

Sensors 2025, 25, 718 https://doi.org/10.3390/s25030718

Article

A Novel Orchestrator Architecture for Deploying Virtualized
Services in Next-Generation IoT Computing Ecosystems
Francisco Mahedero Biot 1, Alejandro Fornes-Leal 1,*, Rafael Vaño 1, Raúl Reinosa Simón 1, Ignacio Lacalle 1,
Carlos Guardiola 2 and Carlos E. Palau 1

1 Communications Department, Universitat Politècnica de València, 46022 Valencia, Spain;
framabio@upv.es (F.M.B.); ravagar2@upv.es (R.V.); rreisim@upv.es (R.R.S.); iglaub@upv.es (I.L.);
cpalau@dcom.upv.es (C.E.P.)

2 Thermal Engines Department, Universitat Politècnica de València, 46022 Valencia, Spain; carguaga@upv.es
* Correspondence: alforlea@upv.es

Abstract: The Next-Generation IoT integrates diverse technological enablers, allowing the
creation of advanced systems with increasingly complex requirements and maximizing
the use of available IoT–edge–cloud resources. This paper introduces an orchestrator ar-
chitecture for dynamic IoT scenarios, inspired by ETSI NFV MANO and Cloud Native
principles, where distributed computing nodes often have unfixed and changing net-
working configurations. Unlike traditional approaches, this architecture also focuses on
managing services across massively distributed mobile nodes, as demonstrated in the au-
tomotive use case presented. Apart from working as MANO framework, the proposed
solution efficiently handles service lifecycle management in large fleets of vehicles with-
out relying on public or static IP addresses for connectivity. Its modular, microservices-
based approach ensures adaptability to emerging trends like Edge Native, WebAssembly
and RISC-V, positioning it as a forward-looking innovation for IoT ecosystems.

Keywords: service orchestration; Cloud Native; edge–cloud continuum; Internet of
Things

1. Introduction
1.1. General Background

Cloud Native is a recent and increasingly adopted paradigm that emerged for de-
signing, deploying and managing applications in cloud computing environments. It is
based on different pillars, such as the decomposition of applications into microservices,
the use of containers as virtualization technology, and the automation of the development
and operation phases (DevOps). As a result [1], properties such as scalability, failure re-
silience and continuous operation (even during upgrades) can be achieved. The key tech-
nology of this paradigm is Kubernetes (K8s) [2], a widely known open-source platform
for managing containerized workloads and services, facilitating their configuration and
automation.

Although originally conceived for cloud environments, the core concepts of Cloud
Native can be adapted to edge environments and, therefore, IoT applications and services
can benefit from it. The flexibility brought by this paradigm is crucial for the evolution of
IoT, the so-called Next-Generation IoT (NGIoT). According to [3], this evolution comes
with a set of key technological enablers such as edge computing, 5G, Artificial Intelligence

Academic Editor: Alessandro

Pozzebon

Received: 7 October 2024

Revised: 20 December 2024

Accepted: 22 January 2025

Published: 24 January 2025

Citation: Mahedero Biot, F.;

Fornes-Leal, A.; Vaño, R.;

Reinosa Simón, R.; Lacalle, I.;

Guardiola, C.; Palau, C.E. A Novel

Orchestrator Architecture for

Deploying Virtualized Services in

Next-Generation IoT Computing

Ecosystems. Sensors 2025, 25, 718.

https://doi.org/10.3390/s25030718

Copyright: © 2025 by the authors.

Submitted for possible open access

publication under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/li-

censes/by/4.0/).

Sensors 2025, 25, 718 2 of 24

(AI), advanced analytics, augmented reality, digital twin and Distributed Ledger Technol-
ogies (DLT), which may be present in an IoT system to address use cases with complex
requirements (e.g., with low latency needs, real-time human interaction, advanced pro-
cessing, intelligence based on business logic, auditing, etc.). Since these enablers are tech-
nologically decoupled and can evolve at different paces, the adoption of Cloud Native
concepts for NGIoT is crucial for easing their integration, upgrade and removal.

Depending on its scope, an NGIoT system can be supported by IoT, edge, fog and
cloud infrastructure—the IoT–edge–cloud computing continuum. Resource virtualization
is an essential enabler for the continuum, as it allows abstracting and isolating the under-
lying physical resources thus easing the deployment of services and applications on top
of them. However, combining these ecosystems is not trivial and some challenges need to
be overcome [4,5]. In contrast to cloud, a set of key features have to be fulfilled for taking
advantage of the computing continuum, including heterogeneity and interoperability of
physical and virtual devices, real-time support, location awareness, dynamicity (i.e., re-
sources being included/removed, with varying networking configurations and processing
capabilities) and wireless communication schemas. In addition, as services might end up
scattered within delocalized computing nodes, security becomes an even more challeng-
ing aspect, as the number of attack surfaces increases.

Orchestrators are thus needed to manage both the virtualized infrastructure and the
services lifecycle. Currently, there are studies and solutions partially covering the men-
tioned aspects. One orchestration architecture worth presenting is the Management and
Orchestration (MANO) standard for Network Function Virtualization (NFV) [6], defined
by the European Telecommunications Standards Institute (ETSI). As one can see in Figure
1, it consists of three main functional blocks: the NFV Orchestrator (NFVO), which is re-
sponsible of onboarding Network Service (NS) and Virtualized Network Function (VNF)
packages, managing the lifecycle management of NS and global resource management;
the VNF Manager (VNFM), in charge of the managing the lifecycle of the VNFs of the
deployed NSs (from instantiation to scaling, healing, modification and termination oper-
ations); and the Virtualized Infrastructure Manager (VIM), which controls and manages
the virtualized computing, storage and networking resources.

Figure 1. ETSI MANO components and interfaces.

This standard is leveraged by existing NFV orchestrators such as (i) Open Source
MANO (OSM) [7], the framework developed under the ETSI umbrella, which supports
both VM-based (over OpenStack, AWS, etc.) and container-based (over K8s) VNFs, with

Sensors 2025, 25, 718 3 of 24

more features implemented for the first type. In OSM, the user has full deployment con-
trol, as no intelligence is added for allocating the services. Developed by OpenStack, (ii)
Tacker [8] has container-based support for VNFs (over K8s), although many transversal
aspects have to be managed by the users. From the Linux Foundation (LF), (iii) ONAP [9]
is a platform for orchestrating, managing and automating network and edge services. It
includes more features than the former solutions (e.g., service design and creation, exter-
nal systems integration, data collection and analytics, visualization, security and network-
ing tools, etc.), being thus more complex. With the proper descriptors for deploying the
applications, VNFs can be deployed over K8s, OpenStack or any commercial VIM, includ-
ing policy-driven intelligence for workloads placement/scheduling. Also under the um-
brella of the LF, (iv) Anuket [10] delves deeper into the MANO part for both VM-based
(over OpenStack) and container-based (over K8s) VNFs, also introducing concepts from
GSMA’s reference model [11]. Finally, although not MANO-compliant, (v) EMCO [12]
(now also a LF project) is one of the more complete solutions for containerized VNFs,
developed specifically for K8s (but yet supporting VM-based workloads). It includes dif-
ferent plugins for managing several K8s aspects, including multicluster environments,
and follows an intent-driven model for automatically selecting the optimal placement of
services on the continuum. Still, most of these orchestrators are considered only for the
telco ecosystem, with powerful yet rather homogeneous computing capabilities, not fully
exploiting the heterogeneity of the available resources.

Apart from NFV orchestration architectures, designed for the specific requirements
and constraints of network services, other orchestration architectures are available. Orive
et al. [13] presented an architecture for the edge–cloud continuum, based on K8s and ac-
companied by a set of information models for the infrastructure and the workloads, and
considering different QoS-based optimization criteria. In [14], the authors followed a sim-
ilar approach, but considered a multicluster K8s environment. Other approaches extend
resource orchestration with Software Defined Networking (SDN) to optimize as well the
networking paths, as in [15], although in this latter case for Virtual Machines (VMs) in-
stead of containerized-based workloads. Also, different European actions have been ad-
vancing toward the management of heterogeneous environments, the implementation of
scheduling and allocation intelligence, and the execution of business applications (i.e., not
just VNFs). Starting with the SERRANO platform [16], it automates the process of appli-
cations deployment (designed with its own SDK) across various computing technologies,
translating their high-level requirements to infrastructure-aware configuration parame-
ters. It works for containers, VMs and Unikernels, using its own abstraction layer for lev-
eraging the underlying computation and storage resources. In contrast to the former,
RAINBOW [17] provides compatibility with existing container orchestrator platforms
(i.e., Helm charts, Docker compose) but only works with containers (not VMs or Uniker-
nels). It provides dedicated tools for easing the deployments (with sophisticated intelli-
gence for resource provisioning) and communication of services. The greater contribution
of this orchestrator lies on its policies, which can dictate not just installation but also op-
eration behavior. Continuing with the ACCORDION platform [18], it also focuses on man-
aging heterogeneous computing nodes of the edge–cloud continuum, targeting contain-
ers, VMs (via KubeVirt integration) and Unikernels, all on top of K8s clusters (specifically,
K3s). While all these platforms support security, telemetry and analysis features, the latter
is the only one that considers MANO specifications for deploying VNFs.

Fleet [19] should be also highlighted as a scalability engine focused on Kubernetes
deployments. This solution, based on custom K8s resource definitions, is both a cluster
engine and a deployment manager for Kubernetes, allowing configuring a large volume
of clusters from a single, central point. It supports managing deployments with raw Ku-

Sensors 2025, 25, 718 4 of 24

bernetes manifests, Helm charts or Kustomize technologies, although it does not imple-
ment service lifecycle control nor includes any kind of placement intelligence as do the
previous solutions.

These orchestration architectures and solutions do not address the management of
computing resources with dynamic, changing IP configurations, a critical aspect in many
IoT–edge scenarios. Among open-source platforms that consider this aspect, one can high-
light KubeEdge [20], KubeVela [21] and OpenYurt [22], each of them offering unique ca-
pabilities. KubeEdge extends K8s to the edge, enabling efficient edge–cloud collaboration
by synchronizing workloads and managing edge nodes even in intermittent network con-
ditions. OpenYurt builds on native Kubernetes, enhancing it with edge-specific function-
alities such as autonomous edge operation and graceful node recovery, without compro-
mising cloud compatibility. Finally, KubeVela acts as an application delivery and man-
agement platform, enabling developers to define and manage edge workloads with de-
clarative application-centric abstractions.

1.2. Motivation and Objectives

To address the aforementioned challenges, a dedicated NGIoT orchestrator architec-
ture is needed to manage the lifecycle of services in distributed, heterogeneous and dy-
namic computing environments. This architecture must consider features such as AI-sup-
ported service allocation, secured communication, fault tolerance, dynamic resource man-
agement and full observability of the involved resources and services. While many open
and commercial solutions can be found for managing resources in cloud environments
(with Amazon Web Services, Microsoft Azure and Google Cloud taking over most of the
market), orchestrators that span across the whole continuum are not that mature.

The aim of this study is to present the design and development of a resource and
service orchestrator for the IoT–edge–cloud continuum, focusing on Cloud Native, secu-
rity, scalability and dynamicity aspects for addressing the features demanded by NGIoT
applications. It supports network-related (i.e., VNFs, compliant with ETSI MANO) and
non-network related applications, VM and containerized-based workloads, and allows
the use of different algorithms for service allocation. While there are common features
with existing propositions and solutions, the main novelty lies in the management of dy-
namic computing nodes. In this article, dynamicity is understood as a feature that enables
the utilization of edge and IoT computing nodes that are not placed in specific, fixed lo-
cations, which implies that (i) connectivity is generally wireless, leveraging technologies
such as WiFi and 5G; (ii) connectivity might be lost, when there is no coverage between
access points/base stations and the managed resources; (iii) more than one radio technol-
ogy might be available for managing them, and involved IP addresses might be dynamic;
and (iv) deployment and runtime errors are more likely. The proposed orchestrator archi-
tecture has been designed, implemented and validated in the four real-world pilots of the
H2020 ASSIST-IoT project.

The remainder of this paper is organized as follows: In Section 2, the design and a
technological implementation of the proposed orchestrator is presented. The utilization
and performance of the solution in the context of a challenging automotive NGIoT sce-
nario are described in Section 3, along with the experimental setup deployed. A discussion
about the solution, existing alternatives and future evolution is provided in Section 4. Fi-
nally, conclusions are drawn in Section 5.

Sensors 2025, 25, 718 5 of 24

2. Materials and Methods
2.1. Orchestrator Architecture

The orchestrator’s architecture is depicted in Figure 2. It complements and extends
the ETSI MANO framework by (i) implementing intelligent service scheduling capabili-
ties, (ii) integrating Cloud Native features related to networking and monitoring, and (iii)
supporting both massive and dynamic configurations. To enable the latter, a design based
on a publish–subscribe pattern is considered, where the managed VIMs (expected to be
mobile and/or temporal computing nodes) host an agent that will grant communication
with the orchestrator, ensuring error handling in case of loss of connectivity or reconfig-
uration, integrating dedicated functions to support local lifecycle management of services.
To differentiate these VIMs from those typically managed by MANO (with fixed, public
IP connectivity), they are hereafter referred as “dynamic VIMs”. This design considers the
following features:

1. A hierarchic pattern, where groups are defined and then dynamic VIMs are regis-
tered and belong to them. All the VIMs of a specific group will host the same set of
services, yet with the possibility of instantiating specific services in a particular VIM.

2. Services are locally installed, updated or deleted depending on the messages re-
ceived in the agent from the orchestrator. A set of components are devoted to these
processes, from the download of the containers images (asynchronous) to the deploy-
ment and deletion of services (minimal version of NFVO/VNFM).

3. In the case that the orchestrator’s agent cannot recover from errors, these are com-
municated to the cloud via dedicated topics, as communication might be lost during
package downloading, service installation or messaging.

Figure 2. High-level architecture of the proposed orchestrator. The cloud components and the or-
chestrator agent are the core building blocks of the solution. VIMs, virtualized infrastructure PoPs,
virtualized network and non-network functions are external components defined in MANO.

Sensors 2025, 25, 718 6 of 24

4. Messages should be transmitted in a secured way (e.g., integrating TLS, access con-
trol mechanisms, etc.) to ensure that malignant actors cannot deploy malignant ser-
vices or disrupt the expected operation of the system.

This design supports massive deployments where a common set of services are ex-
pected to be deployed independently in large groups of nodes or clusters; with just a sin-
gle command, a specific service can be deployed, updated and deleted in all of them. Be-
ing more scalable than a server–client design, the key benefit is the possibility of managing
temporary nodes or clusters (with minimal installation) and those in which fixed, public
IP addresses cannot be ensured/provisioned, as having an Internet connection is enough.

A brief description of the functionalities of the main building blocks of the orchestra-
tor architecture is now presented, including the typical MANO features extended with a
scheduler for service allocation, networking and monitoring capabilities:

• API: It is the main entry-point of the solution, from which a user (directly or through
graphical interface) can access the features of the orchestrator, including those related
to dynamic VIMs.

• NFVO/VNFM: This module groups ETSI MANO components, from the registra-
tion/update/removal of VIMs and service repositories to the lifecycle management of
services. As its traffic can increase exponentially if several VIMs and services are
managed, a communication bus is implemented.

• Scheduler: This component acts when a user lets the orchestration decide the place-
ment of a service to be deployed. Regarding the policy frameworks, different models
and tools can be considered.

• Function packaging: It prepares the NS and VNF descriptors as demanded by MANO
specifications, gathering the required data from the services’ manifests.

• Networking component: It communicates with the VIMs to implement layer 3 net-
working rules related to security, to allow/prevent communication between specific
components of the managed services.

• Monitoring server: This component handles, homogenizes, aggregates and stores dif-
ferent metrics from all the managed VIMs and deployed services. Data will come
from the monitoring agents deployed in each of the VIMs.

• Internal database (BBDD): It hosts relevant data, from the metrics collected by the
monitoring server, to the data needed/generated by the policy frameworks (training
data, AI models) and information related to the dynamic VIMs.

In the architecture, one can observe different connections among Virtualized Infra-
structure Points of Presence (PoPs) and VIMs. They represent that the abstracted resources
of a given PoP (e.g., a virtualized server or edge node) could be controlled by one or many
VIMs (e.g., Kubernetes clusters, OpenStack), and that one VIM may control one or many
PoPs. Also, the communications among services within or among VIMs are governed by
the rules applied by the networking component.

Now, the building blocks for supporting dynamic VIMs are presented. The involved
components provide support for use cases where VIMs cannot be operated with MANO
considering a typical flow, due to technological or operational restrictions:

• Data brokers: They handle the exchange of data between the agents of the dynamic
VIMs and the orchestrator (one instance on each). MQTT, AMQP or similar transport
protocols could be implemented. Distributed instances are recommended to enhance
the availability and scalability of dynamic clusters.

• Load balancer: Distributes the load of messages coming from the orchestrator agents
between the available data broker instances of the orchestrator.

Sensors 2025, 25, 718 7 of 24

• Communication bus: Besides supporting NFVO/VNFM messages, it enforces the op-
eration of the data brokers to ensure that data are not lost when connectivity is not
available (i.e., fault tolerance mechanisms).

• Context broker: This component handles the status of the dynamic VIMs, including
the status of the services deployed on them and error-related data.

• Orchestrator agent (Figure 3): Deployed on each dynamic VIM, it has two main pur-
poses: governing the local lifecycle of the virtualized services (similarly to a local
NFVO/VNFM) and managing the communication of data with the orchestrator. To
implement the latter, a local data broker and a fault-tolerance service are part of the
agent, supported by a database. When use case-related data needs to be transmitted,
the agent’s data broker could be considered for that end (API REST could also be
considered).

Figure 3. Component decomposition of the orchestrator agent. Communication with the cloud
counterpart of the orchestrator is managed by the data brokers, with messages through the pub–
sub topics presented in Section 2.2.

A basic data model for managing the dynamic VIMs is depicted in Table 1. It includes
three entities, namely group (where services can be deployed), dynamic VIMs (which
must belong to one group) and service (deployed in a specific cluster, or dynamic VIM).
The actual data are available at the context broker of the orchestrator.

Table 1. Basic data model for deploying services in dynamic VIMs.

Group VIM Service
{
 “id”: “groupId”,
 “type”: “Group”,
 “description”: {
 “type”: “String”,
 “value”: “Group description”
 },
 “services”: {
 “type”: “array”,
 “value”: [“serviceName1”, …]
 },
 “dateCreated”: {
 “value”: “timestamp”
 },
 “dateModified”: {
 “value”: “timestamp”
 }
}

{
 “id”: “vimId”,
 “type”: “Vim”,
 “description”: {
 “type”: “String”,
 “value”: “VIM description”
 },
 “refGroup”: {
 “type”: “Relationship”,
 “object”: “groupId”
 },
 “dateCreated”: {
 “value”: “timestamp”
 },
 “dateModified”: {
 “value”: “timestamp”
 }
}

{
 “id”: “serviced”,
 “name”: “serviceName”
 “type”: “Service”,
 “refVim”: {
 “type”: “Relationship”,
 “object”: “vimId”
 },
 “status”: {
 “type”: “String”,
 “value”: “statusValue”
 },
 “info”: {
 “type”: “String”,
 “value”: “infoValue”
 },
 “dateCreated”: {
 “value”: “timestamp”

Sensors 2025, 25, 718 8 of 24

 },
 “dateModified”: {
 “value”: “timestamp”
 }
}

2.2. Communication Interfaces

The orchestrator is expected to be operated through an API or a Graphical User In-
terface (GUI). A basic API for managing the lifecycle of Cloud Native applications has
been designed, allowing for (i) registering and deleting VIMs (and groups of dynamic
VIMs) to manage; (ii) registering, updating and deleting package repositories of services;
and (iii) instantiating, upgrading and deleting services in the managed VIMs (manually
specifying the target computing node or cluster or letting the scheduler component de-
cide), dynamic VIMs and groups of them. Apart from managing the lifecycle of services,
the API communicates with the networking policies to increase the security of deploy-
ments and with the scheduler, the latter only in case of automated service deployments.

To keep compatibility with ETSI MANO, a packaging component is included, which
goal is to prepare the NS and VNF descriptors to facilitate interaction with legacy NFVO.
In the Cloud Native paradigm, existing packaging technologies are Kustomize [23], Juju
bundles [24] and Helm charts [25], the last being the de facto standard for providing pro-
duction-ready packages. Thus, to prepare these descriptors, key information is extracted
from the Kubernetes templates or manifests included in those packages.

Furthermore, when considering dynamic VIMs, the API calls related to the lifecycle
management of services and their monitoring are translated to a set of pub–sub messages
with predefined topics, exchanged between the data brokers of the orchestrator and the
agents. A set of basic topics has been defined to that end (see Table 2). This design also
comes with management advantages, as dynamic VIMs can register by themselves (with
proper certificates) and services can be deployed in several of them with a single com-
mand, specifying the target group.

Table 2. Pub–sub topics for managing the lifecycle of services in dynamic VIMs.

Topic Message Description
/fleet/group/id
/vim/id

“{op: install, service: serviceName, package: packageName, reposi-
tory: repositoryURL}”

Service deployment, update or re-
moval (sent from the orchestrator’s
API to group or dynamic VIM)

“{op: update, service: serviceName, package: packageName}”
“{op: delete, service: serviceName}”

/status
“{service: serviceName, op: instantiate, vim: vimId, status: pending,
info: pending}”

Service status creation and update
(from dynamic VIM to context bro-
ker)

“{service: serviceName “, op: update, vim: vimId, status: run-
ning/pending/error, info: running/pending/error}”

2.3. Scheduler and Policies

There are several works devoted to manage and distribute services within a managed
infrastructure; however, most have been designed for centralized ecosystems [26], hence
not suitable for computing continuum ecosystems in which resources might be geograph-
ically scattered. Still, for VMs, containers or both, there are some works targeting solutions
for scheduling services in the optimal VIM based on latency/location awareness [26–28],
burst forecast [29], available resources [30] or cost efficiency [31].

The proposed architecture foresees the possibility of having a scheduler with several
policies/intents, to be selected by the user when deploying a service. These policies may
be supported by different AI frameworks and leverage different monitoring metrics to

Sensors 2025, 25, 718 9 of 24

operate, which can include reallocation capabilities. They can be related to QoS, optimi-
zation of managed resources and/or specific needs of resources, e.g., large storage or ac-
celeration capabilities. Focusing on Cloud Native, specific Kubernetes objects such as hor-
izontal or vertical autoscaling or resource requests could be modified by the outcomes of
these policies to meet users’ intents.

2.4. Networking Policies

Security is a crucial factor for the success of any system, being in this case critical due
to the large number of attack surfaces that may exist. There are several layers in which
security can be tackled, at network (layer 3), transport (layer 4), application and access
levels (layer 7). The latter layer is outside the scope of this section, as it involves software-
specific implementation and services (e.g., API gateways, identity managers, authoriza-
tion servers, etc.) that are beyond the functional features of the orchestrator, but necessary
to secure its API.

The orchestrator architecture depicts a component that interfaces with the underly-
ing VIMs’ network managers to allow or prevent communication among deployed ser-
vices. For instance, traffic between services and applications could be limited to exposed
interfaces, so that their internal microservices can only communicate among them and not
with those from others. In the Cloud Native paradigm, these policies are governed by a
specific K8s’ CNI plugin, which policies can be based on the presence of specific labels or
annotations.

Apart from layer 3 rules, the CNI plugin is set to provide encryption for data travel-
ing among computing nodes and clusters, hence providing transport security. Data from
services belonging to the same computing node do not need to be encrypted, as raw traffic
could be observed on the node anyway. Lastly, regarding the communication between
data brokers, certificates will need to be issued so data do not travel unencrypted through
public, unmanaged networks. Otherwise, the load balancer should deny the connections,
with the TLS termination happening at the load balancer instead of the broker, thus re-
lieving the broker of this task and reducing its workload.

2.5. Architecture Implementation

This section presents the set of technologies leveraged to develop an actual orches-
trator implementation, considering mature open-source technologies (see Table 3). The
code can be consulted from the public repository of the ASSIST-IoT project [32].

Table 3. Technologies leveraged for developing an orchestrator based on the proposed architecture.

Technology Component/s Rationale

OSM NFVO/VNFM
Compliance with ETSI MANO specifications, with support for Cloud Native services.
Two versions developed, one without native MANO.

TypeScript/Python
API, packaging,

scheduler
TypeScript used as a common programming language to implement custom logic. Py-
thon used for the scheduler development.

Go + Helm Orchestrator agent Custom logic. Helm as de facto Cloud Native packaging technology.

Cilium
Networking
component

CNI plugin covering the requirements posed by the architecture. Also, for compatibil-
ity with the framework selected for the scheduling policies.

Prometheus and export-
ers

Monitoring server,
agents

De facto Cloud Native technology for (performance, resources, application) metrics
gathering. Exporters used as agents, with local servers per VIM, and federated version
for the orchestrator’s cluster.

Context broker FIWARE’s Orion
Open-source technology used for managing contextual data. Widely promoted by the
European Commission for developing smart solutions.

mck8s + K8s’ HPA +
Neural Prophet

Policy
frameworks

mck8s considered as it implements some interesting scheduling policies (i.e., most re-
sources, fitting resources, most traffic, see [33]) aligned with the architecture. Features

Sensors 2025, 25, 718 10 of 24

extended with NeuralProphet [34] and K8s HPA, to manage the replicas of the services
replicas based on usage forecasts.

Kafka (orchestrator),
RedPanda (agents)

Communication bus
Widely used and supported technology for ensuring scalability of communications
when the number of services and volume of data increases.

ASSIST-IoT’s LTSE BBDD
ASSIST-IoT service that provides access to either or both SQL and NoSQL (Elas-
ticsearch) databases with secured API.

ASSIST-IoT’s EDB Data brokers ASSIST-IoT service that extends MQTT technology with filters and rule engine.
HAProxy Load balancer State-of-the-art technology for balancing the load among data broker instances.

K8s, K3s VIM
De facto container orchestration system technology. Encouraged by 5G-PPP [35],
tested with open-source distributions.

3. Results
This section delves into the operation and performance of the developed orchestrator

in the framework of an exemplifying use case from the automotive sector. Specifically,
this section presents (a) the target use case and involved devices; (b) the experimental
setup used for validation; (c) an example of usage of the orchestration system, via graph-
ical interfaces, to deploy the services involved in the use case; and (d) an evaluation of the
performance of the solution, considering latency, scalability and reliability aspects.

3.1. Considered Use Case

In the automotive sector, regulation over emissions has driven the evolution of pro-
pulsion systems. Real-life emission compliance certification must be measured and en-
sured, not just before vehicles are released but continuously monitored once on the road,
as mandated by the upcoming Euro 7 standard [36]. To that end, vehicles should be
equipped with appropriate sensors, and the captured data should be processed locally,
aggregated and judiciously sent to cloud for further processing (e.g., for alerting particular
issues, for obtaining insights related to the entire fleet, for training machine learning mod-
els or combining models by using federated learning techniques, etc.) [37]. In this use case,
and the sensors from which data are collected, vehicles must be equipped with a compu-
ting node with enough resources and wireless network interfaces (e.g., 4G, 5G).

This use case exemplifies several benefits of the proposed orchestration architecture.
On the one hand, the architecture considers the proper mechanisms to manage a large
number of mobile edge nodes, with dedicated connection-recovery and fault-tolerance
mechanisms. On the other hand, it enables the seamless instantiation and automated mon-
itoring of a common set of services in all of them. It should be mentioned that despite the
fact that the orchestrator can manage the lifecycle of the cloud services for the use case,
the big data architecture design (e.g., data warehouse/lake, batch processing, etc.) re-
quired to address the use case falls outside the scope of this paper.

3.2. Experimental Setup

An experimental setup was prepared to deploy the implemented orchestrator and
evaluate its capabilities in the framework of the considered use case. This setup integrates
centralized cloud computing with edge computing and IoT to explore the interplay be-
tween local processing and centralized analytics. Particularly, the study utilizes a self-
hosted, multicluster Kubernetes-based infrastructure deployed on virtual machines man-
aged via Proxmox. The details of the computing infrastructure considered are summa-
rized in Table 4 and depicted in Figure 4.

Sensors 2025, 25, 718 11 of 24

Table 4. Resources of the computing infrastructure utilized in the experimental setup.

Cluster/Device K8s Nodes CPU Cores RAM Storage

Cluster 1 (K8s)

Master 6 32 GB 84 GB
Worker-1 4 8 GB 32 GB
Worker-2 4 8 GB 128 GB
Worker-3 4 8 GB 128 GB

Clusters 2-5 (K8s) Master 6 16 GB 32 GB
Fleet emulator (K8s) Master 4 16 GB 128 GB

Vehicle (K3s) Master 4 8 GB 32 GB

Figure 4. Computing infrastructure used for validating the use case. Dashed orange lines refer to
VIMs registered and connected to the orchestrator, while blue ones symbolize the worker nodes of
Cluster 1, where the cloud components of the orchestrator are deployed.

3.2.1. Real-Time Vehicle Experiments

Experiments were conducted using an actual car as part of the setup. This vehicle
includes the sensors and devices presented in Figure 5, connected with different wired
technologies (USB, Ethernet, CAN bus). In particular, it integrates (i) telemetry and diag-
nostic data from the vehicle’s Power-train Control Module (PCM); (ii) additional sensors
to augment the vehicle’s native data collection, including environmental sensors (NOx,
CO2, GPS); (iii) a local PC with Windows as required by ATI VISION, a legacy application
needed to gather and process signals from the vehicle and transform them into valuable
data; (iv) a Raspberry Pi4 that hosts a K3s cluster; and (v) a router providing cellular con-
nectivity. More information can be found in [37]. This setup provided real-time data
streams for validation of the system’s performance under operational conditions.

Figure 5. IoT–edge infrastructure deployed on the vehicle used in the use case.

Sensors 2025, 25, 718 12 of 24

3.2.2. Emulated-Based Experiments

To validate the scalability of the presented architecture, a dedicated cluster (“Fleet
emulator”) was prepared to emulate the communication with a large fleet of vehicles. It
was leveraged to perform most of the evaluation tests described in Section 3.4. The in-
volved tests considered POSTMAN and JMeter to simulate API requests and evaluate
system performance under controlled conditions. On the one hand, POSTMAN was used
for functional testing of APIs, ensuring correct communication between components. On
the other hand, JMeter facilitated stress and load testing to assess the system’s reliability
and scalability under high-demand scenarios. This cluster was designed to emulate the
connectivity of a fleet of >100,000 vehicles.

3.3. Orchestration Installation and Operation

The cloud components of the orchestrator were instantiated on “Cluster 1”, following
the available documentation and packages [32]. Once running, the K8s’ cloud clusters
(“Clusters 1–5”) and the group that includes the vehicle’s dynamic VIM are registered to
the orchestrator, using the dedicated GUI interfaces (in Figure 6, for static VIMs). With the
group defined, an instance of the orchestrator agent is deployed on the vehicle’s K3s.
Then, its data broker can subscribe itself to the relevant topics, pointing to the IP address
of the orchestrator and having valid SSL-TLS certificates.

Figure 6. Graphical interface for registering a cluster. A similar interface is available for defining
groups of dynamic VIMs.

Once the VIMs that host the use case services are registered, the following services
are installed via the graphical user management interfaces: at cloud, (i) ASSIST-IoT’s LTSE
(a service for SQL and NoSQL data storage, based on PostgreSQL and Elasticsearch, re-
spectively) for storing use case specific data, (ii) Kibana, to represent NoSQL data from
LTSE; at the edge, (iii) a preprocessing function for the gathered sensor data, (iv) an emis-
sion modeling function, (v) a sensor modeling function, a (vi) diagnostic function, and
(vii) a NoSQL local database (MongoDB). The orchestrator offers different installation op-
tions. In this use case, the following ones are considered for the cloud-related services:

• Manual cluster selection. In this mode, the preferred cluster or node to deploy a ser-
vice (LTSE, Figure 7a) can be selected.

• Automatic cluster selection, specifying a policy. Now, an application (Kibana, Figure
7b) is deployed considering the cloud cluster with more available resources. In both
cases, the previously registered repository of services named “public” was used. The
logic and performance of the scheduler depends on the dedicated policy framework
selected, mck8s in this case (see [33] for detailed information).

Sensors 2025, 25, 718 13 of 24

(a) (b)

Figure 7. Graphical interfaces for deploying services: (a) manual cluster selection and (b) automatic
selection based on scheduling policies.

The packaging technology considered (e.g., Helm) allows configuring several param-
eters at deployment time, modifying a manifest called “values.yaml”. These default pa-
rameters can be updated through the form, passing them in the “additional parameters”
field.

For the edge services of the use case, there is a specific need of having the same set of
services deployed in several edge clusters (i.e., in the whole fleet of vehicles). Given the
unfeasibility of having fixed IP addresses in the vehicles and the impossibility of manag-
ing their services one by one due to the fleet’s size, their VIMs are locally managed by the
orchestrator agents, which in turn is part of a group of the orchestrator, as explained. In
this model, any scheduling policy is required (not simply allowed). Some graphical inter-
faces for managing groups of dynamic VIMs are presented in Figures 8 and 9.

Figure 8. Graphical interface for managing and monitoring the services deployed in a group of dy-
namic VIMs.

Sensors 2025, 25, 718 14 of 24

Figure 9. Graphical interface for deploying services in a group of dynamic VIMs.

3.4. Performance Evaluation

This subsection aims at presenting some figures related to the performance, scalabil-
ity and error handling of the implemented system. The following aspects have been eval-
uated: (i) time required by the scheduler for deciding the optimal allocation of a service,
based on the number of clusters registered (groups of clusters not included); (ii) API load
testing; (iii) scalability of the dynamic clustering (e.g., number of vehicles it could man-
age); and (iv) handling of errors in the deployment of services over groups of clusters (due
to Helm chart downloading and installation errors).

3.4.1. Scheduling Time

The response time required by the scheduler to determine the placement of services
in the managed infrastructure was further analyzed using 200 measurements. The re-
sponse times were recorded using the POSTMAN v11.1.0 tool, and the statistical results
demonstrate a high degree of consistency. Specifically, the analysis yields an average re-
sponse time of 1.687 ms, with a standard deviation of 0.060 ms and following a normal-
like distribution (thus, the scheduling time varied between 1.567 and 1.807 ms with a con-
fidence interval of 95%). These values indicate that the response times are tightly clustered
around the mean, showing minimal variability, with deviations well within acceptable
limits for system performance. In any case, these values were obtained by considering the
experimental setup implemented. Factors such as the number of VIMs and groups man-
aged and the performance and availability of the hardware resources would influence the
results.

3.4.2. API Load Testing

The purpose is to conduct a load benchmarking to evaluate the performance of the
orchestrator’s microservices-based API. The performance testing feature of POSTMAN
was used. Its predefined collections and ease of executing tests after making calls, along
with the ability to run scripts with specific variables, played a significant role in stream-
lining and expediting the entire testing process.

The API calls subjected to these tests involved GET, POST, and DELETE methods,
which were grouped into three main categories: clusters (i.e., VIMs), repositories, and en-
ablers (i.e., services). The evaluation process begins with executing the POST method,
which generates a random cluster with a similarly random name. This approach avoids

Sensors 2025, 25, 718 15 of 24

potential errors that could arise from attempting to create duplicate clusters with identical
credentials. The response from this call, which includes the cluster’s unique identifier, is
stored in a variable for later use. Next, the GET method is executed to retrieve specific
information about the newly created cluster. This step allows validation of the correct cre-
ation and availability of the cluster before moving to the next stage of the benchmark.
Finally, the DELETE method is measured, using the stored identifier to delete the cluster
created in the initial POST call. This deletion phase ensures that the environment is clean
and ready for the next test cycle, maintaining the integrity of the load testing process.

This sequence of calls is applied not only to the clusters but also to the repositories
and services during load testing. The cluster for fleet emulate was used for this test (4 CPU
cores, 16 GB RAM). Considering these specifications, the load test emulated 60 clients over
10 min. The test does not start with 60 clients but ramps up over a 5 min period until
reaching this number. Test metrics are summarized in Figures 10 and 11. While the per-
centage of errors are low, they occur given the large volume of requests received, which
would not be realistic considering typical patterns for registering VIMs (or groups of dy-
namic VIMs) and repositories and managing services’ lifecycles.

Figure 10. API load testing results.

Figure 11. Summary of the API load testing for the different endpoints and methods.

3.4.3. Scalability of the Design for Dynamic VIMs

Load tests were conducted using the emqtt-bench tool in the fleet emulation cluster,
as seen in Figure 12. Although results only reach up to 100,000 clients, it should be high-
lighted that only one machine was used for hosting a single instance of the cloud’s MQTT

Sensors 2025, 25, 718 16 of 24

data broker. Therefore, it is possible to scale the deployment by increasing the number of
replicas and resources, and configuring the data broker so that it can manage this number
of clients.

Figure 12. Data broker status webpage. All the emulated clients could be communicated correctly.

3.4.4. Handling of Errors in Dynamic VIMs

Among the tests conducted in a real driving environment at the Polytechnic Univer-
sity of Valencia (UPV) facility, scenarios where the vehicle lacked an Internet connection
were prepared. Tests were carried out on the second floor of an underground parking
garage, where no connectivity was available. As shown in Figure 13, and owing to GPS
data, it can be seen that the vehicle’s data were transmitted the moment the Internet con-
nection was restored (cross-checked with the data available in the local database).

(a) (b)

Figure 13. Testing in a scenario without an Internet connection: (a) UPV parking area and (b) data
received. Green dots are real locations of the vehicle capture by its GPS.

During the tests conducted in the parking garage, the vehicle experienced an average
offline period of 15 min. Upon reconnection, all data stored locally were successfully
transmitted to the server within 15 s, with no observed data loss or corruption. These re-
sults demonstrate the system’s reliability in handling connectivity disruptions.

Additionally, Table 5 presents the performance of the data broker under simulated
offline conditions in a controlled laboratory environment. Tests were conducted by simu-
lating message transmission from vehicles to cloud, sending them at a fixed interval of 20
s with varying offline periods (15, 30 and 60 min). The interval was chosen to reflect a
typical data reporting frequency for IoT or telematics applications, ensuring a realistic
workload for the system during offline and recovery scenarios. This test was repeated 20
times, with identical outcomes despite minor variations in the recovery time.

Sensors 2025, 25, 718 17 of 24

Table 5. Data recovery statistics after network disruptions.

Offline Duration
Data Lost During

Offline
Data Recovery

Success
Average Recovery

Time
15 min 0% 100% 7 s
30 min 0% 100% 5 s

1 h 0% 100% 10 s

Results highlight the reliability of the orchestrator in maintaining data integrity, en-
suring zero data loss and quick recovery. In case that some data losses had appeared,
bottlenecks should be addressed by increasing buffer capacity to handle extended offline
periods and adjusting message expiration policies to retain critical data for longer discon-
nection durations. Overall, the approach proves to be robust for real-world vehicle-to-
cloud communication scenarios.

4. Discussion
4.1. Alternative Edge–Cloud Continuum Orchestration Schemas

The trend towards service orchestration in the edge–cloud continuum paradigm is
reflected in the KubeEdge solution. Ongoing since 2018, KubeEdge is an open-source
framework based on the Kubernetes architecture that aims to bring all the functionalities
offered by K8s to the edge and distributed environments with limited computational re-
sources. This solution keeps the control plane in the cloud, where computational resources
are greater, and leaves the application plane workloads at the edge. Its architecture is di-
vided into two components: CloudCore and EdgeCore. CloudCore runs in the cloud en-
vironment and is responsible for the centralized management of the K8s cluster and com-
munication with the edge. The EdgeCore component runs on edge devices and functions
as a Kubernetes node. KubeEdge provides bidirectional synchronization capabilities be-
tween the cloud and edge, capable of restoring the established connection via websockets
in case of loss. It also offers support for IoT device connectivity and communication pro-
tocols such as MQTT, Modbus and OPC-UA. KubeEdge demonstrated that the framework
is capable of orchestrating up to 1 million pods on 100,000 edge nodes, functioning as a
single cluster. Although initially it may seem that KubeEdge is a solution more closely
related to the presented problem, it should be noted that the present orchestrator solution
offers much greater scalability in environments with dynamic IPs and the ability to deploy
services in groups. It also provides reliability and resiliency features, as in the case of con-
nection loss or cloud unavailability, a full K8s cluster is in place, with all the set of pro-
duction-ready features included within it.

Another similar solution is OpenYurt, the first open-source project carried out by the
Alibaba group. This is an extension of Kubernetes designed for edge computing environ-
ments. It transforms K8s clusters to efficiently operate at the edge, ensuring continuous
application management even with intermittent connectivity. OpenYurt implements se-
curity by using tunnels that address the connectivity challenges arising from the interac-
tion of different heterogeneous networks to which edge nodes may be connected. Another
feature is the NodePool, which groups physical or virtual nodes with similar characteris-
tics and manages them as a unit in an edge computing environment.

KubeVela presents an alternative approach for application delivery and management
in distributed architectures. It offers a declarative abstraction based on the Open Applica-
tion Model (OAM), simplifying the implementation in hybrid and multicluster environ-
ments. While not specifically designed for edge computing like the previous ones, KubeV-
ela complements them by providing resilience against connectivity failures as well as pro-
gressive deployment strategies. Its ability to integrate and manage services across cloud

Sensors 2025, 25, 718 18 of 24

and edge environments extends its benefits to distributed infrastructures, delivering
scalability and flexibility.

Comparing the various strategies, OpenYurt is designed to be minimally invasive,
extending K8s functionality with plugins and operators without altering its core structure,
while KubeEdge opts for a more radical modification by rewriting certain Kubernetes
components, like kubelet and kube-proxy, making it particularly suited for edge data cen-
ters or large edge devices with high computational demands. In contrast, KubeVela differs
as it operates as an abstraction layer on top of K8s, focusing on application delivery and
declarative management model. Unlike OpenYurt and KubeEdge, which are tailored for
edge scenarios, KubeVela targets hybrid and multicluster environments, delving into de-
ployment strategies and seamless integration across cloud, on-premises, and edge infra-
structures.

Finally, it is also important to monitor and contribute to the advancements carried
out in the framework of the computing continuum field, as the IoT ecosystem is in con-
stant evolution. The EUCEI initiative, which homogenizes the outcomes of this research
arena, has recently released some initial specifications for the evolution of service and
resource orchestration [38]. A key contribution proposed within the framework of the
aerOS project is the logical decoupling of the modules related to scheduling and deploy-
ment of services, in the so-called “high-level” and “low-level” orchestrators, so that the
latter can only perform in their own infrastructure and not in those owned by other stake-
holders. While the proposed solution of the present paper already follows this pattern, as
deployments are managed by the receiving VIM manager at their respective environ-
ments, there are some features that can be of interest for the architecture that are under
study. Some of them are the implementation of “adapters” for supporting more types of
workloads (e.g., FaaS) and try to make them independent of the underlying hardware and
software stacks, the use of distributed registries for high availability and privacy preser-
vation of critical data, and the consideration of common data models and/or ontologies
for managing the continuum.

Table 6 summarizes some key differences between the proposed architecture and
mentioned relevant existing solutions, including OSM as the reference MANO implemen-
tation, in terms of design, scalability, dynamicity and flexibility. As a differentiation, one
can observe that features like lifecycle management of a common set of services in large
groups of nodes is not foreseen in existing solutions, being prepared for orchestrating both
massive edge deployments and traditional cloud environments.

Table 6. Relevant differences between existing solutions and the proposed orchestration architec-
ture.

Solution Design Scalability Dynamicity Deployment Flexibility

OSM MANO
On top of K8s. It interacts
with clusters and manage
services lifecycle on them

To be installed in a K8s
cluster that acts as the con-
trol plane, which is capable
of handling static K8s clus-
ters

Limited, as previously created
K8s clusters must be reachable
through a public IP

Services can be deployed in manually se-
lected K8s clusters, with YAML manifests,
Juju charms and Helm charts. It does not
provide built-in capabilities for bulk ser-
vice deployments in large (geographical,
logical) groups of edge nodes

KubeVela
On top of K8s. It interacts
with clusters and manage
services lifecycle on them

To be installed in a K8s
cluster acting as control
plane. Capable of handling
several static K8s clusters
and standalone edge nodes

Limited, as previously created
K8s clusters and standalone
nodes must be reachable by the
control plane through a public IP

Services can be defined in both K8s-based
resources (manifests and Helm charts) and
custom definitions. It also provides mul-
ticluster deployments, GitOps support us-
ing FluxCD and add-ons for day-2 opera-
tions after deployments

KubeEdge

Re-design of K8s for edge
computing environments.
Divided into cloud and
edge components. De

It has proved its vast scala-
bility in a use case in which
more than 100,000 edge
nodes were deployed

High, as it has been designed
specifically to manage edge
computing nodes with con-
strained resources, dynamic IPs

Same as a regular K8s cluster but adding
some functionalities on top, e.g., to inter-
connect deployed services in heterogene-
ous edge nodes using a custom service

Sensors 2025, 25, 718 19 of 24

facto CNCF K8s distribu-
tion for edge computing

across the Hong Kong–
Zhuhai–Macao bridge

(even behind LANs) and with
unreliable network conditions

mesh. It does not provide built-in capabili-
ties for bulk service deployments in large
groups of edge nodes

OpenYurt
Enhancement of K8s
through custom plugins
and operators

A single cloud node is ca-
pable of managing vast vol-
ume of edge nodes

High, as it has been designed
specifically to manage edge
computing nodes. Still, edge
nodes must have higher compu-
tational requirements and more
reliable and trusted network
conditions

Definition of node-pools to split deploy-
ments in different regions. It also provides
a custom edge–cloud service mesh imple-
mentation

This study
On top of K8s. It interacts
with clusters and manage
services lifecycle on them

Highly scalable as it allows
adding more than 200,000
clusters and managing
them as fleets or as individ-
ual elements if they have
dynamic IPs

High dynamicity, as it was de-
signed to manage edge compu-
ting nodes with dynamic, pri-
vate IPs. It is compatible with
any lightweight Kubernetes dis-
tribution, such as K3s

It offers the ability to deploy Helm charts
without considering the type of cluster.
For static clusters, it automatically creates
the Cilium clustermesh and allows edge-
to-cloud services to connect via DNS
names and in an encrypted manner. It also
allows deploying Helm charts to a fleet of
vehicles or to a single unit

4.2. Networking Implementation and Dynamic Clustering

The advantages and disadvantages of the networking solution (implemented here
with Cilium) have been evaluated in environments using both static and dynamic IP ad-
dresses. While Cilium offers notable benefits in terms of security and overall performance,
some analysis regarding the presence of static and dynamic IPs should be made.

The advantages of Cilium in environments with static IPs are first identified. The
extended Linux namespace technology and eBPF-based routing employed by Cilium en-
able exceptionally high performance characterized by low latencies. Also, adopting Cil-
ium significantly enhances security through the implementation of security policies that
provide granular access control and robust protection against threats in container envi-
ronments. Therefore, Cilium copes with NGIoT scalability requirements due to its hori-
zontal scaling capabilities and distributed architecture, enabling efficient management of
large workloads and promoting efficient growth of container clusters.

However, certain limitations and challenges were observed when using it. On the
one hand, the initial complexity of its configuration was highlighted, which may require
additional expertise and effort compared to other solutions available in the market. Cilium
was found to be dependent on specific kernel versions, which can limit its portability and
require careful operating system updates. Furthermore, considerably higher resource re-
quirements were observed in high-traffic environments, emphasizing the importance of
proper planning and hardware sizing when using it. It is also relevant to mention that the
Clustermesh feature of Cilium presents configuration challenges and dependency on the
underlying network for intercluster traffic routing. These challenges can affect perfor-
mance in applications requiring low latency and high throughput. On the other hand, in
the implementation with dynamic VIMs, the inability to utilize Cilium’s Clustermesh ser-
vice was observed, due to the lack of fixed, reachable IP addresses from the cloud. This
limitation is common to similar solutions.

The advantages and disadvantages of Cilium, as discussed, largely depend on the
specific architecture of the environment, and individual considerations of each case need
to be taken into account. In future research, the identified challenges with the use of Cil-
ium could be addressed. Improvements in initial configuration, reduction of the depend-
ency on specific kernel versions, optimization of resources, and provision of a common
DNS service for the entire cluster framework generated by the Clustermesh service are
some lines of potential work. Additionally, exploring the possibility of mitigating inter-
cluster routing challenges by considering different underlying network alternatives could
be beneficial. The aforementioned challenges can be extrapolated to alternative existing
solutions.

Sensors 2025, 25, 718 20 of 24

4.3. MANO Evolution

MANO was originally considered for telco operators, meaning, VNFs deployed as
VMs, rather than for any kind of Cloud Native service or application. The 5G-PPP soft-
ware network working group already identified all the benefits that Cloud Native MANO
implementations could provide in terms of speed, scalability and connectivity [35], to-
gether with its role not only for orchestration, but also for observability, service mesh,
service discovery, networking, setting up distributed databases, etc. The latter reference
also depicted a potential paradigm shift toward a pure Kubernetes-centric MANO archi-
tecture. Aligned with this, ETSI NFV has recently updated its specifications to be aligned
with this evolution; still, available implementations have work to adapt to it [39], as only
basic support is given currently.

This report shows the potential of the MANO framework for orchestrating not just
VNFs, but NGIoT workloads in the edge–cloud computing continuum. An architectural
example is presented, following MANO principles but not fully aligned with it, for in-
stance, in the dedicated design for dynamic VIMs presented in Section 2. Discussions are
needed to decide whether effort should be placed in devising a specification valid for both
NFV and non-network services and applications (e.g., NGIoT).

4.4. Challenges and Future Research Directions

The proposed orchestration architecture addresses several limitations in existing so-
lutions. The fact of considering the management of massive edge–IoT use cases and being
MANO-compatible maximizes its uptake potential in different sections, even in cases
where disconnections may occur. It enables implementing resilient over-the-air (OTA)
strategies, starting with preselected groups of nodes or clusters for validation and then
moving to production ones (the managed fleet, in the presented use case). Still, there are
some limitations given the centralized nature of the core components of the orchestrator.
As explained in [40], meta-operating systems are emerging as an alternative for managing
resources and services in heterogeneous IoT–edge–cloud continuum ecosystems. They
consist in a set of core and auxiliary services deployed in all nodes with a minimum com-
puting capabilities, including a much larger number of features and capabilities in com-
parison to the orchestration agent presented in this paper. Overall, the meta-operating
system approach effectively enables the realization of a distributed orchestration solution,
facilitating the integration of heterogeneous nodes (in terms of varying resources, virtual-
ization capabilities, containerization technologies, etc.) potentially owned by different
stakeholders. Therefore, this alternative design approach could be of greater interest in
specific scenarios, however, adding significant complexity in deployment, operation and
maintenance.

Future research directions must consider further effort in the definition of interfaces.
The architecture foresees the integration of components or frameworks that provides spe-
cific features for an architecture implementation. This is the case for scheduling policy
frameworks, MANO frameworks, monitoring agents, networking technologies and data
brokers. With the exception of the former, which rely on a well-established protocol such
as MQTT, the lack of these definitions hinders such integrations, thus requiring tailored
efforts. Another interesting interface to consider could be the use of intent-based chatbots
powered by dedicated LLM models, with dedicated recommendation models, as the one
presented in [41], to support users during their manual operation for increasing their user
experience while reducing potential errors.

Furthermore, continuous technological evolution will not stop with the paradigm
shift toward the current Cloud Native vision, in which Kubernetes has gradually become
the predominant VIM. New research is carried out to maximize the efficiency of the edge–

Sensors 2025, 25, 718 21 of 24

cloud computing continuum, for instance, considering Edge Native applications, WebAs-
sembly (abbreviated Wasm) [42], RISC-V architectures [43] or gRPC interfaces [44]. Also,
Edge Native applications were introduced in 2019, and although there are many attributes
in common with Cloud Native (e.g., portability, observability, manageability, agnosticism
to language and framework support), there are some differences in, e.g., data models,
elasticity and scaling in different locations, security and privacy, hardware and location
awareness, etc. [45] to consider. In future orchestrator evolutions, dedicated models for
declaring edge requirements must be in place so the scheduling component (updated ac-
cordingly) can have them in consideration for optimizing its performance, and with the
other components (e.g., API, networking, monitoring) adapted accordingly.

On a final note, WebAssembly (Wasm) is a novel technology worth highlighting. Be-
ing an open standard from the W3C, the original goal was to enable the execution of high-
performance applications on web browsers. However, its design specifications showed
great potential for supporting the development of isomorphic IoT applications, including
features like modularity, isolation, small footprint and portability [46]. In the virtualiza-
tion realm, Wasm is becoming a promising alternative to containers, removing barriers
related to the execution environment, considering contextual and resource-related infor-
mation, live migration [47] and, potentially, also reducing processing consumption [40].
Although still immature, the CNCF is already promoting it on its technological landscape
and the most popular container engine, Docker, already provides support to it. This en-
tails that the proposed orchestrator architecture already provides support for controlling
the lifecycle of services whose components are developed considering WebAssembly;
however, further evolutions are needed to fully exploit their advantages.

5. Conclusions
This paper has presented an orchestrator architecture for the Next-Generation Inter-

net of Things, based on ETSI MANO and following the trend toward the Cloud Native
paradigm. It delves into several aspects, from the scheduling and deployment of services
within the managed infrastructure, to their packaging and connectivity. A technological
implementation of such architecture and a use case exemplifying its potential is presented,
describing its use and measuring its performance.

One of the main challenges of Cloud Native implementations is the reliance on static
IP addresses, as necessary for cloud environments. While this might not be problematic
in some scenarios, there are situations in which their dynamism and/or scalable nature
may require of dedicated approaches. As a key contribution of this article, an alternative
workflow is designed for addressing this kind of scenario, considering a publication–sub-
scription pattern that can accommodate resource-constraint computing nodes. This capa-
bility has not been observed in existing orchestrator architectures or implementations, and
thus could become instrumental in the design of massive, edge–IoT use cases.

Apart from validated in use cases from the automotive vertical like the one presented,
the proposed orchestrator has also been tested by actual stakeholders belonging to the
construction and logistic sectors. Next steps include its validation in massive 5G–IoT sce-
narios, to fully exploit its inherent capabilities. Also, large-scale validation of the schedul-
ing and networking policies implemented are required. Finally, further research is needed
to design and integrate novel “edge” or “continuum” native technologies on the orches-
trator, like WebAssembly, to overcome unresolved challenges and limitations.

Author Contributions: Conceptualization, F.M.B. and A.F.-L.; methodology, A.F.-L.; software,
F.M.B., R.V. and R.R.S.; validation, F.M.B. and C.G.; formal analysis, F.M.B.; investigation, F.M.B.,
R.V. and R.R.S.; resources, C.E.P. and C.G.; data curation, F.M.B.; writing—original draft prepara-
tion, A.F.-L., F.M.B. and I.L.; writing—review and editing, I.L., C.G. and C.E.P.; visualization, F.M.B.

Sensors 2025, 25, 718 22 of 24

and A.F.-L.; supervision, A.F.-L. and C.E.P.; project administration, I.L., C.G. and C.E.P.; funding
acquisition, C.E.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by European Union’s Horizon 2020 and Horizon Europe re-
search and innovation programs, grant agreements 957258 and 101069732, respectively.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article. System implementation of the
proposed architecture can be found at [32].

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the writing of the manuscript, or in the decision to publish the results.

References
1. Gannon, D.; Barga, R.; Sundaresan, N. Cloud-Native Applications. IEEE Cloud Comput. 2017, 4, 16–21.

https://doi.org/10.1109/MCC.2017.4250939.
2. The Kubernetes Authors. Kubernetes. Available online: https://kubernetes.io/ (accessed on 5 April 2024).
3. H2020 The NGIoT initiative. D3.1. IoT Research, Innovation and Deployment Priorities in the EU. 2020. Available online:

https://www.ngiot.eu/wp-content/uploads/2020/09/D3.1.pdf (accessed on 23 January 2025).
4. Velasquez, K.; Abreu, D.P.; Assis, M.R.M.; Senna, C.; Aranha, D.F.; Bittencourt, L.F.; Laranjeiro, N.; Curado, M.; Vieira, M.;

Monteiro, E.; et al. Fog Orchestration for the Internet of Everything: State-of-the-Art and Research Challenges. J. Internet Serv.
Appl. 2018, 9, 14. https://doi.org/10.1186/S13174-018-0086-3.

5. Jiang, Y.; Huang, Z.; Tsang, D.H.K. Challenges and Solutions in Fog Computing Orchestration. IEEE Netw. 2018, 32, 122–129.
https://doi.org/10.1109/MNET.2017.1700271.

6. ETSI GS NFV-MAN 001. Network Functions Virtualisation (NFV). Management and Orchestration. 2014. Available online:
https://www.etsi.org/deliver/etsi_gs/NFV-MAN/001_099/001/01.01.01_60/gs_NFV-MAN001v010101p.pdf (accessed on 5 Sep-
tember 2024).

7. ETSI OSM. Open Source MANO (OSM). Available online: https://osm.etsi.org/ (accessed on 26 September 2024).
8. The OpenStack Project. OpenStack Tacker. Available online: https://wiki.openstack.org/wiki/Tacker (accessed on 26 September

2024).
9. The Linux Foundation. Open Network Automation Platform (ONAP). Available online: https://www.onap.org/ (accessed on

26 September 2024).
10. The Linux Foundation. Anuket. Available online: https://anuket.io/ (accessed on 16 April 2024).
11. GSMA. NG.126 Cloud Infrastructure Reference Model v4.0. 2020, Available online: https://www.gsma.com/news-

room/gsma_resources/ng-126-cloud-infrastructure-reference-model-v4-0/ (accessed on 19 December 2024).
12. The Linux Foundation. EMCO. Available online: https://project-emco.io/ (accessed on 26 September 2024).
13. Orive, A.; Agirre, A.; Truong, H.L.; Sarachaga, I.; Marcos, M. Quality of Service Aware Orchestration for Cloud–Edge Contin-

uum Applications. Sensors 2022, 22, 1755. https://doi.org/10.3390/S22051755.
14. Bartolomeo, G.; Yosofie, M.; Bäurle, S.; Haluszczynski, O.; Mohan, N.; Ott, J. Oakestra White Paper: An Orchestrator for Edge

Computing. arXiv 2022, https://doi.org/10.48550/arXiv.2207.01577.
15. Okwuibe, J.; Haavisto, J.; Kovacevic, I.; Harjula, E.; Ahmad, I.; Islam, J.; Student Member, G.; Ylianttila, M.; Member, S. SDN-

Enabled Resource Orchestration for Industrial IoT in Collaborative Edge-Cloud Networks. IEEE Access 2021, 9, 115839–115854.
https://doi.org/10.1109/ACCESS.2021.3105944.

16. H2020 SERRANO Project. SERRANO. Available online: https://ict-serrano.eu/ (accessed on 25 September 2024).
17. H2020 RAINBOW Project. RAINBOW. Available online: https://rainbow-h2020.eu/ (accessed on 25 September 2024).
18. H2020 ACCORDION Project. ACCORDION. Available online: https://www.accordion-project.eu/ (accessed on 25 September

2024).
19. SUSE Rancher. Fleet. Available online: https://fleet.rancher.io/ (accessed on 26 September 2024).
20. Xiong, Y.; Sun, Y.; Xing, L.; Huang, Y. Extend Cloud to Edge with KubeEdge. In Proceedings of the 2018 3rd ACM/IEEE Sym-

posium on Edge Computing (SEC), Bellevue, WA, USA, 25–27 October 2018; pp. 373–377. https://doi.org/10.1109/SEC.2018.00048.
21. The KubeVela Authors. KubeVela. Available online: https://kubevela.io/ (accessed on 18 December 2024).

Sensors 2025, 25, 718 23 of 24

22. The OpenYurt Authors. OpenYurt. Available online: https://openyurt.io/ (accessed on 18 December 2024).
23. The Kustomize Authors. Kustomize. Available online: https://kustomize.io/ (accessed on 26 September 2024).
24. Canonical Ltd. Juju. Available online: https://juju.is/ (accessed on 26 September 2024).
25. The Helm Authors. Helm. Available online: https://helm.sh/ (accessed on 26 September 2024).
26. Rossi, F.; Cardellini, V.; Presti, F. Lo Elastic Deployment of Software Containers in Geo-Distributed Computing Environments.

In Proceedings of the IEEE Symposium on Computers and Communications, Barcelona, Spain, 29 June–3 July 2019.
https://doi.org/10.1109/ISCC47284.2019.8969607.

27. Fahs, A.J.; Pierre, G. Tail-Latency-Aware Fog Application Replica Placement. In Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer Science and Business Media Deutsch-
land GmbH: Heidelberg, Germany, 2020; Volume 12571 LNCS, pp. 508–524. https://doi.org/10.1007/978-3-030-65310-1_37.

28. Nardelli, M.; Cardellini, V.; Casalicchio, E. Multi-Level Elastic Deployment of Containerized Applications in Geo-Distributed
Environments. In Proceedings of the 2018 IEEE 6th Int. Conf. Futur. Internet Things Cloud, FiCloud 2018, Barcelona, Spain, 6–
8 August 2018; pp. 1–8. https://doi.org/10.1109/FICLOUD.2018.00009.

29. Faticanti, F.; Zormpas, J.; Drozdov, S.; Rausch, K.; García, O.A.; Sardis, F.; Cretti, S.; Amiribesheli, M.; Siracusa, D. Distributed
Cloud Intelligence: Implementing an ETSI MANO-Compliant Predictive Cloud Bursting Solution Using Openstack and Kuber-
netes. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics); Springer Science and Business Media Deutschland GmbH: Heidelberg, Germany, 2020; Volume 12441 LNCS, pp. 80–85.
https://doi.org/10.1007/978-3-030-63058-4_8.

30. Beltre, A.; Saha, P.; Govindaraju, M. KubeSphere: An Approach to Multi-Tenant Fair Scheduling for Kubernetes Clusters. In
Proceedings of the 2019 3rd IEEE Int. Conf. Cloud Fog Comput. Technol. Appl. Cloud Summit 2019, Washington, DC, USA, 8–
10 August 2019; pp. 14–20. https://doi.org/10.1109/CLOUDSUMMIT47114.2019.00009.

31. Hoseiny Farahabady, M.R.; Lee, Y.C.; Zomaya, A.Y. Pareto-Optimal Cloud Bursting. IEEE Trans. Parallel Distrib. Syst. 2014, 25,
2670–2682. https://doi.org/10.1109/TPDS.2013.218.

32. The ASSIST-IoT Project. ASSIST-IoT Smart Orchestrator v4.0.0. 2024. Available online: https://github.com/assist-iot/smart_or-
chestrator (accessed on 5 September 2024).

33. Tamiru, M.A.; Pierre, G.; Tordsson, J.; Elmroth, E. Mck8s: An Orchestration Platform for Geo-Distributed Multi-Cluster Envi-
ronments. In Proceedings of the International Conference on Computer Communications Networks (ICCCN), Athens, Greece,
19–22 July 2021. https://doi.org/10.1109/ICCCN52240.2021.9522318.

34. Triebe, O.; Hewamalage, H.; Pilyugina, P.; Laptev, N.; Bergmeir, C.; Rajagopal, R. NeuralProphet: Explainable Forecasting at
Scale. arXiv 2021, https://doi.org/10.48550/arXiv.2111.15397.

35. 5G-PPP Software Network Working Group. Cloud-Native and Verticals’ Services. 2019. Available online: https://5g-ppp.eu/5g-
ppp-phase-3-projects (accessed on 15 July 2021).

36. Barbier, A.; Salavert, J.M.; Palau, C.E.; Guardiola, C. Analysis of the Euro 7 On-Board Emissions Monitoring Concept with Real-
Driving Data. Transp. Res. Part D Transp. Environ. 2024, 127, 104062. https://doi.org/10.1016/J.TRD.2024.104062.

37. Guardiola, C.; Mahedero, F.; Fornés-Leal, A.; Lacalle, I.; Palau, C.E.; Vigild, C.W.; Schusteritz, K. Monitoring of NOx Sensor
Drift in Automotive Fleets in a Cloud/Edge Framework. IFAC-Pap. 2023, 56, 4959–4964.
https://doi.org/10.1016/J.IFACOL.2023.10.1271.

38. EUCloudEdgeIoT Task Force 3. Compositional View of the Continuum Reference Architecture: Graphical Representation of
Common and Potential Capabilities. 2024. Available online: https://zenodo.org/records/11656784 (accessed on 18 January 2024).

39. Fornes-Leal, A.; Lacalle, I.; Vaño, R.; Palau, C.E.; Boronat, F.; Ganzha, M.; Paprzycki, M. Evolution of MANO Towards the
Cloud-Native Paradigm for the Edge Computing. In Proceedings of the International conference on Advanced Computing and
Intelligent Technologies (ICACIT 2022), Varanasi, India, 22–24 December 2022; Springer Science and Business Media Deutsch-
land GmbH: Heidelberg, Germany, 2022; Volume 914, pp. 1–16.

40. Vaño, R.; Lacalle, I.; Sowiński, P.; S-Julián, R.; Palau, C.E. Cloud-Native Workload Orchestration at the Edge: A Deployment
Review and Future Directions. Sensors 2023, 23, 2215. https://doi.org/10.3390/S23042215.

41. Cai, Y.; Ke, W.; Cui, E.; Yu, F. A Deep Recommendation Model of Cross-Grained Sentiments of User Reviews and Ratings. Inf.
Process. Manag. 2022, 59, 102842. https://doi.org/10.1016/J.IPM.2021.102842.

42. Rossberg, A. WebAssembly Specification 3.0. 2024. Available online: https://webassembly.github.io/spec/versions/core/WebAs-
sembly-3.0-draft.pdf (accessed on 16 September 2024).

43. Waterman, A.; Lee, Y.; Patterson, D.A.; Asanović, K. The RISC-V Instruction Set Manual, Volume I: Base User-Level ISA. 2011.
Available online: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-62.html (accessed on 19 December 2024).

Sensors 2025, 25, 718 24 of 24

44. gRPC Authors. GRPC. Available online: https://grpc.io/ (accessed on 5 September 2024).
45. Kapadia, A.; Wick, B.; Roberts, J.; Goldenring, K.; Bosanac, D.; Fujita, T.; Chunduru, R.; Fisher, N.; Wong, S. Cloud Native

Application Principles. 2023. Available online: https://www.cncf.io/wp-content/uploads/2023/03/CNCF_WhitepaperRe-
port_23.pdf (accessed on 5 September 2024).

46. Mäkitalo, N.; Mikkonen, T.; Pautasso, C.; Bankowski, V.; Daubaris, P.; Mikkola, R.; Beletski, O. WebAssembly Modules as Light-
weight Containers for Liquid IoT Applications. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics); Springer Science and Business Media Deutschland GmbH: Heidelberg, Germany,
2021; Volume 12706 LNCS, pp. 328–336.

47. Ménétrey, J.; Pasin, M.; Felber, P.; Schiavoni, V. WebAssembly as a Common Layer for the Cloud-Edge Continuum. In Proceed-
ings of the 2nd Workshop on Flexible Resource and Application Management on the Edge, Co-Located with HPDC 2022, Min-
neapolis, MN, USA, 1 July 2022; pp. 3–8. https://doi.org/10.1145/3526059.3533618.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

