
Academic Editor: Panicos Kyriacou

Received: 24 December 2024

Revised: 20 January 2025

Accepted: 24 January 2025

Published: 26 January 2025

Citation: Zhang, X.; Han, H.; Shen, G.

Real-Time Sensor-Based and

Self-Reported Emotional Perceptions

of Urban Green-Blue Spaces:

Exploring Gender Differences with

FER and SAM. Sensors 2025, 25, 748.

https://doi.org/10.3390/s25030748

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Real-Time Sensor-Based and Self-Reported Emotional
Perceptions of Urban Green-Blue Spaces: Exploring Gender
Differences with FER and SAM
Xuan Zhang 1 , Haoying Han 1,2,3,* and Guoqiang Shen 1

1 College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
zhang_xuan@zju.edu.cn (X.Z.); gshen214@zju.edu.cn (G.S.)

2 Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
3 Faculty of Innovation and Design, City University of Macau, Macau 999078, China
* Correspondence: hanhaoying@gmail.com

Abstract: Urban green-blue spaces (UGBS) are increasingly recognized for their benefits to
physical and mental well-being. However, research on real-time gender-specific emotional
responses to UGBS remains limited. To address this gap, a dual-method approach combin-
ing facial expression recognition (FER) and self-reported measures to investigate gender
differences in real-time emotional evaluations of UGBS was developed. Using static images
from Google Street View as stimuli, a self-reporting experiment involving 108 participants
provided insights into subjective emotional experiences. Subsequently, a FER experiment,
utilizing 360-degree video stimuli, captured over two million data points, validating the
feasibility and advantages of real-time emotion monitoring. The findings revealed dis-
tinct gender-specific emotional patterns: women experienced stronger pleasant emotions
and preferred scenes evoking higher arousal, while men demonstrated sharper responses
and rated scenes with peak valence emotions more favorably. Grass elicited relaxation
and delight in women and arousal in men, whereas blue spaces induced calmness across
genders, with men reporting greater relaxation as water content increased. The study
underscores the potential of FER technology in assessing real-time emotional responses,
providing actionable insights for inclusive urban planning. By integrating advanced tools
and participatory design approaches, urban planners can develop strategies that enhance
emotional well-being and create livable cities that support diverse user needs.

Keywords: environmental quality; gender difference; urban green-blue space; emotional
perception; facial expression recognition; semantic segmentation; deep learning; Google
street view; urban planning

1. Introduction
The COVID-19 pandemic led to the global implementation of measures such as phys-

ical distancing, mobility restrictions, and social isolation, resulting in profound impacts
on mental health and significant disruptions to daily routines [1–4]. This period has also
underscored the critical importance of physical and mental well-being. Numerous em-
pirical studies have highlighted that urban green-blue spaces (UGBS), characterized by
features such as vegetation, water bodies, and open skies, contribute positively to physical,
psychological, and emotional health outcomes [5–10]. As UGBS could play a role in pro-
moting the gender-related “right to the city” and health equity, there is a growing need for
more rigorous empirical research to develop equitable design preferences and inclusive
interventions in public spaces [11–13].
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Previous research has identified gender variations in several aspects related to UGBS,
including preferences, restoration and health outcomes, safety perception, housing demand,
and usage patterns [12,14–17]. The observed gender distinctions in the physical and mental
health benefits associated with exposure to green spaces may be due to gender-specific
perceptions and uses of these urban environments [18,19]. An important indicator of
popular approval of UGBS is the expression of aesthetic emotions, reflecting individual
aesthetic judgments [20,21]. Research indicates that gender disparities exist in emotional
responses, with females more susceptible to mood disturbances and showing enhanced
emotion-specific physiological reactions [22–25], whereas males demonstrate superior
cognitive management of negative emotions and employ cognitive control tactics to mitigate
these effects [26–28].

In recent years, Street View Images (SVIs) have gained prominence as a tool for re-
searchers to analyze visual perceptions of the built environment from a human-centric
perspective over large-scale areas [29–31]. Among these, Google Street View (GSV) stands
out as a widely used open-source platform, providing panoramic and detailed representa-
tions of urban streetscapes from a pedestrian viewpoint. Its application has been integral
to numerous studies on urban perception [32–35]. Previous research, such as studies by
Bradley et al., has extensively explored emotional gender differences in image percep-
tion using the International Affective Picture System (IAPS), revealing distinct responses
between men and women, especially towards negative images [36,37].

Technological advancements have enabled sophisticated analyses of urban environ-
ments by integrating diverse big data sources and crowdsourced surveys [38,39]. To
classify emotions, researchers commonly use two frameworks: the seven basic emotions
(e.g., happiness, fear, and anger) and the two-dimensional model of valence and arousal,
which assess pleasantness and emotional intensity, respectively [40]. While traditional
methods such as the Self-Assessment Manikin (SAM) scale rely on self-reported data to
evaluate valence and arousal [41], there is a growing emphasis on dynamic and real-time
monitoring of emotional responses [42,43]. Physiological sensors, including skin con-
ductance [44], EEG [45], and eye-tracking technologies [46,47], have been employed to
assess emotional reactions to landscapes. Concurrently, advancements in machine learning
and facial expression recognition (FER) technologies [35,48,49] have enriched the toolbox
for studying emotional responses to landscapes. For instance, geotagged facial images
from social media have been utilized to map spatial emotional distributions and infer
urban emotional dynamics [50–52]. In controlled laboratory settings, FER enables precise
and unobtrusive monitoring of emotional responses to specific stimuli, surpassing the
limitations of electrode-based methods [48,53]. Together, these approaches deepen our
understanding of human emotional perceptions, offering valuable insights for urban design
and environmental psychology.

Despite advancements in evaluating human emotional perceptions towards UGBS, the
majority of studies have predominantly relied on self-reported measures and physiological
indicators, often overlooking the significance of real-time perception [41,42,48,52,54]. This
omission is notable, as real-time perception provides a more dynamic understanding of how
individuals interact with their environment. Furthermore, the role of gender in shaping
these real-time perceptions of UGBS has been particularly underexplored, despite its critical
relevance to urban livability and the creation of inclusive urban spaces [55,56]. Hence, this
study aims to answer the research question: How do gender differences manifest in real-
time perceptions of UGBS? To support this inquiry, we establish two sub-questions: How
does FER compare with subjective self-report measures in capturing gender differences in
real-time perceptions of UGBS? What additional insights can FER provide into the dynamics
of gender-specific emotional responses that may be obscured by self-report measures alone?
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To address these research gaps, our study employs a streamlined methodological
approach, encompassing the creation of visual stimuli, extraction of key visual elements,
collection of both self-reported and real-time facial emotional responses, and a comparative
analysis to elucidate gender differences in the perception of UGBS.

This study contributes to the body of knowledge in four key aspects. First, it addresses
the critical gap in understanding gender differences in real-time perception of UGBS
by employing FER technology, capturing spontaneous emotional responses from both
male and female participants as they interact with virtual UGBS environments. Second,
the study provides a comparative analysis between real-time FER data and traditional
self-reported measures, shedding light on their congruence and divergence in reflecting
gender-specific reactions to UGBS, and highlighting FER’s ability to capture authentic
emotional expressions. Third, it introduces an open-source data pipeline for street-view
images, establishing a research framework that is readily transferable to various settings and
countries. Fourth, the study contributes to the development of urban greening strategies
aimed at fostering inclusive and human-centric urban environments.

The paper is structured as follows: Section 2 details the methods employed in the
study, including the preparation of visual stimuli, the extraction of visual variables, the
conduct of self-report and FER experiments, and the approach to data analysis and com-
parison. Section 3 presents the findings from the comparative analysis of FER data and
self-reported measures, highlighting the gender-specific emotional responses to UGBS and
the effectiveness of different methodologies. Section 4 interprets the findings and discusses
their implications for the development of inclusive urban greening strategies. Section 5
concludes the paper.

2. Materials and Methods
2.1. Research Framework

Figure 1 outlines the structured methodology of our study, which is designed to
explore gender disparities in the perception of green spaces. Our research is methodically
divided into five distinct yet interconnected steps, ensuring a systematic approach to data
collection and analysis:

1. Visual Stimulation Preparation: We employed the GSV platform (Google, CA, USA) to
select and capture panoramic images at specific sites, which were then developed into
both static images and panoramic videos. These visual stimuli were utilized in the
subsequent self-report and facial expression experiments to elicit emotional responses.

2. Visual Variables Extraction: We utilized a scene semantic segmentation model to
extract key visual variables of the captured videos and photos.

3. Emotional Perception Sensing through Experiments: A cohort of 108 participants was
presented with the static images and asked to articulate their emotional responses
using the validated SAM scale, providing a quantitative measure of their subjective
emotional experiences. A separate cohort of 20 participants viewed the panoramic
videos, and their facial expressions were captured and analyzed using a FER model,
allowing for the objective assessment of their real-time emotional reactions.

4. Data Analysis and Comparative Evaluation: We conducted a comprehensive integra-
tion of the extracted visual variables with the data from facial emotional perception,
comparing these insights with the self-reported emotional responses. This compar-
ative analysis aimed to elucidate the impact of visual variables on gender-based
perception disparities and to assess the relative effectiveness of different methodolo-
gies in capturing emotional responses to green spaces.
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2.2. Visual Stimulation Preparation

To highlight the role of visual variables in emotional reactions to green spaces, British
Heritage landscapes were selected as the main visual stimuli, ensuring that the elements
of the landscape were distributed in a cohesive and uniform manner. These landscapes,
characterized by impressive architecture, vast grasslands, and tranquil lakes, were ideal for
maintaining a concentrated representation of landscape features. The primary stimuli were
sourced from the National Heritage List for England (NHLE), an authoritative catalog of
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significant cultural and historical assets, including buildings, parks, gardens, monuments,
shipwrecks, and World Heritage Sites within the UK.

To prevent emotional fatigue and sustain participant engagement during exposure
to the main stimuli, contrasting auxiliary stimuli were introduced. Japanese landscapes,
with their fragmented layouts and distinctive styles, were chosen to provide a striking
difference from the primary British scenes. These auxiliary visuals were derived from
Japan’s designated Special Places of Scenic Beauty, Special Historic Sites, and Special
Natural Monuments, recognized under the Law for the Protection of Cultural Properties by
the Minister of Education, Culture, Sports, Science, and Technology (MEXT). This approach
ensured a balanced emotional experience and increased the diversity of visual exposure in
the study [48].

To create a comprehensive and authentic experimental environment, we used both
GSV images and panoramic video clips, ensuring consistency through a rigorous standard-
ization process. A data-driven approach guided the site selection process, using specific
garden names from the pre-determined lists of British and Japanese heritage landscapes as
search terms on Instagram (Meta, CA, USA). By searching these garden names as hashtags
(e.g., #lymepark, #scotneycastle), we ranked the results based on the number of posts
associated with each hashtag (data collected on 5 April 2024). This approach allowed us to
identify popular gardens with significant public interest [57,58]. From the top-ranked loca-
tions, we selected target gardens and identified optimal observation points within each site
for acquiring high-quality street view imagery. Some scenes were excluded due to factors
such as inadequate lighting, poor weather conditions, or suboptimal image quality. The
final set of visual stimuli represented the best combination of popularity and visual clarity.

Utilizing the Street View Download 360 Pro (version 3.1.3) and the GSV API, we
extracted high-quality, visually representative panoramas from these selected observation
points (Figure 1). All video clips were processed with the same parameters: resolution
1920 × 1080, field of view 70◦, pitch 0◦, frame rate 30 FPS, duration 24 s, with clockwise
spin for primary stimulation and anticlockwise for auxiliary stimulation. In line with
experimental protocols that require varied exposure to scenes, the panoramic clips were
generated and assembled into the final stimulation form in a flexible manner, allowing for
randomization of scene presentation to participants.

2.3. Visual Variables Extraction

This study concentrates on eight visual variables that are closely associated with
the perception of green spaces. These include the Green View Index (GVI), Visible Plant
Index (VPI), and the relative proportions of trees, grass, shrubs, water bodies, sky, and
buildings. We conducted pixel-wise semantic segmentation on each panorama and frame
of the primary video stimuli using a Pyramid Scene Parsing Network (PSPNet)-based
model, which leverages a ResNet-101 backbone for deep supervision. This approach is well-
documented in the literature for its effectiveness in pixel-level feature extraction [59,60].

The PSPNet model, trained on the ADE20K dataset that encompasses 150 categories
and 1038 scene descriptors, was fine-tuned to recognize seven specific classes relevant
to our experimental setup, as depicted in Figure 1 [59,61–63]. The ADE20K dataset is a
comprehensive resource for scene parsing tasks, providing a robust foundation for training
deep learning models to accurately segment and classify visual elements within complex
scenes [62].

Our methodology for extracting visual variables ensures that the features captured are
representative of the landscape elements that contribute to the perception of green spaces.
This rigorous extraction process is pivotal for subsequent analyses, which aim to correlate
visual variables with emotional responses and aesthetic preferences.
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2.4. Emotional Perception Sensing Through Experiments
2.4.1. Emotional Self-Report Experiment via the SAM Scale

We recruited 108 participants (52 males and 56 females) for the emotional self-report
experiment, with ages ranging from 18 to 43 years and an average age of 31.0 years
(standard deviation = 8.2 years) (Table 1).

Table 1. Socio-demographic and individual biographical information of participants.

Measures Categories
Self-Report
Experiment

Facial Recognition
Experiment Total

Male Female Male Female Male Female All

Amount 52 (40.6%) 56 (43.8%) 10 (7.8%) 10 (7.8%) 62 (48.4%) 66 (51.6%) 128 (100%)

Age

16–20 7 (5.5%) 11 (8.6%) 0 (0.0%) 1 (0.8%) 7 (5.5%) 12 (9.4%) 19 (14.8%)
21–25 10 (7.8%) 4 (3.1%) 10 (7.8%) 8 (6.3%) 20 (15.6%) 12 (9.4%) 32 (25.0%)
26–30 4 (3.1%) 8 (6.3%) 0 (0.0%) 1 (0.8%) 4 (3.1%) 9 (7.0%) 13 (10.2%)
31–35 11 (8.6%) 15 (11.7%) 0 (0.0%) 0 (0.0%) 11 (8.6%) 15 (11.7%) 26 (20.3%)
36–40 11 (8.6%) 15 (11.7%) 0 (0.0%) 0 (0.0%) 11 (8.6%) 15 (11.7%) 26 (20.3%)
41–45 9 (7.9%) 3 (2.3%) 0 (0.0%) 0 (0.0%) 9 (7.9%) 3 (2.3%) 12 (9.4%)
Mean 31.46 30.50 23.90 23.10 30.10 29.36 29.72
S.D. 8.55 7.86 0.74 1.45 8.42 7.77 8.07

Race Chinese 52 (40.6%) 56 (43.8%) 10 (7.8%) 10 (7.8%) 62 (48.4%) 66 (51.6%) 128 (100%)
Country living in before

15 years old China 52 (40.6%) 56 (43.8%) 10 (7.8%) 10 (7.8%) 62 (48.4%) 66 (51.6%) 128 (100%)

Landscape/urban
planning/architecture

related field

Yes 11 (8.6%) 5 (3.9%) 0 (0.0%) 0 (0.0%) 11 (8.6%) 5 (3.9%) 16 (12.5%)
No 41 (32.0%) 49 (38.3%) 10 (7.8%) 10 (7.8%) 51 (39.8%) 61 (47.7%) 112 (87.5%)

Have been to UK
Yes 4 (3.1%) 3 (2.3%) 0 (0.0%) 0 (0.0%) 4 (3.1%) 3 (2.3%) 7 (5.5%)
No 48 (37.5%) 53 (41.4%) 10 (7.8%) 10 (7.8%) 58 (45.3%) 63 (49.2%) 121 (94.5%)

Have been to Japan Yes 3 (2.3%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 3 (2.3%) 0 (0.0%) 3 (2.3%)
No 49 (38.3%) 56 (43.8%) 10 (7.8%) 10 (7.8%) 59 (46.1%) 66 (51.6%) 125 (97.7%)

Prior to the visual stimulation experiment, participants completed a comprehensive
survey to collect demographic data and individual experiences. This information is cru-
cial for identifying potential correlations between participants’ backgrounds and their
subsequent reactions to the visual stimuli.

Subsequent to the background questionnaire, participants were presented with a series
of panoramic images and were asked to rate their emotional responses using the SAM scale
and their aesthetic preferences on a scale from one to ten for each scene. This methodology
enabled a nuanced assessment of the participants’ emotional and aesthetic reactions to the
visual stimuli.

2.4.2. Real-Time Emotional Recognition Experiment via Facial Expression Analysis

This experiment involved 20 participants, evenly distributed across genders, with
no formal education in systematic planning or tourism and no prior visits to the UK or
Japan. Participants, aged 20 to 26 with an average age of 23.4 years and a standard devia-
tion of 1.5 years, were selected to represent a homogeneous group for initial exploratory
studies, a common practice in FER research due to the resource-intensive nature of such
studies [48,64,65] (Table 1). A pre-trained multi-task CNN-RNN architecture was employed
to estimate valence–arousal dimensions, which were tailored to our research objectives.
The model, initially fine-tuned with an Adam optimizer at a learning rate of 0.0001, was
adjusted by a factor of 10 every three epochs.

The facial expression analysis process, depicted in Figure 1, commenced with the
importation of video source data into the model. A face detector identified facial expressions
frame-by-frame, which were subsequently sent to the CNN multitask classifier for feature
extraction and categorization. The extracted features were then directed to the task working
mode selector, which allocated them to one of the three distinct RNN components for
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specific tasks (FAU, EXPR, and VA), ultimately delivering the final results through a fully
linked layer [51,52,54,66].

The experiment was conducted under controlled laboratory conditions, following
the standardized procedure outlined in Figure 2. The laboratory was carefully arranged
to provide a comfortable and quiet environment, helping participants feel at ease. To
minimize the potential impact of environmental variations on FER accuracy, the room
temperature was controlled within a range of 22 ◦C to 25 ◦C, and the lighting conditions
were maintained uniformly throughout all sessions [65].
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Upon their arrival in the laboratory, participants were seated in front of a monitor
at eye level and briefed on the experimental procedures. A camera was positioned to
capture their facial expressions throughout the entire experiment. Following a background
questionnaire, participants were asked to relax and monitor their pulse for one minute to
acclimate to the experimental environment.

The experiment then commenced, with primary stimulation presented in a random-
ized order to ensure an equal distribution of stimuli among participants, as shown in
Figure 1. During the presentation of each panoramic video, participants were instructed to
maintain their gaze on the screen, enabling consistent and uninterrupted facial expression
data collection via the camera. Between video clips, a white screen was displayed as a tran-
sition, during which participants were asked to rate their aesthetic preferences of the scene
they had just viewed on a scale from one to ten (Figure 2). This structured interval ensured
that the self-reported ratings did not interfere with the real-time facial expression analysis,
as the evaluation occurred after the stimuli were displayed and recorded. The combination
of these measures ensured the independence and reliability of the facial expression data
and the aesthetic preference ratings.

2.5. Data Analysis and Comparison

We initiated our analysis with a descriptive comparison of emotional and aesthetic
responses across video clips for both genders, utilizing three perception measures. Outliers
in the dataset were carefully identified and addressed to ensure the reliability of the analysis.
Specifically, outliers were defined as data points exceeding 3 standard deviations from
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the mean or falling beyond 1.5 times the interquartile range (IQR). Boxplots and residual
analyses were used to detect outliers in valence, arousal, and aesthetic preference ratings.
Data errors caused by technical issues, such as FER misclassification, were excluded, while
genuine extreme responses were retained but analyzed separately to assess their influence
on the results. Sensitivity analyses confirmed that the exclusion of these points did not
affect the main trends or conclusions. Given that video clip C3 produced illogical responses
due to intermittent pauses, its data were excluded to mitigate potential bias.

This was followed by an analysis of real-time emotional perception trends and extreme
peaks to assess the influence of urban characteristics on gender-specific FER responses. Pear-
son correlations were calculated to explore the relationships between dominant landscape
features and participants’ perceptions.

Furthermore, we conducted a backward multiple linear regression analysis, consid-
ering three sets of visual variables with increasing granularity as independent variables
and the two-dimensional FER perception data as dependent variables. The study also
examined the correlation between aesthetic preferences and the two emotion dimensions
by integrating demographic data, individual experiences, and cognitive profiles, thereby
deepening the analysis.

The inclusion of 108 participants’ self-assessed emotions served as a crucial supple-
ment to the FER data. This dual-method approach allowed us to compare immediate,
unconscious emotional responses with conscious, reflective assessments provided by the
participants. The comprehensive and comparative analysis not only broadened our under-
standing of participants’ perceptions but also evaluated the effectiveness of the FER-aided
method in comparison to traditional self-reporting techniques.

3. Results
3.1. Gender Differences in Perception Measures

Significant gender differences were observed in perception metrics across nine scenes,
highlighting marked emotional and aesthetic responses to UGBS. Table 2 compares these
differences, using data from self-reported emotions and facial expressions. The findings align
with our research aim to explore how these differences manifest in real-time perception.

Table 2. Descriptive statistics of perception measures by gender across nine scenes.

Clip Measures
Men Women

N Mean SD N Mean SD

C1 Valence_FER 240 0.03 0.18 240 0.01 0.23
Arousal_FER 240 0.32 0.11 240 0.32 0.08

Preference_FER 10 0.21 0.15 10 0.27 0.11
Valence_SAM 52 0.14 0.41 56 0.16 0.47
Arousal_SAM 52 −0.01 0.48 56 −0.06 0.49

Preference_SAM 52 0.19 0.45 56 0.11 0.45
C5 Valence_FER 240 −0.01 0.18 240 0.00 0.25

Arousal_FER 240 0.33 0.14 240 0.33 0.08
Preference_FER 10 0.15 0.14 10 0.29 0.10
Valence_SAM 52 0.20 0.45 56 0.14 0.48
Arousal_SAM 52 −0.01 0.45 56 −0.05 0.45

Preference_SAM 52 0.12 0.45 56 0.16 0.46
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Table 2. Cont.

Clip Measures
Men Women

N Mean SD N Mean SD

C7 Valence_FER 240 0.05 0.15 240 −0.01 0.16
Arousal_FER 240 0.30 0.12 240 0.29 0.06

Preference_FER 10 0.06 0.16 10 0.13 0.13
Valence_SAM 52 0.12 0.47 56 0.11 0.44
Arousal_SAM 52 0.04 0.45 56 −0.07 0.42

Preference_SAM 52 0.13 0.44 56 0.05 0.42
C9 Valence_FER 240 0.05 0.15 240 0.03 0.23

Arousal_FER 240 0.31 0.12 240 0.29 0.08
Preference_FER 10 0.11 0.10 10 0.17 0.12
Valence_SAM 52 0.21 0.48 56 0.23 0.46
Arousal_SAM 52 0.00 0.47 56 −0.02 0.45

Preference_SAM 52 0.17 0.47 56 0.21 0.42
C11 Valence_FER 240 0.04 0.14 240 0.00 0.19

Arousal_FER 240 0.30 0.10 240 0.31 0.07
Preference_FER 10 0.18 0.10 10 0.28 0.06
Valence_SAM 52 0.21 0.39 56 0.23 0.47
Arousal_SAM 52 0.09 0.43 56 0.05 0.48

Preference_SAM 52 0.24 0.42 56 0.23 0.44
C13 Valence_FER 240 0.02 0.17 240 0.04 0.20

Arousal_FER 240 0.32 0.10 240 0.30 0.09
Preference_FER 10 0.08 0.11 10 0.15 0.08
Valence_SAM 52 0.25 0.40 56 0.20 0.48
Arousal_SAM 52 0.04 0.47 56 0.02 0.46

Preference_SAM 52 0.23 0.44 56 0.19 0.43
C15 Valence_FER 240 0.04 0.15 240 0.03 0.23

Arousal_FER 240 0.30 0.10 240 0.29 0.08
Preference_FER 10 0.16 0.13 10 0.27 0.13
Valence_SAM 52 0.21 0.40 56 0.15 0.42
Valence_SAM 52 0.21 0.40 56 0.15 0.42
Arousal_SAM 52 0.05 0.44 56 0.02 0.45

Preference_SAM 52 0.23 0.39 56 0.18 0.45
C17 Valence_FER 240 0.06 0.20 240 0.02 0.18

Arousal_FER 240 0.33 0.11 240 0.27 0.08
Preference_FER 10 0.03 0.16 10 0.11 0.10
Valence_SAM 52 0.23 0.40 56 0.17 0.47
Arousal_SAM 52 0.11 0.43 56 0.04 0.46

Preference_SAM 52 0.25 0.45 56 0.19 0.43
C19 Valence_FER 240 0.10 0.12 240 0.03 0.22

Arousal_FER 240 0.30 0.08 240 0.30 0.06
Preference_FER 10 0.22 0.10 10 0.20 0.14
Valence_SAM 52 0.23 0.38 56 0.10 0.44
Arousal_SAM 52 0.05 0.42 56 0.00 0.45

Preference_SAM 52 0.18 0.45 56 0.13 0.47
Notes: Valence_FER: Valence perception data obtained from the FER method. Arousal_FER: Arousal perception
data obtained from the FER method. Preference_FER: Aesthetic preference ratings obtained in the facial expression
experiment. Valence_SAM: Valence perception data obtained from the SAM scale. Arousal_SAM: Arousal
perception data obtained from the SAM scale. Preference_FER: Aesthetic preference ratings obtained in the
self-reported emotion experiment.

Emotional responses to UGBS varied considerably between genders, particularly in va-
lence scores, as illustrated in Figure 3. Arousal scores showed a predominantly positive and
concentrated pattern across all videos, while valence scores exhibited significant variability,
reflecting the complex interplay between environmental stimuli and emotional responses.
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For a valid comparison, the Preference_FER scores were converted into Preference_FER* scores,
standardized to the same range as Valence_FER and Arousal_FER (−1.00 to 1.00).

The FER approach revealed deeper insights into gender-specific differences than the
SAM scale and overall scene preference ratings [44]. Women’s valence scores displayed
greater variability, with peaks in scenes C5, C9, and C15. In contrast, men showed signifi-
cant lows in scenes C7 and C17, as well as high arousal scores for scene C17, suggesting a
strong emotional reaction to specific environmental features.

These findings emphasize the distinct ways in which men and women emotionally
perceive UGBS. Section 3.2 will further dissect these gender-specific patterns to explore the
factors driving emotional perception peaks.

3.2. Gender Differences in Real-Time Emotional Trends and Peaks

Real-time emotional responses reveal pronounced gender differences in valence and
arousal trends, offering critical insights into emotional perception dynamics. Figure 4
presents the moment-to-moment FER emotional z-score results, highlighting peaks
(z-scores > 1.96) and providing a comprehensive overview of gender-specific emotional
trends in response to primary stimuli.

Although men and women displayed broadly similar emotional trends, significant
differences emerged in their reactions to specific video clips. Men exhibited thirteen
valence peaks, primarily during scene C19, while women recorded nine. In arousal, men
reported eleven peaks compared to nine for women, underscoring subtle but important
gender-specific variations.
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Analysis of specific scenes revealed that certain environmental features elicited differ-
ent emotional responses between genders. Spacious grass areas, such as those in scenes C1,
C9, and C13, led to arousal peaks in men while evoking valence peaks in women. Similarly,
attractive buildings in scenes C9 and C13 produced positive valence peaks but negative
arousal responses in women, indicating a complex interaction between aesthetic features
and emotional intensity. Flowers, as seen in scene C5, triggered arousal peaks in both
genders, but men’s negative valence scores suggest a mixed emotional experience.

Water-related features also highlighted evident gender differences. In scene C15, the
initial presence of grass dominated the visual frame and led to valence peaks in women.
However, as water content increased, both valence and arousal responses decreased for
women. Conversely, in scene C19, the rising water proportion correlated with twelve
valence peaks in men, suggesting that water features evoke stronger positive emotional
responses in men under certain conditions.

These findings highlight the interplay between arousal, valence, and specific environmen-
tal elements, proposing hypothetical relationships that warrant further exploration [22–25].
Future studies could explore how gender differences influence emotional perception of
environmental features to draw more definitive conclusions.

3.3. Gender Differences in Correlations Between Emotional Perception and Visual Variables
3.3.1. Gender Differences in Pearson Correlations

Our analysis of the correlations and regressions between visual variables and percep-
tion data revealed significant gender differences in how urban features impact perception,
which is a key aspect of understanding gender-specific responses to UGBS. Contrary to
initial expectations, we found no significant links between self-reported SAM emotions,
preferences, and the visual variables extracted from panoramic images. This finding sug-
gests that self-reported measures may not fully capture the nuances of emotional responses
to environmental stimuli. However, the FER analysis provided insights into valence and
arousal that may elucidate the underlying motivations behind individuals’ evaluations.
The Pearson correlation coefficient, computed for all primary stimulation, showed gender-
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specific variations in the correlations between visual variables and the two dimensions of
FER emotional responses, as visualized in Figure 5.
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3.3.2. Gender Differences in FER Perception Prediction Models with Three
Different Combinations

Our research utilized backward multiple linear regression analysis to delve into the
correlations between visual variables and FER emotional perception, employing three sets
of visual variables with increasing granularity as independent variables (Tables 3–5). This
approach allowed us to uncover distinct gender differences in how these variables predict
emotional responses, a key focus of our study.

Table 3. Model 1: Gender differences in backward stepwise regression on the relationship between
basic visual variables and FER emotional data.

Visual
Variables

Male

Valence_FER
Adj. R2 = 0.076

Arousal_FER
Adj. R2 = 0.034

t-Value 95%CI t-Value 95%CI

GVI 2.923 ** [0.010, 0.051]
Sky 4.336 ** [0.073, 0.193]

Building
Constant 0.460 [−1.423, 2.288] 43.759 ** [28.050, 30.696]

Visual
Variables

Female

Valence_FER
Adj. R2 = 0.135

Arousal_FER
Adj. R2 = 0.000

t-Value 95%CI t-Value 95%CI

GVI 4.737 ** [0.134, 0.324]
Sky 5.961 ** [0.207, 0.411]

Building 3.700 ** [0.104, 0.342]
Constant −4.902 ** [−31.952, −13.624] 196.744 ** [29.708, 30.310]

Note: ** ≤ 0.01. Model 1 included GVI, Sky, and Building as independent variables.
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Table 4. Model 2: Gender differences in backward stepwise regression on the relationship between
finer visual variables and FER emotional data.

Visual
Variables

Male

Valence_FER
Adj. R2 = 0.164

Arousal_FER
Adj. R2 = 0.045

t-Value 95%CI t-Value 95%CI

VPI 3.322 ** [0.013, 0.049]
Water 4.834 ** [0.080, 0.189]
Sky 4.633 ** [0.078, 0.193]

Building
Constant −0.227 [−1.990, 1.579] 52.377 ** [28.371, 30.590]

Visual
Variables

Female

Valence_FER
Adj. R2 = 0.131

Arousal_FER
Adj. R2 = 0.178

t-Value 95%CI t-Value 95%CI

VPI 6.996 ** [0.072, 0.128]
Water 4.387 ** [0.125, 0.329]
Sky 5.915 ** [0.206, 0.413] 4.541 ** [0.055, 0.138]

Building 3.688 ** [0.104, 0.342] 4.035 ** [0.047, 0.137]
Constant −4.879 ** [−32.069, −13.612] 15.209 ** [18.232, 23.662]

Note: ** ≤ 0.01. Model 2 included VPI, Water, Sky, and Building as independent variables.

Table 5. Model 3: Gender differences in backward stepwise regression on the relationship between
the most detailed visual variables and FER emotional data.

Visual
Variables

Male

Valence_FER
Adj. R2 = 0.258

Arousal_FER
Adj. R2 = 0.108

t-Value 95%CI t-Value 95%CI

Tree −6.101 ** [−0.237, −0.121] −1.865 * [−0.088, 0.002]
Grass
Shrub −4.152 ** [−0.080, −0.028] −4.313 ** [−0.060, −0.022]
Water 4.097 ** −3.073 ** [−0.078, −0.017]
Sky [0.059, 0.169] −3.089 ** [−0.127, −0.028]

Building −2.377 * [−0.195, −0.018] −3.527 ** [−0.144, −0.041]
Constant 10.485 ** [6.968, 10.195] 27.773 ** [33.079, 38.133]

Visual
Variables

Female

Valence_FER
Adj. R2 = 0.175

Arousal_FER
Adj. R2 = 0.245

t-Value 95%CI t-Value 95%CI

Tree 7.131 ** [0.128, 0.226]
Grass 5.813 ** [0.049, 0.099] 6.480 ** [0.062, 0.117]
Shrub 8.207 ** [0.096, 0.157]
Water 1.808 [−0.004, 0.087]
Sky 1.851 [−0.003, 0.095] 6.525 ** [0.121, 0.226]

Building 5.487 ** [0.092, 0.195]
Constant −2.318 * [−3.177, −0.257] 10.314 ** [13.586, 20.007]

Note: * ≤ 0.05, ** ≤ 0.01. Model 3 included Tree, Grass, Shrub, Water, Sky and Building as independent variables.

Model 1, which included GVI, Sky, and Building as independent variables, indicated
that these variables accounted for approximately 7.6% and 13.5% of the variation in valence
perception data for men and women, respectively (Table 3). This finding suggests that
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while a modest proportion of the variance in emotional responses can be explained by these
variables, there is a significant gender disparity in how they influence valence perception.

Model 2, which separated VPI and Water from GVI and included them as independent
variables alongside Sky and Building, led to a significant increase in the adjusted R2 for
arousal data in both genders, from 0.000 to 0.178 for females and from 0.034 to 0.045 for
males (Table 4). This enhancement in model fit highlights the importance of these variables
in predicting emotional arousal, particularly for females. Water and Sky emerged as the
strongest predictors of valence for both genders, with Building also positively influencing
female valence outcomes. VPI was identified as a key indicator for arousal across genders,
with significant associations observed between sky and building variables and high levels
of female arousal (t = 4.541 ** and t = 3.688 **, respectively).

In Model 3, after further dividing VPI into Tree, Grass, and Shrub, six detailed vari-
ables were employed as independent variables, resulting in the greatest explanatory power
compared to the previous models (Table 5). The adjusted R2 for valence in males notably
increased to 0.258, indicating that these variables accounted for 25.8% of the variation in the
valence dimension for men. For females, these variables explained 17.5% of the variation
in the valence dimension. Additionally, the adjusted R2 for arousal in males increased to
0.108, and for women, to 0.245. The gender-specific analyses revealed markedly divergent
outcomes; for valence, the proportion of grass was the sole predictor for women’s outcomes,
whereas for men, all visual variables except the proportion of water had negative associa-
tions with the outcomes. For arousal predictions, all variables exhibited negative impacts
on males, while for women, these variables demonstrated positive effects. Notably, water
content predominantly influenced men’s valence (t = 4.097 **), with a negative outcome for
arousal (t = −3.073 **). For women, valence outcomes were primarily determined by the
proportion of grass (t = 5.813 **), with positive results for arousal as well (t = 6.480 **).

These results underscore the complex and gender-specific relationships between
visual variables and emotional perception, providing valuable insights into how different
environmental elements may elicit distinct emotional responses based on gender.

3.4. Gender Differences in the Interrelationship Between Aesthetic Preference and Perception Data
3.4.1. Gender Differences in the Interrelationship Between Aesthetic Preference and
Self-Reported Perception Data

The relationship between aesthetic preference and self-reported perception data ap-
pears consistent across genders, with no significant gender-specific trends identified. Within
both male and female groups, significant correlations were observed between self-reported
valence, arousal, and preference ratings (Table 6). These findings suggest a close link be-
tween individuals’ emotional responses and their aesthetic evaluations of the environment.

Table 6. Two-tailed Pearson correlations between aesthetic preference and two SAM data for both genders.

Aesthetic Preference
Pearson’s r, p Value

Male Female

Valence_SAM 0.801 ** 0.000 0.702 ** 0.000
Arousal_SAM 0.487 ** 0.000 0.433 ** 0.000

Note: ** ≤ 0.01.

However, when participants assess their experiences using the SAM scale, these
ratings may reflect an overall perception of the scene rather than capturing subtle gender
differences in emotional responses. The SAM scale, as a static and holistic measure, may
not fully reveal the dynamic emotional variations between genders. In contrast, dynamic
measures like FER can detect instantaneous emotional changes that self-reported measures
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may overlook, highlighting the value of complementary methodologies in uncovering
significant gender disparities.

3.4.2. Gender Differences in the Relationship Between Aesthetic Preference and FER
Perception Data

Our analysis explored the correlations between aesthetic preference and the highest,
average, and minimum FER emotional response values (Table 7), revealing significant
gender-specific differences. These findings highlight how emotional response patterns
influence aesthetic preferences differently for men and women.

Table 7. Two-tailed Pearson correlations between aesthetic preference and six calculated FER emo-
tional perception data for both genders.

Aesthetic Preference
Pearson’s r, p Value

Male Female

Valence_FER_max 0.249 * 0.018 0.205 0.053
Valence_FER_ave 0.094 0.292 0.205 0.053
Valence_FER_min 0.112 0.292 0.205 0.053
Arousal_FER_max −0.037 0.732 0.205 0.053
Arousal_FER_ave 0.010 0.926 0.298 ** 0.004
Arousal_FER_min 0.017 0.873 0.158 0.137

Note: * ≤ 0.05, ** ≤ 0.01. Valence_FER_max: The maximum FER valence data of each video clip. Valence_FER_ave:
The average FER valence data of each video clip. Valence_FER_min: The minimum FER valence data of each
video clip. Arousal_FER_max: The maximum FER arousal data of each video clip. Arousal_FER_ave: The average
FER arousal data of each video clip. Arousal_FER_min: The minimum FER arousal data of each video clip.

For male participants, the highest valence score for each clip was positively and
significantly correlated with aesthetic preference (p < 0.05), suggesting that peak moments
of positive emotion strongly influence their aesthetic evaluations. In contrast, for female
participants, the average arousal score for each clip showed a positive and significant
correlation with aesthetic preference (p < 0.01), indicating that sustained emotional arousal
is a key factor in their aesthetic judgments.

These findings underscore the different ways in which emotional responses and
aesthetic preferences are linked, further highlighting the importance of accounting for
gender-specific emotional dynamics when studying perceptions of UGBS.

4. Discussion
4.1. Comparative Analysis of FER and Self-Reported Measures in Capturing Gender-Specific
Emotional Perceptions

Our study leveraged FER technology to detect gender differences in emotional re-
actions to urban visual elements, revealing significant distinctions based on gender. The
FER analysis, which captured participants’ facial responses, provided comprehensive and
dynamic emotional perception data at the frame level. This approach, employing valence
and arousal metrics, offered a deeper understanding that surpasses traditional image-level
or video-level assessments, thus providing more nuanced insights than aesthetic preference
evaluations and SAM self-reported assessments [44].

The FER data highlighted that the lag between participants’ perceptions and their
SAM reporting might result in aesthetic preferences that do not accurately reflect their
true emotions. Our findings revealed no direct correlation between the visual elements of
panoramic UGBS images and participants’ self-reported SAM emotions, suggesting that
subjective evaluations may not fully capture the nuanced emotional responses triggered by
visual stimuli.
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By capturing real-time emotional changes at the frame level, FER allowed us to reliably
assess unconscious response fluctuations and short-lived emotional changes, overcoming
the limitations inherent in self-reported ratings. This divergence from previous studies that
focused on cognitive and neural responses to image perception underscores the positive
emotional impacts and therapeutic benefits of UGBS.

Interestingly, our study found that men’s aesthetic preferences were influenced by
the highest valence scores of clips, while women’s preferences correlated positively with
average arousal levels. This indicates distinct emotional processing and aesthetic appreci-
ation between genders, with men potentially giving higher overall ratings to scenes that
evoke the most pleasant emotions, and women assigning higher ratings to scenes that elicit
strong arousal.

4.2. Gender-Specific Emotional Responses to UGBS Visual Variables

Utilizing deep learning, our research conducted an in-depth analysis by associating
emotions with urban features on a frame-by-frame basis. Overall, both genders exhibited
significant perception changes in response to alterations in visual variables, with notable
gender differences: women generally experienced more intense positive emotions, while
men showed quicker arousal responses to changing visuals. This approach successfully
pinpointed moments of emotional transition, accurately identifying instances where partic-
ipants’ emotions exhibited subtle changes, thereby detecting subtle visual cues.

Grassy areas were found to evoke intense pleasantness in women and rapidly arouse
men’s emotions, indicating distinct emotional responses to green space elements across
genders. These results align with previous research highlighting a substantial correlation
between the visibility of grass in an image and its stress-reducing, mentally restorative, and
positive emotional response-inducing capabilities [67,68].

Waterscapes, known for their healing and wellness benefits, play a crucial role in
therapeutic landscape design [9,69]. Research on their impact on well-being, especially
considering gender differences, remains limited. Our study finds that blue spaces may
induce calmness across genders but with notable differences. With an increase in water
content, women may experience decreases in both valence and arousal levels, suggesting an
intensified feeling of calmness. In contrast, for men, a higher proportion of water correlates
with increased pleasure and reduced arousal, signaling a more profound relaxation.

Scene configurations can evoke diverse emotional responses. The style of building may
influence the emotional responses of participants, with noticeable variations among women.
Well-designed flowerbeds impact emotions differently, inducing significant mood shifts in
both genders. Not all natural elements evoke universally positive reactions; for instance,
vivid flowers may trigger negative responses due to perceived visual clutter, indicating
that the organization and complexity of a scene are critical in determining its emotional
impact. These findings underscore the importance of considering design configurations’
emotional effects in future research [70].

These gender-specific responses to UGBS visual variables lay the groundwork for
crafting urban design strategies that are more nuanced and attuned to the emotional well-
being of all users. By considering these differences, urban design can become an instrument
for enhancing emotional well-being, leading to the creation of more inclusive and livable
cities that cater to the diverse emotional landscapes of their inhabitants.

4.3. Implications for Future Urban Planning and Inclusive Urban Design

The gender disparities in emotional responses to UGBS revealed by our study under-
score the importance of considering emotional well-being in urban design. Urban designers
must prioritize the emotional needs of all users, particularly in spaces intended to foster
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health and well-being. For example, in settings such as parks, hospitals, or community
healing gardens, increasing grassy areas can enhance pleasant experiences for women
and foster rapid emotional engagement among men. Strategically incorporating green
elements, like open lawns and tree canopies, can maximize their restorative potential while
maintaining visual harmony.

Targeted planning of blue spaces is also essential in contexts demanding tranquility
and relaxation, such as waterfront promenades or wellness centers. The inclusion of
diverse environmental features, such as water bodies, greenery, and open spaces, should be
carefully tailored to cater to the distinct emotional needs of men and women. For instance,
water features could provide a calming environment for women while promoting relaxation
and pleasure for men. Incorporating interactive elements like fountains or reflective pools
may further amplify these therapeutic benefits.

The distinct emotional processing and aesthetic appreciation across genders also high-
light the need to move beyond a one-size-fits-all approach in urban design. Everyday urban
environments, such as public squares or pedestrian-friendly zones, benefit from designs
that reduce visual clutter while ensuring aesthetic diversity. Coordinated floral arrange-
ments or harmonized architectural styles can create visually pleasing spaces, particularly
for women, while avoiding overly complex visual stimuli that might detract from overall
well-being. However, these gender-specific responses may be most impactful in specialized
therapeutic environments rather than in general urban contexts.

The use of FER technology in urban design research offers a valuable tool for assessing
real-time emotional responses, providing actionable insights for creating inclusive and
responsive urban environments. The application of Stress Reduction Theory (SRT) and
Attention-Restoration Theory (ART) [71,72] in settings like rehabilitation centers, meditation
zones, or urban parks can help optimize these spaces for emotional restoration. Future
urban planning should adopt participatory design processes and leverage advanced tools
such as AI-driven emotional analytics to refine designs, ensuring they are effective and
inclusive for diverse user groups.

These findings establish the foundation for more nuanced urban design strategies,
incorporating a variety of natural elements capable of evoking positive emotions and
aesthetic pleasure. By addressing varying sensitivities and preferences, urban planning can
contribute to the creation of more inclusive and livable cities that support the emotional
well-being of all users.

4.4. Limitations and Future Outlook

This study introduces a pioneering approach to assessing gender-specific emotional
responses to UGBS by integrating FER technology with self-report measures. Our experi-
ments demonstrate the potential of FER in capturing nuanced emotional differences, which
traditional self-report methods may overlook. While our study has laid the groundwork
for understanding these dynamics, there are several avenues for future research and devel-
opment. First, relying on GSV-based images or videos to represent UGBS may fail to fully
capture the dynamic and immersive nature of real-world experiences. Future studies could
use virtual reality (VR) simulations or complement lab-based experiments with field studies
to provide a more holistic and realistic assessment of UGBS experiences [73,74]. Second, the
current study serves as a proof of concept, conducted with a limited number of participants
in the FER experiment due to the complexities involved in facial expression analysis (Table
S1 summarizes the sample sizes used in related studies). Future work will expand this
sample size to enhance the generalizability of our findings and provide a more comprehen-
sive understanding of gender dynamics in emotional responses to UGBS. Third, we plan to
extend our research to different urban environments and cultural contexts [70], leveraging
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the transferable nature of our methodological framework. This will allow us to explore
the universality of our findings and tailor urban design strategies to meet the emotional
needs of diverse populations globally. Fourth, relying solely on FER to assess emotional
responses may not capture the full complexity of human emotions. We plan to incorporate
additional physiological and socio-cultural variables into our model to develop a more
individual-tailored, human-centric approach to urban green space design. For instance,
we aim to include physiological measures such as heart rate variability, blood pressure,
and skin conductance alongside facial expression analysis. This multimodal approach will
enrich our data on each participant and possibly influence the model performance, provid-
ing a more comprehensive understanding of how different factors contribute to emotional
responses in UGBS. Fifth, further investigation into other aspects of UGBS, such as safety,
restorative potential, and social significance, is essential for understanding their effects
on emotional perceptions [72,75,76]. These dimensions are crucial for a comprehensive
understanding of UGBS effects on well-being and for informing inclusive urban design
strategies. While our study provides valuable insights into gender differences in UGBS
perception, there is a need for continued research to address these limitations and explore
the broader implications of our findings.

5. Conclusions
The study utilized a dual-method approach, combining FER and self-reporting, to

investigate gender differences in human perception and aesthetic preferences through
panoramic video and static images. FER data tracked participants’ immediate and un-
conscious emotional reactions, providing insights into how urban elements influence
human perception. Our findings reveal that changes in visual variables significantly impact
perception across genders. Women typically exhibit more intense pleasant emotions in
response to UGBS, while men show quicker reactions to visual changes. The study indicates
that men are more likely to rate scenes higher when peak positive emotions are evoked,
whereas women prefer scenes that induce higher arousal levels. The presence of grassy
areas, for instance, can evoke delightful and relaxing emotions in women and arousal
responses in men. Furthermore, blue spaces have a calming effect on both genders, with
men experiencing increased relaxation as the presence of water grows. This comparative
analysis deepened our understanding of gender-specific perceptions and demonstrated
the advantages of FER technology in assessing real-time emotional responses compared
to traditional self-reporting methods. The integration of FER into urban design research
provides a robust tool for evaluating emotional impacts, enabling more nuanced and in-
clusive design strategies. Prioritizing gender-sensitive designs in UGBS by incorporating
grassy areas, water features, and visually harmonious elements tailored to emotional needs,
while leveraging participatory processes and advanced tools like FER, can create spaces
that support emotional well-being and social cohesion. By addressing emotional dynamics
and gender-specific insights, urban planners can design spaces that enhance mental health,
foster inclusivity, and contribute to more livable and harmonious cities.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s25030748/s1, Questionnaire S1: Personal Background Information;
Questionnaire S2: Aesthetic Preference; Questionnaire S3: SAM Scale; Figure S1: Based on hashtag
rankings, the study (A) selected ten cultural heritage sites and (B) created primary stimulation
through panoramas taken from specific observation points at each site. The symbol “CX” in the
upper left corner of each panorama denotes the display order for the related video clips; Figure S2:
Screenshots of the primary stimulation panoramic video clips; Figure S3: FER model architecture and
workflow. The images are from the Aff-wild2 dataset, which is publicly available and designed for
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facial expression recognition research; Table S1: Statistics on the number of volunteers in relevant
studies. References [29,77–81] are cited in the supplementary materials.
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