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Abstract: InSAR technology effectively monitors urban subsidence and evaluates the sta-

bility of infrastructure across extensive regions. Atmospheric tropospheric delay consti-

tutes a significant source of error that adversely impacts the accuracy of InSAR defor-

mation measurements. The meteorological conditions in the highland basin region are 

complex, and there is a notable deficiency of sufficient sounding balloon observations. 

This study replaces the sounding balloon data in the power-law model with ERA-5 data 

(PLE5) to correct the InSAR atmosphere phase delay. This method was tested in Dali uti-

lizing Sentinel-1 data. By comparing its performance against the GACOS model, tradi-

tional linear model, and ERA-5 correction, the PLE5 model exhibited the lowest phase 

standard deviation. This method provides an alternative approach for applying the 

power-law model in regions with limited sounding balloon data, enhancing the accuracy 

of InSAR tropospheric delay correction. 
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1. Introduction 

Interferometric Synthetic Aperture Radar (InSAR) is a powerful tool capable of mon-

itoring surface deformation with sub-centimeter precision at spatial resolutions from dec-

imeters to tens of meters [1,2]. It has been demonstrated as an effective tool in the appli-

cation of earthquake [3], land subsidence [4], landslide monitoring [5], and the stability of 

infrastructure [6], which provides a choice for surveying large-area ground displacement 

and analyzing the underlying mechanisms of surface displacements for disaster preven-

tion and mitigation. 

Satellite radar signals encounter atmospheric delays as they propagate through the 

Earth’s atmosphere, rendering atmospheric errors one of the most significant sources of 

distortion, which can introduce considerable noise and obscure the deformation phase. 

The atmospheric disturbances consist of both ionospheric and tropospheric components 

[7]. The influence of the ionosphere depends on the total electron content (TEC) and pri-

marily impacts long-wavelength signals [8]. The ionospheric effect on InSAR can be miti-

gated by selecting a reference SAR image with the minimum rate of TEC Index and then 
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estimating the differential ionospheric TEC using the range split-spectrum interferometry 

method and the International Reference Ionospheric model [9]. Meanwhile, tropospheric 

delays are nondispersive effects affected by pressure, temperature, and humidity [10]. 

Considerable attention has been devoted to mitigating the effects of tropospheric delays 

in recent years, though achieving effective mitigation remains challenging [11]. 

The tropospheric delay that is comprised of hydrostatic delay and wet delay [12,13] 

can often be modelled as a mixture of vertically stratified and turbulent components in 

InSAR applications [10]. Currently, several studies have considered the turbulent atmos-

pheric delay component to be spatially and temporally random, which can be mitigated 

by temporal filtering of large time series acquired by synthetic aperture radar (SAR) [14–

17]. On the other hand, when using stacking or more complicated time series methods, 

stratified tropospheric delays can produce long time-series biases in strain rate estimates 

when the timing of seasonal oscillations is not adequately sampled [18]. 

Currently, there are two main categories of tropospheric delay correction methods 

used in InSAR research. The first category is the predictive approach that atmospheric 

correction methods based on external data, such as the Global Navigation Satellite System 

(GNSS) [19–21], Numerical Weather Models (NWMs) [17,22], and Moderate Resolution 

Imaging Spectroradiometer (MODIS) data [23], can provide complete tropospheric delay 

information. However, the spatial and temporal resolution differences between interfero-

grams and external data restrict this method [24]. Thus, based on ERA-I reanalysis, a new 

method for estimating tropospheric delays in radar interferograms using a power-law 

model is proposed [25]. This method attenuates the effects of the power-law model sound-

ing data and the spatial and temporal resolution of using external data while uniting the 

power-law model with external data to improve the accuracy of the atmospheric delay 

correction. 

The second category is the empirical method, which corrects the phase delay within 

the interferometric phase itself by modelling the relationship between phase and topog-

raphy and using known surface elevation information to estimate the tropospheric de-

layed phase for correction purpose [26]. This methodology comprises two models, a linear 

function model and a power-law function model, which estimate the effect of tropospheric 

delay on the interferogram by analyzing the linear relationship or exponential relation-

ship between the interferometric phase and the terrain elevation. The power-law function 

model accounts for spatial variability and can be applied across various temporal, atmos-

pheric, and deformation conditions [24]. Estimation of parameters in the conventional 

power-law model requires sounding data, but the determination of power-law coeffi-

cients is often constrained by the limited availability of such data in many areas. Addi-

tionally, sounding data may contain discontinuities, such as jumps, due to changes in in-

strumentation, observing practices, or station locations [25]. 

In this study, we propose a power-law model incorporating data from the ERA-5 

dataset (PLE5) to correct the InSAR tropospheric delay. This approach involves fusing the 

ERA-5 reanalysis dataset to estimate the coefficients of the power-law model for each SAR 

acquisition, rather than using sounding data. The ERA-5 reanalysis products, obtained 

from the European Centre for Medium-Range Weather Forecasting (ECMWF), have been 

reported to be more accurate and applicable in capturing atmospheric water vapor than 

their predecessor, ERA-I [27–31]. We compared the PLE5 model approach with the com-

monly used empirical linear correction model, the GACOS correction model, and ERA-5 

dataset correction method to evaluate its effectiveness and applicability in InSAR tropo-

spheric delay correction. 
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2. Study Area and Data Processing 

2.1. Study Area and Dataset 

Dali City, Yunnan Province, is situated in the western region of Yunnan Province. 

The topography is high in the northwest and low in the southeast, with the Hengduan 

Mountain Range west of Erhai Lake exhibiting significant topographic variation. The Cen-

tral Yunnan Plateau, located east of Erhai Lake, features an elevation range of 1386 to 4122 

m, characteristic of a subtropical plateau monsoon climate. The proximity to Erhai Lake 

and the prevalence of monsoon circulation lead to variations in temperature, wind speed, 

wind direction, and surface humidity, which, in turn, affect the structure of the atmos-

pheric boundary layer [32]. SAR imaging is significantly affected by vertical stratification 

delays in the troposphere, making the correction of tropospheric delays crucial in InSAR 

applications. 

The Sentinel-1 satellite has a short revisit cycle (12 days) and provides freely available 

observational data for both ascending and descending orbits. A total of 96 scenes of C-

band Sentinel-1A ascending data, spanning from 7 January 2019, to 28 March 2022, were 

acquired from the European Space Agency (ESA) for Dali, Yunnan Province, at 19:24 local 

time (11:24 UTC). The data processing utilizes ALOS World 3D data of Dali, Yunnan Prov-

ince, with a resolution of 30 m (see Figure 1a) [33]. The SAR data were interferometrically 

preprocessed to generate raw interferograms (e.g., Figure 1b) that include atmospheric 

effects, after denoising and phase unwrapping. 

The ERA-5 dataset from the ECMWF (see Figure 1c) was used to retrieve barometric 

pressure, temperature, relative humidity, and other key meteorological elements for Dali 

City (25°N–27°N, 99°E–101°E) for the period 2019 to 2022. These data were employed to 

investigate the spatial distribution of tropospheric delays and assess the impact of correc-

tions. We extracted the vertical contours of temperature and humidity ratios from the ac-

quired ERA-5 data, as illustrated in Figure 2. The vertical contour plot of temperature (see 

Figure 2a) indicates that temperature decreases with increasing altitude until a certain 

elevation is reached, after which it begins to increase. The vertical contour plot of relative 

humidity (see Figure 2b) demonstrates that relative humidity consistently decreases with 

increasing altitude, approaching zero as barometric pressure reaches 200 hPa. This obser-

vation indicates that the water vapor content in the area is concentrated below an eleva-

tion of 12 km. 
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Figure 1. (a) Topographic map of Yunnan Province; the base map of this study area is the AW3D30 

DEM of Dali City. (b) Original differential interferogram without atmospheric correction and (c) 

distribution of grid point locations of the ERA-5 dataset in Dali City. 

 

Figure 2. Vertical contour plot of temperature at 9 grid points along 25°N from ERA-5 data, showing 

(a) temperature variation with altitude and (b) relative humidity variation with altitude. 

2.2. InSAR Processing 

We utilized the Gamma tool in the StaMPS 4.1 software to preprocess the acquired 

SAR images interferometrically, resulting in the generation of 258 interferograms, the spa-

tial baseline distribution of which is depicted in Figure 3. Subsequently, we employed the 

COP-DEM data to eliminate the flat-earth effect, utilized the precision orbital data records 

(ODR) provided by ESA to correct for orbital errors, and applied the Goldstein filtering 

method to process the interferograms. Finally, we utilized the SNAPHU tool for phase 
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unwrapping of the interferograms [34], yielding interferograms that have not been cor-

rected for tropospheric delay. Later, we verified the applicability of the PLE5 method 

based on four of the processed interferograms, with the relevant parameters presented in 

Table 1. 

 

Figure 3. Spatial and temporal baselines map of the interferogram. Each red dot represents an SAR 

acquisition and each line represents an interferogram. 

Table 1. Interferometric pair baseline information. 

Interferometric Pair 

(yyyymmdd) 

Perpendicular 

Baseline 

(m) 

Temporal Baseline 

(day) 

Mean 

Coherence 

20190519/20190624 −19 −36 0.40 

20201016/20201109 −61 −24 0.48 

20201109/20201203 −15 −24 0.17 

20210426/20210601 −36 −36 0.60 

3. Methodology 

3.1. Correcting Tropospheric Delays with the ERA-5 Reanalysis Dataset 

The spatial heterogeneity of the troposphere causes the atmospheric refractive index 

to change in response to variations in meteorological elements such as temperature, bar-

ometric pressure, and relative humidity. According to the spatial variation model of the 

atmospheric refractive index, the tropospheric delay model in the line-of-sight direction 

can be expressed as follows: 

6

1

10 ( )
( )

cos ( )

toph
hydr

LOS
h

P h
d h K dh

T h

−

 = 
 

(1) 

6

2 3 2

10 ( ) ( )
( ) [( ) ]

cos ( ) ( )

toph
wet d
LOS

h
v

R e h e h
d h K K dh

R T h T h

−

 = − +  (2) 

( ) ( ) ( )hydr wet

LOS LOS LOSd h d h d h =  + 
 

(3) 

where ( )LOSd h   denotes the total tropospheric delay in the line of sight, ( )hydr

LOSd h  

represents the hydrostatic delay, ( )wet

LOSd h  represents the wet delay, and θ denotes the 

angle of incidence of the radar signal. The constants are defined as follows: 
1

1 77.6KhpaK −=  , 1

2 71.6KhpaK −=  , and 1

3

253.75 10 K hpaK −=    [25,35]. Addition-

ally, P denotes barometric pressure, T denotes temperature, and e denotes partial pressure 

of water vapor. The gas constants for dry air and water vapor are -1 -1287.05Jkg KdR =  

and -1 -1461.495Jkg KvR =   [25,36]. The value of e is estimated using the relative 
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humidity provided by the ERA-5 reanalysis dataset, calculated via the Clapeyron–Clau-

sius equation as follows [25,37]: 
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where ( )eR h  denotes relative humidity and ( )*e h  denotes the saturated water vapor 

partial pressure, ( )*

we h  denotes the partial pressure of supersaturated liquid water, and 

( )*

ie h  denotes partial pressure of supersaturated ice. The constants are defined as fol-

lows: 0T   = 273.16 K, iT   = 250.16 K, 1a   = 611.21 hPa, 
3,wa   = 17.502, 

4,wa   = 32.19 K, 

3,ia  =2 2.587, and 
4,ia  = −0.7 K. 

3.2. Correcting Tropospheric Delays with PLE5 Model 

The power-law function model is founded on the relationship of power-law distri-

bution between the tropospheric delay phase and surface elevation. Subsequently, the 

power-law index is calculated, and the model is fitted accordingly. The power-law rela-

tionship can be expressed as: 

( )0 0,tropo cK h h h h


  + = −   (8) 

where 
tropo  represents the tropospheric delay of the interferogram, K   is the slope 

between tropospheric phase and surface elevation, α is the power-law decay coefficient 

estimated from the ERA-5 reanalysis data, and c  is the phase of the tropospheric de-

lay at a specific height 0h h= , which can also be expressed as the overall offset of the 

interferogram tropospheric delay. 0h  denotes the constraint elevation, representing the 

minimum height at which the absolute tropospheric delay equals zero. 

To further validate the applicability of the PLE5 model for our study area, we fit to 

determine whether there is a power-law relationship between relative tropospheric delay 

and surface elevation for both the master and slave image during InSAR processing using 

the ERA-5 reanalysis dataset. As illustrated in Figure 4, a power-law distribution exists 

between the tropospheric delay and surface elevation. The black solid line represents the 

mean tropospheric delay obtained from the ERA-5 reanalysis dataset, which was obtained 

using the ERA-5 reanalysis dataset with time periods of 11:00 UTC and 12:00 UTC mo-

ments, the red dashed line shows the power-law curve of the tropospheric delay fitted to 

the surface elevation, and the black dashed line shows the highest point in the study area. 

There is a clear power-law relationship between the tropospheric delay and surface ele-

vation for the master and slave images in Figure 4a,b, with the fitted power-law decay 

coefficient of 1.2 and 1.3, respectively. 
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The other images also calculate their respective power-law coefficients in turn. Based 

on the results of fitting the tropospheric delay to surface elevation in the study area, we 

found that the differences in the power-law decay coefficients for both the master and 

slave images are minimal. Thus, our study area can use the PLE5 model to simulate the 

tropospheric delay of the interferogram. The atmospheric refractive index varies across 

different images. Therefore, the mean value of the coefficients fitted using only the master 

and slave images does not accurately reflect the power-law relationship in each image. To 

mitigate this uncertainty, the power-law decay coefficient can be estimated from the fitted 

relationship between the relative tropospheric delay and surface elevation of the interfer-

ograms corresponding to the master and slave images. The relationship can be expressed 

as: 

m s

tropo tropo tropo   =  −
 

(9) 

where   tropo  denotes the relative tropospheric delay of interferogram m and interfero-

gram s, 
m

tropo  and 
s

tropo  represent the tropospheric delay for interferogram m and 

interferogram s, respectively, and  tropo  can be further written as: 

'

0 0 ( ) ,tropo m sK h h h h − = − 
 

(10) 

' ' '

m s m sK K K− = −
 

(11) 

Lastly, the workflow of the method is presented in Figure 5 and is as follows: the 

standardized InSAR technique employs the SBAS-InSAR algorithm to extract ground-

based coherent point targets, followed by phase unwrapping and spatial coherence esti-

mation. To enhance the accuracy of the analysis, a tropospheric delay correction module 

is integrated, utilizing the downloaded ERA-5 dataset to reanalyze temperature, baromet-

ric pressure, relative humidity, and potential height. The tropospheric delay phase is com-

puted in accordance with Equations (1)–(3). The elevation h of the coherent point target is 

derived from external DEM data and both the power-law exponent and reference eleva-

tion are fitted usng a double-logarithmic method. Subsequently, band-pass filtering [24], 

which reduces noise and enhances key features for analysis, is applied to the interfero-

gram phases, and the scale factor K’ is estimated to establish a power-law model, which 

is then utilized to calculate the tropospheric delay for the correction of InSAR results. 

 

Figure 4. The relationship between the mean tropospheric delay and surface elevation for (a) the 

master image/20190107, and (b)the slave image/20201109. 
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Figure 5. Workflow of PLE5 model for tropospheric delay correction in time-series InSAR. 

4. Results and Analysis 

In this study, the PLE5 method is applied to InSAR tropospheric delay correction in 

Dali City, Yunnan Province, to verify its effectiveness in correcting tropospheric delay. 

Additionally, the method is compared and analyzed against conventional correction 

methods, including the empirical linear model, GACOS model, and ERA-5 reanalysis da-

taset, to evaluate its effectiveness and applicability in InSAR tropospheric delay correc-

tion. 

4.1. Parameter Estimation for PLE5 Model 

In the study of tropospheric delay correction using the PLE5 model, when parameter 

estimation is performed using sounding balloons, it is assumed that the power-law decay co-

efficient and reference elevation for each interferogram are invariant constants [24]. When em-

ploying ERA-I reanalysis data for parameter estimation, it is assumed that the power-law de-

cay coefficient and constraint elevation are time-varying, resulting in different parameters for 

each interferogram [25]. Due to the sparse density of sounding balloon stations, which cannot 

cover the study area, and the inability to download their meteorological data after January 

2020, we use the ERA-5 reanalysis dataset, an updated product of ERA-I with improved tem-

poral and spatial resolution, transitioning from six-hourly to hourly updates, instead of 

sounding balloon data to estimate the parameters   and 0h . 

The relative tropospheric delays obtained from the ERA-5 reanalysis dataset can be 

fitted to a power-law relationship with elevation, and the distribution law between rela-

tive tropospheric delay and elevation enables the fitting of the two required parameters, 

as shown in Figure 6. The results indicate that the power-law decay coefficients and ref-

erence elevations vary for four-scene interferograms. The gray dashed solid line indicates 

the interferogram 20190519/20190624, which is fitted with a power-law decay coefficient 

of 1.6 and a constrained elevation of about 6 km; the blue solid line indicates the interfer-

ogram 20201016/20201109, which is fitted with a power-law exponent of 1.1 and a refer-

ence elevation of about 5 km; the green-colored solid line indicates the interferogram 

20201109/20201203, which has a fitted power-law decay coefficient of 1.5 and a con-

strained elevation of about 5 km; the cyan-colored solid line denotes the interferogram 

20210426/20210601, which has a fitted power-law decay coefficient of 1.3 and a con-

strained elevation of about 4.8 km; and dashed lines denote the power-law fitted curve of 

each interferogram. 
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Figure 6. The distribution relationship between relative tropospheric delay and elevation of four 

interferograms. 

The remaining interferograms sequentially obtain the power-law model parameters 

using the described method, thereby determining the tropospheric delay for each. Analy-

sis of the relationship between relative tropospheric delay and elevation reveals a power-

law relationship in the study area. It is further confirmed that the PLE5 model can effec-

tively analyze and mitigate tropospheric delays in interferograms, thereby reducing un-

certainty in the results. 

4.2. Estimated Tropospheric Delays 

In this study, the tropospheric delay simulations for each interferogram were gener-

ated using the aforementioned PLE5 model, based on the parameters obtained in Section 

4.1. The correction effectiveness of the PLE5 method was evaluated by comparing it with 

three widely used approaches: GACOS model correction, traditional linear model correc-

tion, and ERA-5 reanalysis dataset correction. 

A visual analysis of tropospheric delay and original interferogram delay simulated 

by different methods reveals the extent of atmospheric influence on InSAR and assesses 

the effectiveness of each model in estimating atmospheric delay. The GACOS and ERA-5 

data corresponding to the times of the SAR images are downloaded to estimate the trop-

ospheric delays. Figure 7 presents the results of interferograms before and after tropo-

spheric delay correction, with the tropospheric delays estimated using the four different 

methods. 

The phase of the original interferences varies drastically, with significant topogra-

phy-related trend changes, and is, therefore, subject to severe atmospheric noise. After 

atmospheric corrections using the four models—GACOS, linear, ERA-5, and PLE5 

model—residual tropospheric delays remain in certain regions of the interferograms, 

likely due to instances of overestimation or underestimation of the delay. Among the ap-

plied methods, the PLE5 model demonstrates effectiveness in mitigating tropospheric de-

lays over large areas, providing reliable results for InSAR atmospheric corrections. 
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Figure 7. The unwrapped interferograms before and after tropospheric delay correction by four dif-

ferent methods: GACOS, traditional linear model, ERA-5 reanalysis dataset, and PLE5 model of four 

scenes. 

4.3. Comparing with Different Methods 

After comparing the results of the four tropospheric delay correction methods with 

the original interferograms, the relationship between the interferograms before and after 

correction and elevation is analyzed in Figure 8. The black scatter plot in Figure 8 reveals 

a linear relationship between the original interferogram phase and elevation, indicating 

that the vertical stratification delay constitutes a significant portion of the tropospheric 

delay. After applying the four tropospheric delay correction methods, all show some ef-

fect in reducing the vertical stratification delay and the interferogram phase-to-elevation 

ratios are noticeably reduced. The red scatter plot in Figure 8 demonstrates that most of 

the phases after the PLE5 model correction stabilize around zero. 

Although the four different correction methods show some effect, certain methods 

demonstrate limited effectiveness, with incomplete corrections or even the introduction 

of phase errors. The interferogram 20201109/20201203 in Figure 8 shows that the phase of 

the original interferogram (black scatter plot) exhibits an overall upward deviation and, 

while the phase (blue scatter) improves after correction using the traditional linear model, 

the phase value deviates downward, introducing a new error at elevations above 3700 m. 

This may be attributed to the fact that the conventional linear model uses only a scale 

factor constant to represent the phase–elevation relationship, which fails to account for 

the spatial variability of the tropospheric delay. The standard deviation magnitude is sub-

sequently used to compare the correction effects of the different methods. 
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Figure 8. Comparison of the relationship between interferogram phase and elevation in the study 

area before and after correction by four different tropospheric delay methods. 

The standard deviation (SD) is a crucial indicator of the effectiveness of atmospheric 

correction, particularly in estimating the impact of tropospheric delay correction in the 

absence of significant surface deformation and displacement [29]. By comparing the 

standard deviation of tropospheric delays corrected by different methods, we can deter-

mine which method is most effective in mitigating tropospheric delays. The standard de-

viation of the original phase of the four interferograms, after tropospheric delay correction 

by different methods, is shown in Figure 9. The results indicate that the standard deviation 

of the corrected phases for all four methods is smaller than that of the original interfero-

gram phases. Among them, the PLE5 model, with the smallest standard deviation, proves 

to be the most effective. 
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Figure 9. Comparison of the standard deviations of the original phases of four interferograms before 

and after correction by different methods for tropospheric delays. 

As shown in Figure 10, the standard deviation changes of the phase in all differential 

interferograms in the study area, before and after tropospheric delay correction by differ-

ent methods, indicate that most interferograms have been successfully corrected by the 

four methods, resulting in a reduction in the tropospheric delay and a corresponding de-

crease in phase standard deviation. However, as can be seen in the figure, the phase stand-

ard deviation in a small number of interferograms after correction is larger than in the 

original interferograms, probably due to the use of global fitting parameters in the PLE5 

method, indicating that the tropospheric delay phase has not been improved and, instead, 

erroneous signals have been introduced. Therefore, careful consideration must be given 

to the selection of the tropospheric delay correction method, as the deformation results in 

the study area may be compromised if an unsuitable correction method is used. 

 

Figure 10. Variation in standard deviation of differential interferogram phase in the study area be-

fore and after correction by different methods of tropospheric delay. 
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The mean phase standard deviation is 3.578 rad, with a reduction of approximately 

8.6%. After correction by the PLE5 model, it decreases to 3.414 rad, a reduction of approx-

imately 12.8% (see Table 2). Therefore, careful consideration must be given to the selection 

of the tropospheric delay correction method, as inappropriate methods may affect the de-

formation results in the study area. 

Table 2. Mean value of phase standard deviation after correction by four methods. 

 
Original  

Interferogram 

GACOS 

Correction 

Linear Model 

Correction 

ERA5 

Correction 

PLE5 Model 

Correction 

Phase(rad) 3.915 3.639 3.581 3.578 3.414 

All the results demonstrate that the mean phase standard deviation of the interfero-

grams corrected by the PLE5 model is the lowest, indicating a superior correction effect 

on tropospheric delay compared to the other three methods. When applying the PLE5 

model, it is essential to first analyze the external meteorological data to determine if a 

power-law relationship exists between the tropospheric delay and elevation and then use 

the power-law model to estimate the tropospheric delay. The experiments in this study 

reveal that, while the PLE5 model outperforms the traditional linear model in phase-based 

correction, it is significantly slower in terms of computational efficiency. Consequently, 

selecting an appropriate method for tropospheric delay estimation is crucial when per-

forming corrections in different study areas. 

5. Discussion 

This study explored the integration of ERA-5 reanalysis data and a power-law model 

for InSAR tropospheric delay correction, which effectively estimates spatially varying at-

mospheric signals in interferometric phases [24]. Compared to correction methods based 

on the ERA-Interim dataset, ERA-5 delivers improved performance in mitigating tropo-

spheric delays, yielding reliable results [29]. This integration demonstrates significant 

improvements in correcting tropospheric delays in InSAR applications. 

To further evaluate its performance, the PLE5 model was compared with three tradi-

tional correction methods: the linear model, the ERA-5 numeric weather model, and the 

GACOS model. The results indicate that the PLE5 model achieves lower mean phase 

standard deviation in corrected interferograms and reduces correlations between eleva-

tion and delay more effectively than the other methods. In the numeric weather model by 

ERA-5 dataset, these findings highlight its reliability in addressing complex atmospheric 

conditions and its potential to improve tropospheric delay correction accuracy. 

The empirical linear model establishes a simplified functional relationship between 

phase and elevation, which limits its effectiveness in correcting for turbulent mixing de-

lays that are independent of elevation. Similarly, while the GACOS model is user-friendly, 

probably because of the complicated terrain conditions of Dali, it sometimes struggles to 

capture the complex atmospheric variability. Single power-law models, which rely solely 

on sounding balloon data, are constrained by their sparse spatial coverage, thereby re-

stricting their applicability in regions with insufficient data density. By contrast, the PLE5 

model accounts for atmospheric heterogeneity, making it well suited to regions with sig-

nificant spatial variability. Despite its demonstrated effectiveness in reducing atmospheric 

noise, several limitations emerged during implementation. 

The results of InSAR tropospheric delay correction indicate that the PLE5 model re-

tains some uncertainties, as the correction performance for certain interferograms was not 

entirely satisfactory. This could be attributed to the low spatial resolution of ERA-5 data, 

which presents a notable challenge. ERA-5 provides meteorological data on a grid with 

an approximate resolution of 30 km, limiting its capacity to capture localized 
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meteorological variations. The interpolation process cannot fully resolve the spatial het-

erogeneity of atmospheric conditions, leading to residual atmospheric delays in the cor-

rected interferograms. Future work should focus on integrating ERA-5 with other ground-

based meteorological observations, such as GNSS-derived water vapor data or local 

weather station measurements, to improve the accuracy of atmospheric water vapor in-

terpolation and simulation. Additionally, advanced downscaling techniques could be em-

ployed to refine the spatial resolution of ERA-5 data, enabling better representation of 

local atmospheric variability. 

In addition to spatial resolution issues, computational efficiency poses another chal-

lenge. Similar to the power-law model, the proposed correction framework is computa-

tionally demanding due to its reliance on iterative fitting processes and the need to handle 

large volumes of InSAR data. This computational burden becomes particularly pro-

nounced in large-scale studies or near-real-time monitoring scenarios. Addressing this 

limitation will require algorithmic optimization, such as reducing the number of iterations 

or leveraging high-performance computing techniques. Developing computationally effi-

cient models will be essential for expanding the applicability of the proposed method in 

operational deformation monitoring tasks. 

With advancements in observational technologies and numerical weather models, 

the precision and resolution of water vapor observations are expected to improve signifi-

cantly. These developments will enable more accurate and localized corrections of InSAR 

atmospheric errors. Integrating multi-source water vapor data—such as GNSS-derived 

observations, ground-based meteorological measurements, and satellite-based datasets—

with advanced deep learning techniques offers a promising pathway for refining atmos-

pheric correction models. Additionally, as observation systems and correction methods 

continue to evolve, standardized InSAR atmospheric correction products, akin to precise 

orbit data, could be made directly available. This would greatly reduce the complexity of 

applying atmospheric corrections, lower technical barriers, and significantly enhance the 

quality and reliability of InSAR deformation results. 

6. Conclusions 

This study proposed a tropospheric delay correction method (PLE5) that integrates 

ERA-5 reanalysis data into the power-law model to address the limitations of InSAR at-

mospheric corrections in regions with sparse sounding balloon observations. The method 

was validated using Sentinel-1 data over the Dali highland basin and compared against 

the GACOS model, the traditional linear model, and ERA-5-based correction. The results 

demonstrate that the PLE5 model achieved the lowest phase standard deviation among 

the tested methods, effectively mitigating atmospheric phase delay in InSAR time-series 

analysis. 

The integration of ERA-5 data provides a practical alternative to sounding balloon 

observations, enabling the application of the power-law model in data-scarce regions. 

However, this study highlights certain challenges, including the low spatial resolution of 

ERA-5 data, which limits its ability to capture localized atmospheric variations. Further-

more, the computational demands of the power-law model and its susceptibility to phase 

outliers in certain interferograms underscore the need for further refinement. 

The results demonstrate that the PLE5 method effectively enhances InSAR tropo-

spheric delay correction by integrating ERA-5 data into the power-law model, offering a 

practical alternative in regions lacking sounding balloon observations. These findings 

serve as a reference for future research into InSAR atmospheric delay correction studies 

over complex terrains. 
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