vector at the corresponding
point. The normal vector angle θ at any point pi in the point cloud is calculated using
the least squares fitting plane method. Suppose there are k points in the neighborhood of
each point, and the angle αij between the normal vectors of each point’s neighborhood is
calculated as follows:

θ =
1
k

k

∑
j=1

αij (1)

where αij is the angle between the point cloud pi and the normal vectors of the neighboring
points pj. This average angle θ helps us to determine the surface variation at point pi. If
angle θ is greater than a predefined threshold, the point is considered to exhibit a surface
variation and is extracted as a feature point.

The mathematical basis for this process lies in principal component analysis (PCA),
which is a statistical procedure that uses an orthogonal transformation to convert a set of
observations of possibly correlated variables into a set of values of linearly uncorrelated
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variables called principal components. The first principal component corresponds to the
direction of the largest variance in the data, and each succeeding component corresponds
to the direction of the second-largest variance, and so on.

By applying PCA to the neighborhood of each point in the point cloud, we can
determine the direction of maximum variance, which represents the normal vector to the
surface at that point. The angles between these normal vectors for neighboring points
are then used to identify points with significant surface variations, which are extracted as
feature points for further processing. As shown in Figure 2a, if the normal vector angles
in a local area of the point cloud are large, this indicates that the area has significant
undulations; otherwise, as shown in Figure 2b, if the normal vector angles do not change
much, this indicates that the area is relatively flat. Selecting an appropriate normal vector
angle threshold can determine the quality of feature extraction. Therefore, for different
point cloud density distributions and point cloud noise conditions, suitable parameters can
be chosen for preliminary extraction, thereby reducing the negative impact of this feature
on the overall quality of point cloud registration.

Sensors 2025, 25, x FOR PEER REVIEW 6 of 21 
 

 

The mathematical basis for this process lies in principal component analysis (PCA), 
which is a statistical procedure that uses an orthogonal transformation to convert a set of 
observations of possibly correlated variables into a set of values of linearly uncorrelated 
variables called principal components. The first principal component corresponds to the 
direction of the largest variance in the data, and each succeeding component corresponds 
to the direction of the second-largest variance, and so on. 

By applying PCA to the neighborhood of each point in the point cloud, we can deter-
mine the direction of maximum variance, which represents the normal vector to the sur-
face at that point. The angles between these normal vectors for neighboring points are 
then used to identify points with significant surface variations, which are extracted as fea-
ture points for further processing. As shown in Figure 2a, if the normal vector angles in a 
local area of the point cloud are large, this indicates that the area has significant undula-
tions; otherwise, as shown in Figure 2b, if the normal vector angles do not change much, 
this indicates that the area is relatively flat. Selecting an appropriate normal vector angle 
threshold can determine the quality of feature extraction. Therefore, for different point 
cloud density distributions and point cloud noise conditions, suitable parameters can be 
chosen for preliminary extraction, thereby reducing the negative impact of this feature on 
the overall quality of point cloud registration. 

 

Figure 2. Feature region and nonfeature region normal vector angles. 

3.2. Three-Dimensional-SIFT Feature Extraction 

The 3D-SIFT algorithm is an extension of the SIFT algorithm into three-dimensional 
space. This algorithm has excellent performance in describing local features [22]. The 3D-
SIFT feature extraction process includes the construction of scale-space, extrema detec-
tion, and extrema filtering. In 3D-SIFT, Gaussian functions are utilized to construct the 
scale-space of point clouds because of their desirable mathematical properties, such as 
localization and smoothness. The Gaussian convolution kernel is the only linear kernel 
capable of performing scale transformation, effectively simulating optical blur and the 
point spread function. Additionally, the responses at various scales can capture the fea-
tures of the point cloud at different scales. In addition, we detected extrema, which are 
distinctive features within local regions, using the difference of Gaussian (DoG) function. 
In the process of extremum point filtering, the Taylor fitting formula is used to locate the 
extremum points accurately. Taylor fitting is a mathematical method that determines the 
precise location and scale of extremum points by locally approximating the function 
around the extremum points. This method can effectively reduce errors caused by noise 
or local variations, thereby enhancing the accuracy of keypoint detection. The main pro-
cess is as follows: 

(1) The scale-space of the point cloud is constructed. The scale-space of the source 
point cloud and the target point cloud is represented as follows: 

( , , , ) ( , , , ) ( , , , )p p pL x y z G x y z I x y zσ σ σ= ∗  (2)

Figure 2. Feature region and nonfeature region normal vector angles.

3.2. Three-Dimensional-SIFT Feature Extraction

The 3D-SIFT algorithm is an extension of the SIFT algorithm into three-dimensional
space. This algorithm has excellent performance in describing local features [22]. The
3D-SIFT feature extraction process includes the construction of scale-space, extrema de-
tection, and extrema filtering. In 3D-SIFT, Gaussian functions are utilized to construct the
scale-space of point clouds because of their desirable mathematical properties, such as
localization and smoothness. The Gaussian convolution kernel is the only linear kernel
capable of performing scale transformation, effectively simulating optical blur and the
point spread function. Additionally, the responses at various scales can capture the fea-
tures of the point cloud at different scales. In addition, we detected extrema, which are
distinctive features within local regions, using the difference of Gaussian (DoG) function.
In the process of extremum point filtering, the Taylor fitting formula is used to locate the
extremum points accurately. Taylor fitting is a mathematical method that determines the
precise location and scale of extremum points by locally approximating the function around
the extremum points. This method can effectively reduce errors caused by noise or local
variations, thereby enhancing the accuracy of keypoint detection. The main process is
as follows:

(1) The scale-space of the point cloud is constructed. The scale-space of the source
point cloud and the target point cloud is represented as follows:

Lp(x, y, z, σ) = Gp(x, y, z, σ) ∗ Ip(x, y, z, σ) (2)

Lq(x, y, z, σ) = Gq(x, y, z, σ) ∗ Iq(x, y, z, σ) (3)

Here, Gp(x, y, z, σ) and Gq(x, y, z, σ) are the variable-scale Gaussian functions of the
source point cloud and the target point cloud, respectively. σ represents the scale-space
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factor, which determines the degree of Gaussian blur and the interval between different
layers in the scale-space, is typically established based on the characteristics of the point
cloud data and the desired scale of feature points. An appropriate factor can be determined
through experimental or theoretical analysis to ensure the effective detection of key points at
different scales, thereby capturing features that are invariant across scales; Ip(x, y, z, σ) and
Iq(x, y, z, σ) are the curvature values of the source point cloud and the target point cloud.

(2) The extremum points in the scale-space are found; the difference of Gaussian (DoG)
functions Gp(x, y, z, σ) and Gq(x, y, z, σ) are constructed for the source point cloud and the
target point cloud.

Gp(x, y, z, σ) =
1

2πσ2 e−(x2+y2+z2)/(2σ2) (4)

Gq(x, y, z, σ) =
1

2πσ2 e−(x2+y2+z2)/(2σ2) (5)

By utilizing the DoG to detect feature points in each scale-space, the DoG function
values of each sampling point are compared to those of its neighboring points. If the
DoG function value of the sampling point is the maximum or minimum in the scale-space
of the neighboring points, this sampling point is considered an extremum point in that
scale-space.

(3) Screening of extremum points: The extremum points determined through the DoG
function in both scale-spaces are taken as feature points. They are screened based on the
Taylor fitting formula. The Taylor fitting formula for the DoG function in the scale-space is
as follows:

D(i) = D(i0) +
∂D(i)T

∂i
i +

1
2

iT ∂2D(i)
∂i2

i (6)

In the point cloud space, i = (x, y, z, σ) represents any point, and D(i0) represents
the DoG function value at the extremum point i0. By taking the derivative of Equation (6)

and setting the first-order derivative to 0, the offset of the extremum point
∧
I is obtained

as follows:
∧
I = −∂2D−1

∂I2
∂D
∂I

(7)

After the offset is obtained from the above formula and added to the coordinates
of the extremum point, a threshold is set for screening, and the stable extremum points
are considered feature points. Since the effectiveness of the normal threshold value and
3D-SIFT largely depends on the appropriate parameter adjustment, it is necessary to set
the threshold based on the specific point cloud density and noise level. The size of the
threshold can be determined through multiple experiments or statistical methods.

Given the computational complexity of the 3D-SIFT feature extraction algorithm,
performing preliminary feature extraction on the point cloud before applying this algorithm
can alleviate this issue. Additionally, within the 3D-SIFT algorithm, a multiscale approach
is adopted by constructing the scale-space of the point cloud at multiple levels; this further
reduces the computational load, enabling improved applications in large-scale point clouds.

3.3. FPFH Feature Descriptor

Following the feature extraction algorithm mentioned above, the FPFH feature de-
scriptor is used to describe the feature points. It is constructed based on the normal vectors
and curvature information within the neighborhood of a point cloud, capturing the local
geometric features of the point cloud. The FPFH descriptor is not solely dependent on the
surface curvature of the point cloud, it also significantly relies on normal vector information.
Calculation of the FPFH feature descriptor encompasses the calculation of normal vectors
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and curvatures and relative orientations and curvatures as well as the construction of
feature histograms.

To construct the FPFH descriptor, we first calculate the normal vector and curvature for
each point within a specified radius k. For a given point pi, let ni be its normal vector and
k be its curvature. The normal vector ni is estimated using principal component analysis
(PCA) on the points within the neighborhood of pi. The curvature k is calculated based
on the distribution of the neighboring points relative to ni. Next, we compute the relative
orientation and curvature between point pi and all its neighboring points pj within the
neighborhood. The relative orientation is determined by the angle between ni and nj, and
the curvature is determined by the distance from pj to the plane defined by pi and ni.
These parameters are inserted into a 33-dimensional feature histogram to determine the
correspondence between feature points. The working principle of the FPFH descriptor
for point cloud feature extraction is shown in Figure 3. The red points are the query
center points, the yellow points are the neighboring points within their radii, and the black
points are the remaining points in the space. The angles between the center points and the
neighboring points can be calculated through the yellow lines, and the FPFH values can be
further computed.
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The steps for calculating the FPFH feature descriptor are as follows:

(1) The relative relationship between any point Pi and its neighboring points is calculated
within a certain radius k, and the simple point feature histogram is constructed,
denoted as SPFH (Pi).

(2) Based on the weight ratio of each point within the neighborhood, the FPFH feature
value of point Pi is recalculated according to the following formula:

FPFH(Pi) = SPFH(Pi) +
1
k

k

∑
j=1

1
w

SPFH(Pj) (8)

Here, FPFH(Pi) is the FPFH descriptor, and w is the distance between the query point
Pi and its neighboring point Pk, which is used to evaluate the relationship between the
point pair (Pi,Pk). The initial task of the FPFH descriptor is to determine a neighborhood
for each feature point, which is typically a sphere of radius R that includes the feature point
and surrounding points (k nearest neighbors). The size of the neighborhood determines the
locality of the descriptor, so by choosing an appropriate number of neighboring points, the
accuracy and efficiency of registration can be enhanced.
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3.4. SAC-IA Coarse Registration Algorithm

The calculated FPFH is used with the SAC-IA algorithm to find corresponding points
between the source point cloud and the target point cloud. The steps of the SAC-IA
registration process are as follows:

(1) n sample data points are randomly selected from the source point cloud P, and the
distance between any two points must be greater than the set distance threshold wd to
ensure that the sample data points have different FPFH features.

(2) Using the FPFH feature as a constraint, the target point cloud Q is searched for
in the point cloud data with similar FPFH features to the source point cloud P,
where similar points form corresponding points, and a set of corresponding points is
randomly formed.

(3) Based on the corresponding point pairs (pi,qi) from the two point clouds, the
translation and rotation matrices are calculated, and the distance error and the
Huber penalty function formula are used to determine whether it is the optimal
transformation matrix:

H(li) =

{
1
2 l2

i ; ∥ li ∥< wd
1
2 ml(∥ li ∥ −wd) ; ∥ li ∥> wd

(9)

Among them, li represents the distance difference between the sample’s corresponding
data points pi and qi before and after transformation; wd is the set distance threshold.

The above process is repeated and iterated until the convergence condition is met or the
maximum number of iterations is reached, which is considered the optimal transformation.

By setting a distance threshold between point pairs, it is possible to effectively elimi-
nate outliers or rogue points effectively. Setting a maximum number of iterations helps to
find the global optimum, avoiding being trapped in local optima.

3.5. Symmetric Target Function ICP Fine Registration

Due to the slow convergence and susceptibility to local optima in traditional ICP
algorithms, the ICP algorithm iteratively obtains the optimal transformation matrix using
least squares and uses a point-to-point metric for registration. However, the ideal state of the
algorithm is that both the source point cloud and the target point cloud have corresponding
points. If there are any missing data in the point cloud, this will affect the accuracy and
convergence of the algorithm. The local geometric structure of the surface is ignored, and
the target function cannot obtain the precise overlap degree of a single point. Therefore,
this algorithm adopts an improved symmetric target function point-to-plane ICP algorithm,
which introduces a symmetric target function and combines the surface information of
the point cloud, providing constraints for point clouds with rich surface information. The
flowchart of the fine registration algorithm is shown in Figure 4.

Using the point cloud after coarse registration, the nearest point pairs (pi,qi) between
the source point cloud and target point cloud are found, and then the symmetric target
function is used to calculate the error of the point pair (pi,qi). The specific principle of the
symmetric target function is as follows.

The symmetric target function is symmetric, meaning that if the two point clouds
are the result of scanning the same object, each point Pi in the point cloud exists with a
corresponding point Qi in the point cloud, and vice versa. The symmetric target function E
is defined as minimizing the measure of distances between all point pairs (pi,qi), with the
formula as follows:

E = ∑i

∥∥(pi − qi) · (np + nq)
∥∥ 2 (10)
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In the formula, np and nq are the normal vectors of points pi and qi, and ∥ ·∥ represents
their Euclidean distance.

The geometric meaning of this symmetric target function is shown in Figure 5.
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The vector between any arbitrary sampling points p and q on the arc is perpendicular to
the sum of the normal np + nq, and the symmetric function value is 0, as shown in Figure 5a.
Figure 5b illustrates how a transformation is applied to sampling points p (the red parts)
and q on a 2D surface, where the transformed points are geometrically consistent with
the original point pairs, and they can be symmetric about some axis or center, where Rp+t

represents the point after the transformation of the point cloud. The transformation of point
p (the red part) is achieved by considering its normal np, and in the point-to-plane distance
metric, the target function calculates the distance from point p to the plane that passes
through point q with a normal nq, as shown in Figure 5c. The symmetric target function
provides a geometric constraint that not only requires the distance between points to be
minimized but also requires consistent normal directions, which helps capture the local
geometric features of the point cloud, thereby improving the accuracy of the registration.
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Finally, numerical optimization methods (such as the Newton method) are used to
adjust the transformation matrix to minimize the symmetric target function. Based on the
results of the optimization algorithm, the best rigid body transformation is found after mul-
tiple iterations. The process then checks whether the algorithm meets the set convergence
criteria or reaches the maximum number of iterations to complete the fine registration
process of the point cloud. The function takes into account the surface information of the
point clouds, necessitating that corresponding points in the source and target point clouds
not only have the minimum distance but also have consistent normal vector directions.

4. Experimental Results and Analysis
4.1. Experimental Data

To verify the effectiveness and practicality of the algorithm presented in this paper,
verification experiments were conducted using both public datasets and actual collected
data. The actual collected dataset was constructed using point cloud data obtained from
LS128S2 series 1550 nm hybrid solid-state LiDAR equipment provided by Shenzhen Leishen
Intelligent Equipment Co., Ltd., Shenzhen, China. Four samples were selected as the dataset,
namely, an indoor table (Sample 1), an outdoor car 1 (Sample 2), an outdoor car 2 (Sample
3), and an outdoor stele (Sample 4). The number of points in the point clouds are as follows:
Sample 1 (8064, 8193), Sample 2 (11,985, 13,478), Sample 3 (13,003, 8409), and Sample 4
(7507, 5543). The selected public dataset consists of four sets of data from the 3D-Match
dataset: “living room 1” (47,553, 53,064), “living room 2” (127,241, 159,067), “office 1”
(135,151, 95,443), and “office 2” (406,192, 365,570). This algorithm was implemented using
a Windows 11 operating system, the development environment of Microsoft Visual Studio
2022, and PCL 1.13 (a third-party point cloud library) using the C++ language.
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4.2. Evaluation Metrics

To verify the registration effect of the algorithm, the root mean square error (RMSE) of
the point-to-point distance in the overlapping part and the algorithm’s running time (time
in seconds) are used as the evaluation metrics for the accuracy of point cloud registration.
The execution time of an algorithm directly reflects its computational efficiency and is a
key factor in evaluating the efficiency of point cloud registration. The RMSE is a measure
of “mean error” that evaluates the degree of variability of the data and is commonly
used in point cloud registration to assess the performance of registration algorithms by
comparing the differences between the source point cloud and the target point cloud to
measure registration accuracies. The RMSE refers to the average of the sum of squares of
the distances between the corresponding points of two point clouds. The smaller the RMSE,
the better the registration effect. The formula for the RMSE is as follows:

RMSE =

√
1
m∑m

i=1 ∥pi − qi∥
2

(11)

In this formula, m is the number of corresponding points between point cloud P and
point cloud Q; pi and qi are the corresponding points of the two point clouds; ∥pi − qi∥ is
the Euclidean distance between pi and qi.

4.3. Feature Point Extraction Results

This algorithm combines preliminary feature extraction using normal vectors with
3D-SIFT feature extraction to extract features from the point cloud. High-quality feature
points are extracted, which not only achieves high registration accuracies but also reduces
the running time of the registration algorithm.

To verify the effect of feature point extraction, the normal vector feature extraction
algorithm, the 3D-SIFT feature extraction algorithm, and the feature extraction algorithm
presented in this paper were compared. Feature points were extracted from the four sets of
real collected data, with the number of extracted feature points, as shown in Table 1. The
comparison effect is shown in Figure 6, where the green point cloud represents the original
point cloud, and the red point cloud represents the extracted feature points.

Table 1. Number of feature points extracted using each algorithm.

Model Original Point
Clouds

Normal Vector
Feature Extraction

3D-SIFT Feature
Extraction

Proposed
Algorithm

Sample 1 8064 4469 3272 1958
Sample 2 20,091 14,986 10,412 7950
Sample 3 10,567 8662 6559 5642
Sample 4 7507 7101 4928 4685

From the above results, it can be observed that the normal vector feature extraction
algorithm extracts too many feature points that are also densely distributed. Since normal
vector feature extraction can effectively capture the geometric features of objects, such as
the central parts in samples 1, 2, and 3, and there are fewer geometric features in sample 4,
fewer feature points are filtered out. This algorithm is sensitive to noise and the quality of
the data; if the normal vector angle is large, it is not conducive to extracting effective point
cloud features.

The 3D-SIFT feature extraction algorithm extracts fewer feature points than the normal
vector feature extraction algorithm, but it captures more geometric feature points that are
relatively dense. Using the feature extraction algorithm presented in this paper, not only is
the density of the point cloud reduced and a sparser set of point cloud features is extracted,
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but it also retains the surface characteristics of the original point cloud, resulting in the
extraction of high-quality feature points.
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4.4. Analysis of Point Cloud Registration Using the Actual Collected Dataset

To verify the effectiveness and accuracy of the improved point cloud registration
algorithm, four different algorithms were designed for comparison with the algorithm
presented in this paper under the same conditions. The four algorithms are the tradi-
tional SAC−IA+NDT algorithm, the SAC−IA+ICP algorithm, SAC−IA+SICP (SAC-IA+
point-to-plane ICP algorithm with a symmetric target function), the 3DSC (3D Semantic
Consensus)-RANSAC (Random Sample Consensus)+ICP algorithm, and the proposed
algorithm. During algorithm design, the selection and optimization of parameters are
crucial steps to maintain the performance of the algorithm. A variety of parameters require
adjustment and optimization to accommodate different datasets or diverse scenarios. To
ensure the comparability of the algorithms, the common parameters in the four algorithms
were set to be consistent, with specific parameter settings as follows: a neighborhood
radius of 0.05, ICP iteration number of 50, convergence threshold of 0.01, the maximum
distance between corresponding points of 0.1, random sample consensus inlier threshold
of 0.1, and normal vector angle threshold of 5◦. This optimization is primarily based on the
density and distribution of the point cloud, assessing the performance of different param-
eter settings. Through numerous experimental adjustments, the optimal combination of
parameters was identified.

Table 2 provides the registration running times for the four samples of each al-
gorithm. Compared to the SAC−IA+NDT algorithm, the registration time increased
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by 68.64%; compared to the SAC−IA+ICP algorithm, it increased by 67.65%; com-
pared to the SAC−IA+SICP algorithm, it increased by 68.30%; and compared to the
3DSC−RANSAC+ICP algorithm, it increased by 86.49%. Figure 7 shows a comparison of
the registration running times of each algorithm. It can be observed that the proposed algo-
rithm has the shortest registration time, achieving the effect of fast point cloud registration.

Table 2. Registration running time for four models of each algorithm (in seconds).

Model SAC−IA+NDT SAC−IA+ICP SAC−IA+SICP 3DSC−RANSAC+ICP Proposed
Algorithm

Sample 1 22.900 22.831 25.442 60.246 2.921
Sample 2 74.420 71.783 70.618 165.006 19.164
Sample 3 22.118 21.625 21.611 36.703 10.996
Sample 4 14.275 13.356 14.579 34.202 8.839
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The results from Table 3 on the registration accuracy of various algorithms and
Figure 8 on the accuracy comparison chart show that the algorithm presented in this
paper has the best registration accuracy. Compared with the SAC−IA+NDT algorithm,
the proposed algorithm’s registration accuracy increased by 50.07%. Compared with the
SAC−IA+ICP algorithm, the registration accuracy increased by 41.72%. Compared with
the SAC−IA+SICP algorithm (SAC-IA+ point-to-plane ICP algorithm with a symmet-
ric target function), the registration accuracy increased by 5.51%. Compared with the
3DSC−RANSAC+ICP algorithm, the registration accuracy increased by 42.59%.

Table 3. Registration accuracy of the five algorithms: RMSE/m.

Model SAC−IA+NDT SAC−IA+ICP SAC−IA+SICP 3DSC−RANSAC+ICP Proposed
Algorithm

Sample 1 58.7613 × 10−3 16.5948 × 10−3 16.0429 × 10−3 16.3027 × 10−3 16.0186 × 10−3

Sample 2 23.5844 × 10−3 35.2946 × 10−3 26.5466 × 10−3 37.5196 × 10−3 21.7988 × 10−3

Sample 3 43.7590 × 10−3 37.2298 × 10−3 21.6974 × 10−3 36.2834× 10−3 21.6182 × 10−3

Sample 4 41.7201 × 10−3 54.6610 × 10−3 24.3818 × 10−3 55.8458× 10−3 24.3426 × 10−3
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The registration accuracy for Sample 1 is significantly improved by the algorithm
presented in this paper, while the improvements are not as pronounced for Samples 3 and
4. This discrepancy is attributed to the fact that Sample 1 possesses more distinct geometric
features and a more regular distribution. The point cloud data of samples 3 and 4 exhibit
more complex geometric structures, and Sample 4 contains a larger number of outliers,
making it difficult for the algorithm to identify and utilize key features for registration
effectively. In contrast, the point cloud in Sample 2 exhibits a moderate distribution of
geometric feature information and outlier points.

The visualization effects of the registration results of each algorithm are shown in
Figure 9, where the source point cloud is blue, the target point cloud is green, and the
registered point cloud is also green. From the results, it can be observed that for point
clouds with large initial position differences, the SAC−IA+NDT algorithm has a relatively
large overall accuracy error, with only Sample 2 successfully registered and all others failing.
The SAC−IA+ICP algorithm also has a relatively large accuracy error, with only Sample 1
successfully registered. The accuracy of the 3DSC−RANSAC+ICP algorithm is similar to
that of the SAC−IA+ICP algorithm. The SAC-IA+ (point-to-plane with a symmetric target
function) ICP algorithm has a relatively lower registration accuracy error, with all samples
successfully registered, and the difference compared to the proposed algorithm is relatively
small, but the proposed algorithm significantly reduces the registration time and improves
registration efficiencies. Therefore, the registration effect of this algorithm is significantly
improved compared to the other algorithms.

4.5. Analysis of Point Cloud Registration of Public Datasets

In this experiment, four sets of data from the 3D-Match dataset were utilized for
registration validation. Given the large number of point clouds in the dataset, a voxel
downsampling method was first applied for preprocessing to reduce the point cloud data
while preserving complete features, thereby further enhancing the registration speed. The
choice of voxel size directly affects the precision of point cloud data and the processing
efficiency. A smaller voxel size can retain more details but increase the computational
load; a larger voxel size reduces the computational load but may sacrifice some detailed
information. Voxel size plays a crucial role in the preprocessing step, as it not only affects
the speed and efficiency of data processing but also directly influences the precision of
subsequent analyses and the quality of results. Choosing the appropriate voxel size involves
a trade-off between the specific application requirements and the computational resources.
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The voxel size used in this experiment was 0.01, and the registration time and accuracy of
five algorithms were compared at the level.
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Table 4 presents the registration running times of the algorithms and Figure 10
shows a comparison. Compared to the SAC−IA+NDT algorithm, the registration time
increased by 83.05%; compared to the SAC−IA+ICP algorithm, it increased by 81.01%;
compared to the SAC−IA+SICP algorithm, it increased by 81.03%; and compared to the
3DSC−RANSAC+ICP algorithm, it increased by 77.81%. Due to the high number of point
clouds in the public dataset, the algorithm in this study extracted good feature points
through multiple rounds of feature extraction, reducing the point cloud input for the
registration algorithm and thus significantly improving the registration time.

Table 4. Registration running time for four models of each algorithm (in seconds).

Model SAC−IA+NDT SAC−IA+ICP SAC−IA+SICP 3DSC−RANSAC+ICP Proposed
Algorithm

living room 1 85.689 91.645 85.251 220.538 13.752
living room 2 274.386 260.334 251.066 118.648 28.281

office 1 824.458 730.709 743.023 283.169 50.505
office 2 251.888 198.876 203.581 474.318 150.812

The results shown in Table 5 and Figure 11 regarding the registration accuracy
of various algorithms indicate that the algorithm presented in this paper has im-
proved the registration accuracy by 49.50%, 29.55%, 5.576%, and 4.85% compared to the
SAC−IA+NDT algorithm, the SAC−IA+ICP algorithm, the SAC−IA+SICP algorithm,
and the 3DSC−RANSAC+ICP algorithm, respectively. The SAC−IA+NDT algorithm can
achieve registration without the need to rematch corresponding points at each iteration;
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thus, it is fast and accurate when dealing with massive data. However, when registering
medium- and small-sized objects, the registration effect is not very good; hence, the algo-
rithm in this paper presents a significant improvement with regard to registration accuracy.
The SAC−IA+ICP algorithm has a variable registration accuracy, which is due to the lack
of feature points in the office 1 and office 2 data, and this is also affected by other factors.
The other two algorithms exhibit no significant improvements in accuracy, as they are
inherently more suitable for the registration of medium- and small-sized objects. Hence,
the improvement in accuracy in this paper is not significant.
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Table 5. Registration accuracy of the five algorithms: RMSE/m.

Model SAC−IA+NDT SAC−IA+ICP SAC−IA+SICP 3DSC−RANSAC+ICP Proposed
Algorithm

living room 1 25.2053 × 10−3 15.7957 × 10−3 16.6153 × 10−3 16.5455 × 10−3 15.4274 × 10−3

living room 2 27.7137 × 10−3 8.9593 × 10−3 9.2613 × 10−3 9.0130 × 10−3 8.8923 × 10−3

office 1 52.9339 × 10−3 45.8435 × 10−3 27.9142 × 10−3 29.0209× 10−3 27.7879 × 10−3

office 2 45.5891 × 10−3 37.3221 × 10−3 26.7287 × 10−3 25.3336× 10−3 23.9222 × 10−3
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A visualization of the registration results for this dataset is shown in Figure 12. It is
evident from the figure that the SAC−IA+NDT algorithm has a high registration accuracy
error, with only half of the registrations being successful. This is due to the inherently lower
precision of the algorithm itself. In the SAC−IA+ICP algorithm, the accuracy error is also
relatively large. The other algorithms all successfully achieved registration. In addition to
ensuring registration accuracy, the algorithm presented in this paper significantly reduced
the time required, especially for datasets with a large number of point clouds, where the
effect is more pronounced. The experimental results indicate that the algorithm presented
in this paper has significant advantages in improving the efficiency and accuracy of point
cloud registration. However, the performance of the algorithm is influenced by parameter
settings. Future efforts will be dedicated to further optimizing the mechanisms of parameter
selection and threshold setting to reduce the reliance on experience.
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5. Conclusions
To address the issues of slow convergence and susceptibility to local optima in tradi-

tional point cloud registration algorithms, this paper introduces a fast registration algorithm
for laser point clouds based on 3D-SIFT features. Initially, feature points are preliminarily
extracted using a normal vector threshold, followed by the further extraction of high-quality
feature points using the 3D-SIFT algorithm, effectively reducing the number of registrations
needed and improving the efficiency of point cloud registration. Subsequently, a coarse
registration of the point cloud is performed using the FPFH descriptor in conjunction with
the SAC-IA algorithm, and finally, a fine registration is carried out using the point-to-
plane ICP algorithm with a symmetric target function. Comparative analyses with the
SAC−IA+NDT algorithm, SAC−IA+ICP algorithm, 3DSC−RANSAC+ICP algorithm, and
SAC-IA+ (point-to-plane with a symmetric target function) ICP algorithm demonstrated
that this algorithm has significantly improved registration efficiencies. Compared to the
SAC−IA+ICP algorithm, the registration accuracy of the proposed algorithm increased
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by 29.55% on public datasets, and the registration time was reduced by 81.01%. In the
experiments on real collected data, the registration accuracy increased by 41.72%, and the
registration time was reduced by 67.65%. The number of point clouds in the public dataset
is significantly higher than that in the actual collected dataset; hence, the improvement in
time efficiency is more pronounced. The proposed algorithm not only maintains a high
registration accuracy but also significantly speeds up the registration process.

This paper mainly describes the accuracy of point cloud registration through the global
indicator of RMSE. If it is necessary to reflect the accuracy of local area registration results,
some local feature matching measurement methods can be introduced, such as calculating
the key point matching rate, feature edge alignment degree, and local root mean square
error within local areas, so as to more finely reflect the registration effect of local areas.

The algorithm in this paper relies on environmental selection in terms of parameter
selection and threshold setting and may have limitations when dealing with complex data
sets. It is often difficult to find the optimal parameter combination when facing data of
different scales, different noise levels, and different structural features. The aforementioned
issues will be addressed in future research by further optimizing the mechanisms for pa-
rameter selection and threshold setting. For example, adaptive technologies relying on
algorithms such as particle swarm optimization can dynamically adjust algorithm parame-
ters according to the characteristics of input data, thereby better coping with the diversity
of different scenarios and data. In the future, consideration will be given to combining with
deep learning. Deep learning models, such as convolutional neural networks (CNN) and
recurrent neural networks (RNN), can learn discriminative feature representations from
large amounts of data. These features better reflect the essential structure and inherent
laws of the data, thereby enabling the automatic extraction of complex feature points
and providing stronger support for subsequent algorithm processing. At the same time,
the features and patterns learned by deep learning models from data can also guide the
parameter adjustment strategies in adaptive technologies. By analyzing the performance
of deep learning models on different data and extracting key feature indicators, such as
the stability and discriminability of features, parameters of adaptive algorithms can then
be dynamically adjusted according to these indicators, enabling better collaborative work
between the two, thereby further enhancing the accuracy and efficiency of point cloud
registration. We look forward to achieving a more efficient, accurate, and robust point
cloud registration algorithm in future studies.
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