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Abstract: With increasing power system complexity and distributed energy penetration, 
traditional voltage control methods struggle with dynamic changes and complex condi-
tions. While existing deep reinforcement learning (DRL) methods have advanced grid 
control, challenges persist in leveraging topological features and ensuring computational 
efficiency. To address these issues, this paper proposes a DRL method combining Graph 
Convolutional Networks (GCNs) and soft actor-critic (SAC) for voltage control through 
load shedding. The method uses GCNs to extract higher-order topological features of the 
power grid, enhancing the state representation capability, while the SAC optimizes the 
load shedding strategy in continuous action space, dynamically adjusting the control 
scheme to balance load shedding costs and voltage stability. Results from the simulation 
of the IEEE 39-bus system indicate that the proposed method significantly reduces the 
amount of load shedding, improves voltage recovery levels, and demonstrates strong con-
trol performance and robustness when dealing with complex disturbances and topologi-
cal changes. This study provides an innovative solution to voltage control problems in 
smart grids. 

Keywords: deep reinforcement learning (DRL); Graph Convolutional Network (GCN); 
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1. Introduction 
Modern power systems are typical examples of nonlinear complex systems, and their 

stable operation heavily depends on maintaining bus voltages within standard ranges. 
However, as the scale of power systems continues to expand, along with the large-scale 
integration of renewable energy and the widespread adoption of electric vehicles, grid 
security and stability face unprecedented challenges due to increasing uncertainties. In 
practice, generator outages or tie-line faults may lead to local active power imbalances, 
causing a drop in grid frequency and triggering the low-frequency protection mecha-
nisms of generators. This cascading effect can further result in the disconnection of a large 
number of generators, potentially leading to system collapse. In recent years, multiple 
large-scale blackouts worldwide have underscored the existence and devastating impact 
of this vicious cycle. Therefore, adopting rapid and effective measures to reduce active 
power imbalances during the early stages of power system failures is critical for prevent-
ing grid frequency collapse and ensuring stable system operations. When system load 
demand exceeds generation capacity, proactive or reactive load shedding has been 
proven as an essential strategy for maintaining power system stability [1]. 
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Traditional voltage control methods primarily rely on historical experience and of-
fline studies [2–6], which exhibit significant limitations in addressing the dynamics and 
stochastic variations of complex systems. These methods often fail to fully exploit the sys-
tem’s adjustment potential due to their conservative nature, or struggle to adapt to rapidly 
changing system states due to high associated risks. For example, Li et al. [2] proposed an 
emergency control method based on optimal control, which improved computational ef-
ficiency but exhibited limited adaptability due to its dependence on precise models. Yang 
et al. [3] developed a real-time adaptive load-shedding strategy optimized with fuzzy 
logic controllers, which performed well in simulations but faced challenges in practical 
implementation due to its complexity. Jianjun et al. [4] optimized load-shedding locations 
and magnitudes using wide-area measurement information but required further valida-
tion of its dynamic adaptability under multiple disturbance scenarios. Usman et al. [5] 
utilized the evolutionary particle swarm optimization (EPSO) algorithm to enhance load-
shedding accuracy and economic efficiency but encountered high computational com-
plexity. Lozano et al. [6] introduced a decision tree algorithm based on PMU data, which 
improved flexibility in load shedding but exhibited limited performance in complex fault 
scenarios. In summary, traditional methods show notable deficiencies in addressing the 
randomness and dynamics of modern power systems, necessitating the development of 
more efficient and intelligent control strategies. 

The swift progress of artificial intelligence (AI) in recent years has opened up new 
opportunities for addressing complex power grid control challenges. Reinforcement 
learning (RL), a key branch of AI, has gradually been applied in the power industry due 
to its advantages in dynamic decision-making and optimization [7]. By iteratively opti-
mizing policies in complex environments, RL provides intelligent real-time control capa-
bilities for power systems. Particularly in critical problems, such as dynamic load shed-
ding and voltage control, deep reinforcement learning (DRL) has demonstrated signifi-
cant potential for addressing the complexity of modern power systems, owing to its pow-
erful state representation and action optimization capabilities. DRL has thus become a key 
research direction in grid control. 

Existing studies have explored the application of DRL in voltage control. For instance, 
Chen et al. [8] proposed a distributed deep reinforcement learning (DDRL) approach, 
which achieved coordinated bus agent operation through centralized training and decen-
tralized execution, demonstrating excellent performance in real-time load shedding and 
voltage stability control. Zhang and Yue [9] developed a cooperative multi-agent DRL 
(MADRL) method with an attention mechanism, improving agent collaboration efficiency 
and achieving more precise distributed load shedding. However, these methods still face 
challenges in scalability and computational efficiency. The policy-adaptive reinforcement 
search (PARS) algorithm proposed in [10] improved training efficiency and robustness, 
addressing large-scale load-shedding tasks in the IEEE 300-bus system but lacked suffi-
cient utilization of grid topology characteristics. Zhang et al. [11] introduced the PLASE 
method based on a parallel system framework, which enhanced load-shedding and volt-
age control through agent performance evaluation and self-evolution but did not fully 
explore the potential value of topology information for optimizing control strategies. Yan 
and Xu [12] proposed a DRL-based model-free approach for load frequency control, 
which optimized the dynamic response speed but exhibited limited research on its adapt-
ability for voltage control. 

In conclusion, although existing studies have made progress in voltage control for 
load shedding, notable challenges remain. On one hand, most methods fail to fully exploit 
grid topology characteristics, overlooking dynamic interactions between nodes and the 
potential value of higher-order topology information, which limits the decision-making 
capabilities of agents in complex networks. On the other hand, current strategies lack 
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sufficient adaptability to the stochastic and rapidly changing operating conditions of 
power systems, making it difficult to achieve efficient and robust control under diverse 
scenarios. To address these challenges, this paper proposes a joint optimization method 
combining Graph Convolutional Networks (GCNs) and DRL. By leveraging grid topol-
ogy characteristics and optimizing dynamic control strategies, this method enhances the 
precision and efficiency of load-shedding control. Additionally, the soft actor-critic (SAC) 
algorithm is employed to improve policy robustness and stability. This approach not only 
addresses the limitations of existing studies but offers an innovative solution for voltage 
stability control in complex dynamic environments. 

The main contributions of this study are as follows: 
• Proposing an intelligent voltage control method combining GCNs and DRL, capable 

of efficiently regulating voltages by fully utilizing grid topology information. 
• Employing GCNs for graph embedding to extract topological relationships among 

nodes, providing DRL with more precise and discriminative state representations. 
• Designing an optimized load-shedding strategy and validating its effectiveness and 

robustness under various topological change scenarios. 
This remainder of this paper is organized as follows: Section 2 outlines the concepts 

of reinforcement learning and related research on power grid emergency control model-
ing, laying a theoretical foundation for the subsequent methods. Section 3 describes the 
proposed methods in detail, including the GCN for feature extraction, the DRL algorithm 
for action decision optimization, the overall method combining GCNs and DRL, and the 
Markov decision process (MDP) modeling of power grid emergency control. Section 4 
presents the simulation results, including the simulation settings, the training and testing 
performance of the model, and the analysis of the optimized load shedding strategy. Sec-
tion 5 summarizes the research results of this paper and looks forward to future research 
directions. 

2. Overview of Reinforcement Learning and Power Grid Emergency 
Control Modeling 

This chapter aims to lay the theoretical foundation and modeling basis for the pro-
posed voltage control method based on DRL. First, the core theory of RL—MDP—is sys-
tematically reviewed, and its advantages in modeling dynamic optimization problems are 
analyzed to provide theoretical support for the design of intelligent control strategies. Sec-
ond, a mathematical model tailored for power grid emergency control is constructed, con-
sidering the operational characteristics of power grids. The core variables, constraints, and 
their relationships with the system’s dynamic behavior in the context of voltage control 
are clearly defined, offering a scientific basis for practical model applications. 

2.1. Markov Decision Process in Reinforcement Learning 

In RL, the environment is modeled as a partially observable Markov decision process 
(MDP). The MDP is a mathematical framework for describing decision-making problems 
with stochastic dynamics, defined by the following components: 
• State space ( S ): The state space encompasses all possible states that the environment 

can be in. Each state s S∈  provides a comprehensive description of the environ-
ment’s current condition and may include features across multiple dimensions. 

• Action space ( A ): The action space refers to the complete set of all possible actions 
that an agent can take. Each action a A∈  represents the agent’s control input to the 
environment in the current state. 

• Transition function ( :P S A S× → ): The transition function specifies the probability 
of transitioning to a new state 1ts +  given the current state ts  and action ta . 
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• Reward function ( tR ): The reward function defines the immediate reward received 
after taking action ta  in state ts . 

• Discount factor ( [0,1]γ ∈ ): The discount factor indicates the importance of future re-
wards compared to immediate rewards, balancing short-term and long-term goals. 
At each time step t , the agent observes the environment’s current state ts S∈  and 

receives a reward signal tr R∈   accordingly. Based on its current policy ( | )t ta sπ  , the 
agent selects an action ta , influencing the environment and triggering a state transition. 

The objective of RL is to optimize the policy ( | )t ta sπ  to select the optimal action in 

a given state, thereby maximizing the agent’s long-term cumulative reward. The cumula-
tive reward tG  is the weighted discounted sum of future rewards, mathematically de-

fined, as shown in Equation (1).  

1
0

k
t t k

k
G r

∞
γ + +

=
=   (1) 

where γ  is the discount factor; 1t kr + +  is the reward at time 1t k+ + ; and tG  quantifies 

the total value of future rewards from the current state t . 

2.2. Power Grid Emergency Control Modeling 

In large-scale power systems, the emergency control issue is a typical problem of 
highly nonlinear and non-convex optimal decision-making. Its core objective is to employ 
appropriate control measures to maximize the restoration or maintenance of system sta-
bility while satisfying system operational constraints. To formally describe this problem, 
it can be modeled as an optimization problem, as shown in Equations (2)–(7). 

0

min ( , , )
cT

t t t
T

C x y a dt  (2) 

. . ( , , , )t t t t ts t x f x y e a=  (3) 

0 ( , , , )t t t tg x y e a=  (4) 

min max
0[ , ]t t t cx x x t T T≤ ≤ ∀ ∈，  (5) 

min max
0[ , ]t t t cy y y t T T≤ ≤ ∀ ∈，  (6) 

min max
0[ , ]t t t ca a a t T T≤ ≤ ∀ ∈，  (7) 

Here, tx  refers to the dynamic state variables of the power grid, primarily including 

physical quantities related to the grid’s dynamic characteristics, such as the angles and 
speeds of generator rotors. ty  denotes the algebraic state variables of the grid, which typ-

ically include the voltage magnitudes and phase angles at the grid nodes. These variables 
describe the steady-state power flow distribution and reflect the instantaneous operating 
state of the power grid. ta  encompasses the emergency control variables of the grid, such 
as load shedding. te  denotes possible unforeseen events or disturbances in the grid, such 

as short-circuit faults, line trips, or load fluctuations. These events are external disruptions 
that the system may encounter during operation. (.)C  represents the cost function of 
emergency control in the power grid, which is the optimization objective for grid emer-
gency control. 0T  and cT  denote the time range. 
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Specifically, Equation (3) specifically outlines the dynamic behavior of different com-
ponents within the power grid, reflecting their time-varying characteristics through dif-
ferential equations. Equation (4) outlines the algebraic constraints among generators, 
transmission, and loads lines within the grid, capturing the network coupling relation-
ships among these components, such as power balance and voltage constraints. Equations 
(5)–(7) define the operational limits and safety constraints for dynamic state variables, al-
gebraic state variables, and control variables throughout the entire time range. These con-
straints collectively ensure the dynamic stability and safety of the grid during operation 
while providing a rigorous mathematical description for emergency control. 

The emergency control problem mentioned above can be represented as an MDP and 
resolved using RL methods. The transition of environmental states from time t  to 1t +  
is determined by the system of differential Equation (3) and algebraic Equation (4). The 
reward function tr  depends on tx , ty  and ta , with its specific form defined in Equa-

tion (8). 

( , , )t t t tr h x y a=  (8)

The reward function tr  should include the cost function (.)C  as defined in Equa-

tion (2) and introduce penalty terms for violations of any constraints specified in Equa-
tions (5)–(7). The specific definition of the reward function, tailored to the requirements of 
the control strategy, will be elaborated in detail in Section 3.4. 

3. Methodology 
In this chapter, we systematically introduce the theoretical foundations of GCNs and 

the SAC algorithm. Based on these foundations, we propose a joint optimization method 
that combines GCNs and the SAC. Furthermore, we provide a detailed explanation of the 
MDP modeling process for implementing emergency control in power grids through 
load-shedding strategies. The core content of this chapter focuses on three main aspects: 
feature extraction, intelligent control strategy design, and problem modeling. These areas 
are analyzed comprehensively to elucidate the specific implementation details of the pro-
posed method, providing robust theoretical and technical support for subsequent simula-
tion validation and performance evaluation. 

3.1. Graph Convolutional Networks for Feature Extraction 

The topology of a power network can be abstracted as a complex graph, where nodes 
represent buses in the grid and edges represent the branches connecting these buses. The 
graph structure is defined by a set of nodes and edges, which are typically represented 
mathematically in the following two ways: 
• Feature matrix ( X ): The feature matrix is an n d×  matrix, where n  is the number 

of nodes in the graph, and d  is the dimensionality of features for each node. The i
-th row of the matrix, ix , represents the attribute information of node i  such as volt-
age magnitude. 

• Adjacency matrix ( A  ): The adjacency matrix is an n n×   matrix that encodes the 
graph’s connectivity structure. If there exists an edge between node i  and node j, 
then =1ijA ; otherwise, 0ijA = . 

In a GCN, the network takes the feature matrix X  as input and propagates infor-
mation through the adjacency matrix A   to aggregate features, ultimately generating 
node-level output representations H . The output matrix H  is an n f ′×  matrix, where 
f ′ represents the dimensionality of the output features for each node. The core mecha-

nism of a GCN lies in leveraging the adjacency matrix to perform weighted aggregation 
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on the feature matrix. Through multiple layers of nonlinear transformation functions 

( ).f , it captures the local connectivity patterns in the graph and learns high-dimensional 

representations of the nodes [13]. The layer-wise propagation rule of a GCN is defined, as 
shown in Equation (9). 

1 1
1 2 2ˆˆ( , ) ˆl l l lH f H A D AD H Wσ

− −+
  = =  
  

 (9)

where l  represents the number of layers in the network, lH  is the node feature matrix 
at the l  -th layer, with 0H X=  , D̂  is the degree matrix of Â , where ˆ =A A I+  ,

1
ˆ ˆ

n

ii ij
j

D A
=

=  , lW  is the trainable weight matrix at the l -th layer, and (.)σ  is the activa-

tion function.  
To capture the dynamic characteristics of voltage variations, this study selects bus 

voltage as the node feature for the GCN. Specifically, for each bus i  in the power net-
work, the most recently observed voltage values over a historical time window of length 
T  are stacked into a vector to form the feature representation of node i  at time t  (Equa-
tions (10) and (11)). 

( ) ( 1) ( 2) ( )[ , , , ]t t T t T t
i i i ix v v v− + − + ′= …  (10)

2
( () (
1

))[ , , , ]t
n

t t
tX x x x ′= …  (11)

3.2. DRL Algorithm for Action Decision Optimization 

In addressing voltage instability issues induced by fault-induced delayed voltage re-
covery (FIDVR), selecting an appropriate DRL algorithm for policy optimization is crucial. 
This study adopts the SAC algorithm, an off-policy actor-critic model based on the maxi-
mum entropy reinforcement learning framework [14–16]. The SAC aims to learn a highly 
stochastic policy that can still effectively accomplish the target task. The core idea of the 
SAC is to incorporate policy entropy (a measure of policy randomness) into the reward 
signal. By optimizing an objective function that includes an entropy term, the SAC en-
courages the policy to achieve a dynamic balance between exploration and exploitation. 
This characteristic makes it well-suited for handling the dynamic changes in complex en-
vironments and prevents the policy from converging to suboptimal solutions due to ex-
cessive determinism. 

Compared to other classical DRL algorithms, the SAC offers significant advantages: 
• Compared to off-policy algorithms: Unlike the deep deterministic policy gradient 

(DDPG) algorithm [17,18] and the twin delayed deep deterministic policy gradient 
(TD3) algorithm [19,20], the SAC introduces the maximum entropy framework, sig-
nificantly improving sampling efficiency and exploration capabilities. 

• Compared to on-policy algorithms: In contrast to methods such as proximal policy 
optimization (PPO) [21], the SAC’s off-policy update mechanism reduces the sample 
correlation problem and achieves higher training efficiency. 
Based on these features, this study applies the SAC for action decision optimization, 

aiming to address the complexity of dynamic power grid environments and the challenges 
of high-dimensional continuous action spaces. 

The training objective of the SAC algorithm is to simultaneously maximize the ex-
pected return and entropy. Its objective function is defined by Equation (12). 
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( , )
0

( ) [ ( , ) ( ( | )))](
t t

t
T

s a t t t
t

J r s a H s
πρπ αγ π∼

=
=  + ⋅  (12)

where ( )J π  denotes the expected return under the policy π , πρ  is the marginal distri-
bution of state-action pairs under π , γ  is the discount factor, ( , )t tr s a  represents the 
instantaneous reward, ( (.| ))tH sπ  is the entropy regularization term, and α  is the en-

tropy weight coefficient. 
In the SAC, three core functions need to be learned: the policy function )( |t ta sπ , 

the soft Q-value function ( , )t tQ s a , and the soft state value function ( )tV s . To achieve 

this, parameterized functions ( , )t tQ s aθ   and ( | )t ta sφπ   are used, and their parameters 

θ  and φ  are alternately optimized via stochastic gradient descent. Below, the update 
rules for these parameters are explained in detail. 

The training objective of the soft Q-value function is to minimize the soft Bellman 
residual, and its loss function is defined by Equation (13). 

( )( )( )1 1

2

( , , , ) 1 1 1 1
1( ) ( , ) ( , ) ( , ) log ( | )
2t t t t tQ s a r s D t t t t a t t t tL Q s a r s a Q s a a s

φθ π φθθ γ α π
+ +∼ ∼ + + + +

  = − + −    
   (13)

where Qθ  is the target Q-value network. The parameters of the target Q-value network

θ   are updated via an exponential moving average of θ  , as shown in Equation (14), 
which has been proven to stabilize training [22]. 

(1 )θ τθ τ θ← + −  (14)

where [0,1]τ ∈  is the update step size, controlling the smoothing degree. 
The soft state value function ( )tV s  is indirectly parameterized via the soft Q-value 

function and is optimized using stochastic gradient descent based on the objective, as de-
fined by Equation (15). 

( ) ( , ) log ( | )t a t t t tV s Q s a a s
φπ θ φα π∼  = −   (15)

The policy function ( | )t ta sφπ , parameterized by the neural network with parame-

ters φ , is trained by minimizing the expected Kullback–Leibler (KL) divergence. The ob-
jective is defined by Equation (16). 

( )( ) log ( | ) ( , )
t t ta t t tsL a s Q s a

φπ π φ θφ α π∼ ∼
  = −   

   (16)

Moreover, the nature of the action space directly affects the form of the policy func-
tion. In this study, we define the load-shedding control in the power system as a continu-
ous action space. Therefore, the policy function is modeled as a Gaussian distribution, as 
shown in Equation (17). 

( | ) ( ( ), ( ))t t t ta s N s sφ φ φπ μ σ=  (17)

where ( )tsφμ μ=   and ( )tsφσ σ=   represent the mean and standard deviation, respec-

tively. μ  and σ  represent the outputs of the policy network. Based on the current state 

ts , the stochastic policy φπ  generates an action distribution according to Equation (17) 

and samples the action ta . To enable gradient backpropagation, the reparameterization 

trick is adopted. This reformulates the conditional Gaussian distribution into a function 
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( , )t ta f sφ ξ=  , where (0,1)Nξ ∼  . Specifically, the action ta   is deterministically con-

structed by sampling ξ  from a standard normal distribution and combining it with the 
policy network’s outputs: 

.ta μ ξ σ= +  (18)

Algorithm 1 provides the detailed implementation of the SAC algorithm. 

Algorithm 1. Soft Actor-Critic (SAC) 

1: Initialize the actor network φπ  randomly 

2: Initialize the soft critic networks 
1

Qθ , 
2

Qθ  randomly 

3: Initialize the target critic network 
1

Qθ , 
2

Qθ  with 
1

Qθ  and 
2

Qθ  

4: Initialize experience replay memory D , mini-batch size B  
5: for each iteration do  
6:  for each environment step do  

7:   ~ ( | )t t ta a sφπ  

8:   1 1~ ( | , )t t t ts p s s a+ +  
9:   1{( , , ( , ), )}t t t t tD D s a r s a s +← ∪  

10:  end for 
11:  for each gradient step do 
12:   ˆ ( ), {1,2}

iQ Qi i iL iθθ θ λ θ← − ∇ ∈  

13:   ˆ ( )Lπ φ πφ φ λ φ← − ∇  

14:   (1 ) , {1,2}i i i iθ τθ τ θ← + − ∈   

15:  end for 
16: end for 

3.3. DRL Method Based on Graph Convolution 

In this section, we propose a novel graph convolutional network-based DRL algo-
rithm, referred to as the GCN–SAC. This algorithm is specifically designed to adapt to the 
dynamic topological changes of power systems and effectively implement load-shedding 
strategies to address short-term voltage stability issues caused by FIDVR. Figure 1 pro-
vides an intuitive illustration of the overall architecture of this method within the rein-
forcement learning framework. 
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Figure 1. Reinforcement learning framework for power systems with GCN enhanced feature extrac-
tion. 

To facilitate implementation, the proposed algorithm is divided into two core mod-
ules: the feature extraction module and the function approximation module, as shown in 
Figure 2. The feature extraction module, implemented using a GCN, is primarily respon-
sible for extracting topological information from the power system. The function approx-
imation module, implemented with a fully connected network (FCN), focuses on gener-
ating the final decision outputs. 

 

Figure 2. GCN enhanced feature extraction and functional approximation framework. 

In the feature extraction module, we designed two layers of graph convolution, each 
followed by a ReLU activation function to ensure nonlinear representation capability. The 
output of the graph convolution layers is flattened into a one-dimensional feature vector 
and passed to the function approximation module. The function approximation module 
consists of two fully connected layers, each also followed by a ReLU activation function. 
Finally, the network’s output is used to generate the optimized decision. 

The specific implementation process of the proposed GCN–SAC algorithm is de-
tailed in Algorithm 2. The most challenging part of this algorithm lies in training the GCN 
layers as an independent feature extraction model. To address this, we tightly integrate 
the GCN model into the optimization loop by extending the classical Q-value network 

into a GCN-based Q-value network ( , )GCN
t tQ s a . The detailed implementation process of 

the GCN–SAC is outlined in Algorithm 2. 

Algorithm 2. GCN–SAC 

1: Initialize the actor network GCN
φπ  randomly 

2: Initialize the soft critic networks 
1

GCNQθ , 
2

GCNQθ  randomly 

3: Initialize the target critic network 
1

GCNQθ , 
2

GCNQθ  with 
1

GCNQθ  and 
2

GCNQθ  

4: Initialize experience replay memory D , mini-batch size B   
5: Initialize topological configurations 1[ , , ]pT T…   

6: for episode 1,n M=  do  
7:  Randomly select a topology lT  and update graph adjacency lA  
8:  0 0{ , }ls s X A← = , initialize the environment with selected topology lT  
9:  for 1,t T=  do 

10:   Get charging decision ta  according current ts  using φπ   

11:   Execute at and obtain reward tr  and next state 1ts +   
12:   Store the transition 1{ , , , }t t t ts a r s +  into D  
13:   Select random mini-batch of size B  from D  
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14:   Update critic network weights using gradient in (13)  
15:   Update actor network weights using gradient in (16)  
16:   Update target critic network weights using Equation (14) 
17:  end for  
18: end for  

3.4. Modeling the MDP for Power Grid Emergency Control 

In this section, we detail the definition of the state space, action space, and reward 
function based on the physical characteristics of the power grid emergency control prob-
lem. These definitions provide the theoretical basis and optimization objectives for the 
agent’s learning process. 

1. State 
The environmental state is considered the input to the control strategy, which is used 

to generate the corresponding actions. In this study, the state is defined as the combination 
of the node voltages and the power system topology at time t , where the node voltages 
include historical information from the past T  time steps. This state representation sim-
ultaneously captures the system’s dynamic changes and topological characteristics, 
providing comprehensive input information for strategy optimization. The specific defi-
nition is shown in Equation (19). 

{ , }t t ts X A=  (19)

where tX  is defined in Equation (11) and tA  represents the topological connections of 

the power system. 

2. Action 
The action ta  represents the load-shedding amount corresponding to a given state

ts in the power system. Specifically, ta  is defined as a continuous value indicating the 

proportion of the load to be shed. The action space is defined, as shown in Equation (20). 

[0 ,1]ta ∈  (20)

where 0ta =  indicates no load shedding in the current state, and 1ta =  indicates shed-

ding the entire load (i.e., a load-shedding proportion of 100%). 

3. Reward 
The reward tr  represents the immediate feedback signal received when the system 

transitions from state ts  to state 1ts +  after performing action ta . It is used to guide the 

agent in optimizing its control strategy. In this study, we refer to the standards proposed 
in [23] (as shown in Figure 3) to define the reward function. The specific form of the re-
ward function is given by Equation (21). 

1 2 3

20000, ( ) 0.95, 4

,
i pf

t
volt shed invalid

t t T
r

c R c R c R otherwise

v− < > += 
− −

 (21)

where pfT  is the time when the fault is cleared, and 1c , 2c  and 3c  are weight factors. 

The reward function, as described in Equation (21), comprises three penalty components, 
which are explained as follows: 
• Voltage deviation penalty ( voltR ): This penalty measures the sum of deviations be-

tween bus voltages and standard voltage thresholds, encouraging the agent to mini-
mize voltage deviations and maintain system stability. It is calculated as follows: 
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where iv  represents the voltage magnitude of bus i , and N  denotes the total number 

of buses in the system. 
• Load shedding penalty ( sh edR ): This penalty represents the total load shed across the 

system, encouraging the agent to minimize load shedding while ensuring grid sta-
bility. It is computed as follows: 

1
shed j

j

M
R L

=
=  Δ  (24)

where jLΔ  represents the load shedding amount at bus j, and M  denotes the num-

ber of buses participating in load shedding. 
• Invalid action penalty ( invalidR ): This penalty is applied when the agent issues a load-

shedding command for a bus where the load has already been fully shed, discourag-
ing invalid actions. It is calculated as follows: 

( 1)

1
( 0 0)t

inva

M

lid k k
k

R L a−

=
=  = ∧ >  (25)

where ( ).  is an indicator function that equals 1 when the condition is true, and 0 oth-

erwise, ( 1)t
kL −   represents the remaining load at bus k   at time 1t −  , and ka   denotes 

the load shedding action taken by the agent at bus k . 

Additionally, to further reinforce system stability constraints, a global constraint 
mechanism is incorporated into the reward function: if the voltage at any bus falls below 
0.95 . .pu  within 4 s after fault clearance, the reward function is forcibly set to a significant 
negative value (−20,000) to severely penalize actions that fail to maintain system voltage 
stability. 

 

Figure 3. Transient voltage recovery standard for transmission systems. 
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4. Simulation 
To verify the correctness and feasibility of the proposed method, this study uses the 

IEEE 39-bus test system (with its network topology shown in Figure 4) as an example to 
conduct a comprehensive simulation analysis of the GCN–SAC algorithm. In terms of 
performance comparison, we incorporated mainstream reinforcement learning algo-
rithms (SAC, DDPG, and PPO) as well as the traditional UVLS relay control scheme. 
Through a multidimensional comparative analysis, we systematically evaluated the pro-
posed method’s performance in voltage recovery effectiveness and load shedding strate-
gies. This chapter first introduces the simulation setup, providing a detailed description 
of the experimental parameters and related assumptions. Subsequently, the training pro-
cess of the GCN–SAC is compared with that of the SAC algorithm to analyze the role of 
GCNs in enhancing state representation and improving training efficiency. A systematic 
assessment of the training and testing performance of the GCN–SAC algorithm is also 
conducted. Finally, focusing on the FIDVR fault scenario, a detailed comparison of the 
five methods in terms of voltage recovery performance and load shedding strategies is 
presented. The evaluation comprehensively examines the proposed method’s advantages 
from multiple perspectives, including voltage stability and load shedding cost, thereby 
verifying its superiority and practicality in addressing complex disturbance scenarios. 

 

Figure 4. The topology of the IEEE 39-bus system. 

4.1. Simulation Setup 

The OpenAI Baselines framework was used to learn a closed-loop control strategy 
with the goal of preventing FIDVR by implementing load shedding at buses 3, 16, and 28, 
while simultaneously meeting the voltage recovery requirements shown in Figure 3. All 
experiments were conducted on a computer equipped with an Intel Core i7-14700F pro-
cessor (manufactured by Intel Corporation, Santa Clara, CA, USA) and an NVIDIA RTX 
4060 GPU with 8GB GDDR6 VRAM (manufactured by NVIDIA Corporation, Santa Clara, 
CA, USA). 
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The observation metrics include the voltage magnitudes at buses 3, 16, and 28, as well 
as the corresponding changes in their loads. In the experiments, the parameter T   in 
Equation (10) was set to 20. Based on a comprehensive trade-off analysis of system per-
formance, the weight coefficients in the reward function of Equation (21) were set as fol-
lows: 1 275c = , 2 180c = , and 3 6c = .  

For the proposed GCN–SAC method, the architecture of the policy network and 
value network is shown in Figure 5. Both networks consist of two graph convolutional 
layers, each containing 128 neurons, followed by two fully connected layers, also with 128 
neurons per layer. The output of the graph convolutional layers is flattened and passed to 
the fully connected layers, culminating in the output layer to generate the final results. 

 

Figure 5. The policy and value network architecture of the GCN–SAC algorithm: (a) network archi-
tecture of the policy network, (b) network architecture of the value network. 

The key hyperparameters are set as follows: the total number of episodes during 
training is 500,000, and the learning rate for the GCN component is 0.00005. Within the 
SAC framework, the learning rates for both the actor and critic networks are set to 0.0001, 
the discount factor γ  is 0.99, the soft update coefficient τ  is 0.005, the batch size is 64, 
and the capacity of the experience replay buffer is 50,000. 

4.2. Training and Testing Performance 

During the training process, each episode starts from a dynamically stable simulation 
state. At 1.0 s of simulation time, a short-circuit fault is randomly applied to bus 3, 15, or 
27. The fault duration is randomly set to 0.0 s (no fault), 0.05 s, or 0.1 s, and the fault is 
designed to clear automatically. To modify the system topology, the following four con-
figurations were implemented: 
• No lines disconnected. 
• Disconnection of the line between bus 1 and bus 2. 
• Disconnection of the line between bus 15 and bus 16. 
• Disconnection of the line between bus 26 and bus 27. 

For the same training scenario, the performance of the GCN–SAC and SAC was com-
pared. In the design of the SAC algorithm, the tX  and tA  matrices were vectorized, 
and the state space was set to { ( ), ( )}t t ts vec X vec A= . Figure 6 illustrates the moving aver-

age of rewards during the first 10,000 episodes of training for both the GCN–SAC and the 
SAC. As shown in the figure, the GCN–SAC demonstrates a faster and more stable con-
vergence performance. 
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Figure 6. The moving average rewards during the DRL training. 

To assess the trained agent’s transfer learning capabilities in unexpected settings, the 
testing process included short-circuit defects at all 39 buses, with three different fault du-
rations randomly set (i.e., 0.03 s, 0.05 s, and 0.1 s). For each fault location and duration, 20 
different topology configurations were designed, resulting in a total of 39 × 20 = 780 test 
cases. The performance of the algorithm during the testing phase was measured by com-
paring the reward differences among these test cases. Out of the 780 test scenarios, 476 
were likely to trigger FIDVR issues without any control measures, necessitating load-
shedding operations. 

To visually present the performance comparison results, the reward differences be-
tween the GCN–SAC and the SAC were calculated for all test scenarios requiring load 
shedding (i.e., the GCN–SAC reward minus the SAC reward). A positive value indicates 
that the GCN–SAC method outperformed the SAC method in the corresponding scenario. 
Figure 7 displays the histogram illustrating the differences in rewards between the GCN–
SAC and SAC methods, revealing that the GCN–SAC outperformed the SAC in 91.78% of 
the test scenarios. 

 

Figure 7. Histogram of reward differences between the GCN–SAC and SAC for 476 test cases. 

The average computation time for a single action decision step using the GCN–SAC 
and SAC methods was 0.78 ms and 0.74 ms, respectively. During a 10-s simulation event, 
the total computation time for the GCN–SAC method averaged 0.078 s, demonstrating its 
capability to meet real-time operational requirements. 
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4.3. Load Shedding Strategy 

Table 1 and Figure 8 present a performance comparison of the GCN–SAC, SAC, 
DDPG, PPO, and the traditional UVLS relay control scheme under a specific test scenario. 
In this scenario, a fault is assumed to occur at bus 26 with a duration of 0.1 s. To enhance 
the realism and robustness of the test, an additional 1% Gaussian noise is introduced into 
the observation data. 

Table 1. Comparison of different solutions for bus load shedding (Bold values in the table indicate 
the method with the lowest load shedding rate among the solutions). 

Bus Number Control Scheme Initial Load 
(MW) 

Load Reduction 
(MW) 

Load Reduction 
Ratio 

bus 3 

GCN–SAC 200 58.52 0.2926 
SAC 200 66.37 0.3319 

DDPG 200 77.64 0.3882 
PPO 200 73.09 0.3655 

UVLS 200 102.71 0.5136 

bus 16 

GCN–SAC 150 47.27 0.3151 
SAC 150 71.84 0.4789 

DDPG 150 78.30 0.5220 
PPO 150 76.45 0.5097 

UVLS 150 83.27 0.5551 

bus 28 

GCN–SAC 120 43.78 0.3648 
SAC 120 43.74 0.3645 

DDPG 120 47.63 0.3929 
PPO 120 45.95 0.3829 

UVLS 120 65.66 0.5472 

Table 1 demonstrates that, compared to the traditional UVLS relay control method, 
deep reinforcement learning (DRL)-based control methods exhibit significant advantages 
in load-shedding performance. Specifically, the GCN–SAC approach outperforms the 
SAC method in load-shedding strategies at bus 3 and bus 16. Furthermore, both the GCN–
SAC and SAC methods achieve markedly better load-shedding performances at buses 3, 
16, and 28, compared to the DDPG and PPO methods. Additionally, as shown in Figure 
8, DRL-based methods exhibit superior voltage recovery performance compared to the 
traditional UVLS relay control method. Specifically, the UVLS relay method fails to restore 
the voltage to standard levels within 4 s after fault clearance, resulting in greater load 
shedding at buses 3, 16, and 28. Under the same test scenario, the total reward of the GCN–
SAC is −1518.6, significantly outperforming other algorithms, indicating its ability to 
quickly restore system stability with minimal load-shedding cost. By contrast, the SAC 
method achieves a total reward of −1831.3, which, although inferior to the GCN–SAC, 
remains superior to the DDPG and PPO. The total rewards for the DDPG and PPO are 
−2054.2 and −1892.6, respectively, reflecting their relatively weaker optimization capabil-
ities in addressing complex voltage instability problems. Notably, the highest reward 
value of the GCN–SAC demonstrates its effectiveness in achieving voltage recovery tar-
gets while significantly reducing the amount of load shedding. Conversely, the lower re-
ward values of the SAC, DDPG, and PPO indicate their reliance on greater load-shedding 
efforts to restore voltage. In summary, the GCN–SAC algorithm surpasses other methods 
in terms of reward value, load-shedding proportion, and voltage recovery performance, 
showcasing its exceptional advantages. 

Through comparative analysis of different algorithms, it can be concluded that the 
GCN–SAC algorithm performs the best. This superiority is attributed to its effective 
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integration of graph neural networks for precise modeling of the power system topology 
and the SAC algorithm’s efficient learning capabilities in continuous action spaces, 
thereby achieving more optimized control strategies. 

 

Figure 8. Voltage recovery curves and voltage recovery criteria for different load shedding control 
schemes: (a) bus 3; (b) bus 16; (c) bus 28. 

5. Conclusions 
This paper proposes a novel DRL approach that combines a Graph Convolutional 

Network (GCN) with the soft actor-critic (SAC) algorithm, addressing the challenge of 
voltage control in smart grids through load shedding. Experimental results demonstrate 
that the proposed method excels in extracting grid topology features and optimizing con-
tinuous action strategies. Simulation evaluations based on the IEEE 39-bus system indi-
cate that the approach significantly enhances voltage recovery with minimal load shed-
ding under complex load disturbances and dynamic topology changes, thereby ensuring 
stable grid operation. Compared to existing methods, the proposed approach exhibits 
stronger adaptability and control precision when handling various operational scenarios 
and uncertain disturbances, highlighting its robustness. The innovation of this study lies 
in the first-ever integration of a GCN’s topological embedding capability with the SAC’s 
reinforcement learning features, providing a novel technical solution to the load-shedding 
optimization problem. 

Despite the promising results achieved in this study, there remains room for im-
provement in enhancing the practical application value and broader applicability of the 
proposed method. Firstly, regarding scalability and computational efficiency in large-
scale power grids, while the simulation results on the IEEE 39-bus system validate the 
effectiveness of the method, its applicability to larger-scale grids requires further evalua-
tion. Future research will involve more complex test systems, such as the IEEE 118-bus 
system or actual large-scale grid models, to systematically assess the method’s perfor-
mance in handling higher-dimensional topological features and complex disturbances. 
Additionally, optimization of model training and inference efficiency—through ap-
proaches such as the integration of distributed computing frameworks and lightweight 
neural network structures—will ensure the method’s real-time capability in large-scale 
systems, thereby further improving its practicality. Secondly, in terms of multi-objective 
optimization and adaptability to real-world applications, this study primarily focuses on 
voltage control and load shedding, without fully considering practical operational objec-
tives, such as economic efficiency and renewable energy integration. Future work will aim 
to incorporate economic indicators (e.g., operational costs and load-shedding expenses) 
and renewable energy utilization goals into a multi-objective optimization framework. 
This approach will enable dynamic trade-offs between load-shedding costs, voltage sta-
bility, and clean energy utilization, aligning the proposed method more closely with the 
operational needs of modern power grids, particularly in scenarios with high penetration 
of renewable energy. Lastly, to further enhance the method’s applicability and robustness, 
future research will extend to more complex real-world scenarios, including distributed 
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energy resource integration, dynamic load behavior, and complex grid topologies. Vali-
dation under diverse operating conditions will enable a comprehensive exploration of the 
method’s performance in addressing nonlinear dynamic disturbances, system faults, and 
multi-time-scale responses. These efforts aim to provide a solid theoretical foundation and 
technical support for the practical deployment of the proposed method in smart grids. 

In summary, the GCN–SAC joint optimization method proposed in this paper offers 
an innovative and efficient solution to voltage control challenges in modern smart grids. 
The research results demonstrate that the proposed method offers significant advantages 
in ensuring system stability and optimizing load-shedding control, while also providing 
valuable support and insights for technological advancements and practical applications 
in the smart grid domain. In the future, through further expansion and refinement in 
large-scale power grids, multi-objective optimization, and complex real-world scenarios, 
this method is expected to contribute substantially to the development of a low-carbon, 
high-efficiency modern power grid. 
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Abbreviations 
The following abbreviations are used in this manuscript: 

DRL Deep Reinforcement Learning 

GCN Graph Convolutional Network 

SAC Soft Actor-Critic 

MDP Markov Decision Process 

RL Reinforcement Learning 

DDRL Distributed Deep Reinforcement Learning 

FIDVR Fault-Induced Delayed Voltage Recovery 

DDPG Deep Deterministic Policy Gradient 

TD3 Twin Delayed Deep Deterministic Policy Gradient 

PPO Proximal Policy Optimization 

FCN Fully Convolutional Network 

ReLU Rectified Linear Unit 

UVLS Under Voltage Load Shedding 

AI Artificial Intelligence 
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EPSO Evolutionary Particle Swarm Optimization 

MADRL Multi-Agent Deep Reinforcement Learning 

PARS Power-Adaptive Reinforcement Search 
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