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Abstract: This study introduces a motion-sickness-reducing control strategy aimed at en-
hancing ride comfort in Electric Autonomous Vehicles (EAVs). For lateral control, the for-
ward look-ahead distance was adaptively adjusted based on the Motion Sickness Dose
Value (MSDV) analysis from ISO 2631-1, effectively mitigating lateral acceleration and its
motion-sickness-related frequency components, leading to a reduced MSDV. For longitu-
dinal control, Linear Quadratic Regulator (LQR) optimal control was applied to minimize
acceleration, complemented by a band-stop filter specifically designed to attenuate mo-
tion-sickness-inducing frequencies in the acceleration input. The bandwidth of the band-
stop filter used in this study was designed based on the motion-sickness frequency
weighting specified in ISO 2631-1. The simulation results of the proposed control indicate
a significant reduction in MSDV, decreasing from 16.3 to 10.46, achieving up to a 35.8%
improvement compared to comparative control methods. While the average lateral posi-
tion error was slightly higher than that of the comparative controller, the vehicle consist-
ently maintained lane adherence throughout path-following tasks. These findings under-
score the potential of the proposed method to simultaneously mitigate motion sickness
and achieve a robust path-following performance in autonomous vehicles.

Keywords: autonomous vehicle; motion sickness; band-stop filter; ride comfort;
path-following

1. Introduction

Electric Autonomous Vehicles (EAVs) have become a cornerstone of future transpor-
tation systems, propelled by recent technological advancements. These vehicles are
equipped with sophisticated systems capable of autonomously planning routes and per-
ceiving their surroundings, ensuring safe operation without human intervention. Signifi-
cant efforts have been devoted to enhancing the path-following performance of autono-
mous vehicles. For instance, deep learning techniques have been leveraged to improve
path-following capabilities [1], and reinforcement learning approaches have enabled ve-
hicles to autonomously learn and navigate complex paths [2]. Moreover, model predictive
control (MPC) has been applied to ensure accurate path-following, even on intricate and
winding roads [3]. However, while these advancements have improved the path-follow-
ing performance, they have also intensified the vehicle’s dynamic behavior, potentially
compromising ride comfort.

Sensors 2025, 25, 819

https://doi.org/10.3390/s25030819



Sensors 2025, 25, 819

2 of 18

To address motion sickness, several studies have explored methods such as enhanc-
ing the environment or providing passengers with directional information. For example,
some studies predict the likelihood of motion sickness based on upcoming curves and
notify passengers in advance [4], while others use onboard audio systems to improve pas-
sengers’ ability to anticipate vehicle movements [5]. Additionally, vibration patterns have
been proposed to warn passengers of vehicle dynamics [6-8], and display systems have
been designed to reduce sensory mismatches by providing real-time environmental infor-
mation [9,10]. Virtual Reality (VR) technologies have also been explored to alleviate mo-
tion sickness in passengers [11]. These approaches primarily focus on reducing sensory
conflicts by offering external cues. However, they often require passengers to pay close
attention, potentially leading to inconvenience and restrictions on freedom of movement.

In contrast, approaches directly addressing motion sickness through vehicle control
remain underexplored, particularly in autonomous vehicles. Active suspension systems
have been utilized to reduce motion sickness by controlling vertical, pitch, and roll dy-
namics [12-15], while optimization methods such as Particle Swarm Optimization (PSO)
have been used to minimize passenger discomfort [16]. Despite these efforts, studies fo-
cusing on dynamic control tailored for autonomous vehicles are still relatively sparse.

Unlike conventional vehicles, autonomous vehicles lack a driver, making passengers
more sensitive to vehicle motions and increasing the likelihood of motion sickness. This
condition primarily arises from sensory conflicts between vestibular inputs and visual in-
formation, with the highest sensitivity occurring at a low frequency of 0.16 Hz [17]. The
severity of motion sickness is influenced by the magnitude, frequency, and duration of
acceleration exposure.

To address these challenges, this study proposes a novel motion-sickness-mitigating
control strategy for autonomous vehicles. The proposed approach integrates lateral con-
trol using a variable look-ahead distance (LAD), derived from a motion sickness analysis
of the forward look-ahead distance in the Pure Pursuit controller, with longitudinal con-
trol combining a Linear Quadratic Regulator (LQR) and a band-stop filter to suppress ac-
celerations in the critical 0.16 Hz frequency range. Unlike existing methods that rely on
external cues, this strategy directly controls the vehicle’s dynamic behavior, offering a
unique solution for alleviating motion sickness.

The effectiveness of the proposed algorithm was validated through simulations con-
ducted in MATLAB/Simulink and Carmaker environments, with the Motion Sickness
Dose Value (MSDV) specified in ISO 2631-1 used as the evaluation metric [17]. The struc-
ture of this paper is as follows: Section 2 reviews motion sickness evaluation methods,
Section 3 presents the proposed control framework, and Section 4 describes the simulation
environment and validation results. Finally, Section 5 discusses the findings and future
research directions while providing the conclusion.

2. Motion Sickness Evaluation

Motion sickness (MS) is a critical factor influencing ride comfort, arising primarily
from discrepancies between expected and actual motion. Passengers are significantly
more susceptible to motion sickness compared to drivers. In autonomous vehicles, where
all occupants are passengers, the likelihood of motion sickness increases dramatically. A
recent study highlights that approximately two-thirds of autonomous vehicle passengers
are expected to experience motion sickness, posing a significant barrier to widespread
adoption and commercialization of autonomous vehicles [18].

Evaluation methods for motion sickness include psychological surveys, physiologi-
cal signal measurements, and the Motion Sickness Dose Value (MSDV). MSDV provides
a robust and quantitative measure of motion sickness, making it widely applicable for
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evaluating the effectiveness of mitigation strategies. ISO 2631-1 primarily evaluates mo-
tion sickness in the vertical (Z-axis) direction using frequency weighting. However, prior
research has demonstrated that horizontal (X, Y-axis) motion plays a dominant role in
inducing motion sickness in vehicles, surpassing the effects of vertical (Z-axis) accelera-
tion [19]. Notably, horizontal motion induces more severe symptoms than vertical motion,
with the greatest sensitivity occurring at frequencies below 0.2 Hz [20,21]. This finding
underscores the need for control strategies that specifically address horizontal motion to
improve passenger comfort.

Despite its importance, addressing motion sickness in autonomous vehicles through
direct vehicle control remains a complex challenge. Horizontal (X, Y-axis) accelerations
are inherently more difficult to predict and control due to the variability in driving condi-
tions and the dynamic nature of autonomous systems. These challenges necessitate inno-
vative control strategies capable of reducing motion sickness while maintaining overall
vehicle performance.

Based on these insights, this study investigates a control method to reduce MSDV in
autonomous vehicles by applying frequency weighting to horizontal (X, Y-axis) accelera-
tions. To quantitatively assess motion sickness, the MSDV is computed as follows:

Mspv = {[][a, (O }a (1)

where a,, and a,, representthe Wy frequency weighted longitudinal and lateral ac-
celerations, respectively, and T denotes the driving duration. This study quantitatively
evaluates motion sickness based on MSDV.

The factors influencing MSDV (Motion Sickness Dose Value) include acceleration,
the frequency of acceleration, and travel time. Lateral acceleration and the frequency of
lateral acceleration are expected to vary depending on the settings of the path-following
controller, which could influence motion sickness. Similarly, longitudinal acceleration and
the frequency of longitudinal acceleration, caused by acceleration and deceleration during
speed control, are also anticipated to affect motion sickness. This paper proposes a method
to reduce vehicle acceleration and the motion sickness-related frequency of acceleration
through control strategies aimed at mitigating MSDV.

3. Motion Sickness Reduction Control Algorithm

In this study, the Pure Pursuit controller, which exhibits variations in path-following
performance depending on the look-ahead distance setting, was analyzed to evaluate
MSDV under different look-ahead distances. Based on the analysis results, a motion-sick-
ness-mitigating variable look-ahead distance is proposed. Additionally, by combining
LOR optimal control with a band-stop filter, longitudinal acceleration and longitudinal
acceleration components within the motion-sickness-sensitive frequency range are re-
duced, ultimately lowering the MSDV. The overall framework of the motion sickness re-
duction control is illustrated in Figure 1.
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Figure 1. Motion sickness reduction control diagram.

3.1. Lateral Control
3.1.1. Pure Pursuit Algorithm

In this study, it is anticipated that both the lateral acceleration and the frequency of
the lateral acceleration will vary depending on the path-following control. To analyze this,
the Pure Pursuit algorithm, which significantly affects path-following performance based
on the look-ahead distance settings, was utilized to conduct motion sickness analysis ac-
cording to variations in the look-ahead distance.

The Pure Pursuit algorithm is a geometric path-tracking method that follows a target
point on a predefined path. This target point is located within a configurable look-ahead
distance (LAD) from the rear axle center of the vehicle. The algorithm is widely used due
to its simplicity and effectiveness in achieving smooth path-following.

The foundation of the Pure Pursuit algorithm lies in the Ackermann steering angle.
The Ackermann steering angle, derived from the bicycle model, describes the relationship
between the front wheel steering angle and the turning radius. This relationship assumes
low-speed operation where tire—road contact is constrained, and tire slip does not occur.
The steering angle and the turning radius are related as follows:

tan(8) = % (2)
5 = tan (%) @3)

Here, L represents the wheelbase, and R denotes the turning radius. These equations
form the basis for the geometric steering model.

The derivation of the Pure Pursuit algorithm is shown in Figure 2 and involves the
following geometric relationships:

sin(a) = 5(%) 4)
sin(a) sin (% - 0‘) L )
l,, R (E)

Here, o represents the angle between the rear axle and the predicted target point, 1;
denotes the look-ahead distance, and e represents the cross-track error, which is the per-
pendicular distance between the vehicle’s current position and the target path. By inte-
grating these relationships with the Ackermann steering angle Equation (3), the Pure Pur-
suit algorithm is reduced to the following final form:
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tan(s) = 2L5M@ 6)
I
§(PP) = tan™! (—2 L Slin(a(t))> (7)
d

This equation demonstrates how the look-ahead distance influences the steering an-
gle, enabling smooth and stable path tracking along curved paths.

Re felrence
Path
Figure 2. Pure Pursuit algorithm.

The choice of look-ahead distance is a critical factor in the performance of the Pure
Pursuit algorithm. A shorter look-ahead distance increases sensitivity to small path devi-
ations, potentially causing oscillations and unstable driving. Conversely, a longer look-
ahead distance reduces sensitivity, which may result in corner cutting and imprecise path
tracking. Therefore, selecting an optimal look-ahead distance is essential for balancing
smoothness and accuracy in path-following performance. The changes in vehicle dynam-
ics according to look-ahead distance settings are illustrated in Figure 3.

Figure 3. Changes in vehicle dynamics according to look-ahead distance settings.

This study aimed to analyze the acceleration and acceleration frequency associated
with the look-ahead distance setting of the Pure Pursuit algorithm, which exhibit signifi-
cantly different behaviors, and to propose a motion-sickness-reducing look-ahead dis-

tance.
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3.1.2. Motion Sickness Analysis Based on Look-Ahead Distance

To analyze the effects of look-ahead distance (LAD) variations on motion sickness in
the Pure Pursuit algorithm, a simulated road network was constructed using high-preci-
sion maps of the K-City autonomous vehicle testing facility provided by the Korea Auto-
mobile Testing and Research Institute (KATRI). The simulation test routes in K-City are
shown in Figure 4. The vehicle used in the simulations was the KAMO-U autonomous
shuttle, developed by the Korea Automotive Technology Institute (KATECH). All anal-
yses were conducted at speeds of up to 40 kph.
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\

Figure 4. Simulation test routes in K-City.

For the analysis of Motion Sickness Dose Value (MSDV), three routes were selected
as shown in Figure 5: Route 1 represents urban roads, Route 2 includes both urban and
suburban roads, and Route 3 consists entirely of suburban roads. For each route, the fre-
quency-weighted acceleration, peak-to-peak acceleration, and MSDV were evaluated un-
der varying LAD settings.

Three types of routes were selected for the MSDV analysis based on varying look-
ahead distances, as shown in Figure 5: Route 1 represents urban roads, Route 2 includes
both urban and suburban roads, and Route 3 consists entirely of suburban roads. For each
route, the frequency weighted acceleration, peak-to-peak acceleration, and MSDV were
evaluated under different look-ahead distances.

The results showed that increasing the look-ahead distance reduced the dominant
frequency weighting and the peak-to-peak acceleration.

Route 3 (Suburban Roads)

Figure 5. Three routes in K-City for motion sickness analysis (Route 1, Route 2, Route 3).
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The analysis results showed that increasing the LAD significantly reduced both the
dominant frequency weighting and the peak-to-peak acceleration. In the Pure Pursuit al-
gorithm, the LAD is a critical parameter for determining the steering angle by considering
the target point relative to the vehicle’s current position. A longer LAD allows the vehicle
to anticipate path changes earlier, enabling smoother steering inputs and improved path-
following performance.

As shown in Figure 6, increasing the LAD effectively reduced the motion-sickness-
inducing frequency components of lateral acceleration. This reduction in frequency com-
ponents led to a significant decrease in the frequency weighting values (wy), thereby con-
tributing to an overall reduction in MSDV. Specifically, the smoother trajectory generated
by alonger LAD effectively mitigated vibrations within the critical frequency range asso-
ciated with motion sickness.
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Figure 6. Frequency weighting comparison based on look-ahead distance across the three routes.

Additionally, as illustrated in Figure 7, the LAD had a direct impact on lateral accel-
eration. A longer LAD reduced abrupt steering inputs, significantly decreasing both the
maximum values and the variation rates of lateral acceleration. This reduction in lateral
acceleration magnitude lowered the frequency-weighted acceleration used in the MSDV
calculation, ultimately leading to a substantial decrease in MSDV.
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Figure 7. Comparison of peak-to-peak lateral acceleration based on look-ahead distance across the

three routes.

These findings indicate that LAD can serve as a crucial control parameter for mini-
mizing motion sickness. Furthermore, by appropriately adjusting the LAD, it is possible
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to effectively manage the trade-off between path-following performance and motion sick-
ness mitigation. Future research should explore optimal LAD adjustment strategies under
various road conditions and driving scenarios to further enhance the balance between ride
comfort and path-following accuracy.

3.1.3. Motion Sickness Reducing Variable Look-Ahead Distance

The MSDV analysis demonstrated that a longer look-ahead distance consistently re-
sulted in lower MSDV values. Based on this finding, a variable look-ahead distance was
employed to reduce motion sickness. The variable look-ahead distance diagram for mo-
tion sickness mitigation is illustrated in Figure 8. To ensure that the vehicle remained
within lane boundaries, a regression analysis was conducted to determine the maximum
allowable look-ahead distance while considering the vehicle’s lane width and cross-track
error.

To derive the variable look-ahead distance that prevents lane departure, the relation-
ship between the turning radius, steering angle, and cross-track error (CTE) was analyzed.
The turning radius R is expressed as follows:

R= LAD 8
2 sin (a) ®
Using this turning radius, the cross-track error is calculated as follows:

CTE = R — (r — Max CTE) ©)

where 7 is the vehicle’s lateral position relative to the lane center, and Max CTE is the
maximum allowable lateral offset.

The maximum cross-track error is constrained by the lane width (IW;) and vehicle
width (W,) as follows:

W, — W,
Max CTE = (%) = 0.88m (10)

Based on these constraints, a linear regression model for the maximum look-ahead
distance (L) was developed:

Linear fit : Ly = 0.2118 * k + 6.14 (11)
Additionally, a quadratic regression model was derived for greater accuracy:
Quadratic Fit : Ly = —0.0013 * k* + 0.3539 = k + 3.2983 (12)

The results for the maximum look-ahead distance from the linear and quadratic re-
gression analyses are shown in Figure 9. The linear regression analysis demonstrated high
reliability, with a coefficient of determination (R?) of 0.9734. This high R? value reflects
the simulation’s fidelity and the minimal tire slip observed at the maximum speed of 40
kph. Given its high reliability and suitability for real-time computation, the linear regres-
sion model was ultimately selected for implementation.
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Figure 8. Variable look-ahead distance diagram for motion sickness mitigation.

The calculated look-ahead distance was set with a 10% safety margin for stability,
with a maximum look-ahead distance of 20 m in straight sections and a minimum of 5 m
in curved sections. This value was determined based on the curvature radius and the ve-
hicle’s wheelbase. The variable look-ahead distance control dynamically adapts to the cur-
vature radius. In the simulation environment, the current position and the set preview dis-
tance are used with GPS to obtain the curvature at that distance from the preloaded path
information. Based on this curvature, the variable look-ahead distance control is applied,
calculating the look-ahead distance in real time to prevent lane departures and reduce mo-
tion sickness. By utilizing cross-track error and lane width parameters, this control method
strikes a balance between motion sickness mitigation and path-following performance.

0 Maximum LAD vs. Curve Radius

O Original Data
Linear Fit
Quadratic Fit
25 - 5 N

0

20t o

Maximum LAD (m)

\o

10 20 30 40 50 60 70 80 90 100
Curve Radius (m)

Figure 9. Maximum look-ahead distance results for linear regression and quadratic regression.

For comparison, the control algorithm proposed by Kim et al., which uses speed-
adaptive look-ahead distances [22], was implemented. The corresponding equation is
given as follows (13). These findings demonstrate that LAD can be used as a control pa-
rameter to minimize motion sickness. This facilitates balancing the trade-off between
path-following performance and passenger comfort.
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5 v < 15kph
LAD :{ 08 Xv 15kph (v {40 kph (13)
20 40kph < v

Speed control was implemented using feedback and proportional control to ensure
the target speed matched the curvature of the path. The MSDV comparison results for
three paths, based on reference LAD and variable LAD, are presented in Table 1.

Table 1. Comparison of MSDV Results for three routes: Variable LAD and Reference LAD.

Reference LAD Variable LAD
Route MSDV MSDV
(m/sl.S) (m/sl.S)
Route 1 33.27 20.97
Route 2 15.87 11.09
Route 3 11.12 7.47

3.2. Longitudinal Control

The longitudinal control aims to reduce the Motion Sickness Dose Value (MSDV) by
minimizing acceleration and frequency-weighted acceleration, which are causally related
to MSDYV, during travel time. To achieve this, Linear Quadratic Regulator (LQR) optimal
control is utilized to reduce longitudinal acceleration, and a band-stop filter is designed
based on the frequency weighting function W; specified for MSDV. This filter attenuates
the low-frequency components of acceleration within the motion-sickness-sensitive range.
The filtered acceleration, which serves as the control input, effectively reduces motion
sickness-inducing frequencies. The longitudinal control diagram is shown in Figure 10.

a Accel/Brake
Vtarget = ?y ) ’ 7 LGR AcEeIeratTor: Filtered ’ Cont/roller
Band-Stop | acceleration
T i} Filter
Vehicle vehide
Path Speed Position

Information

JIF’G

= =3
v ' @= le Accel/Brake

Carmaker

Figure 10. Longitudinal control diagram.

3.2.1. LQR Speed Control

This study aims to reduce MSDV by minimizing acceleration through LQR optimal
control-based speed regulation and mitigating accelerations in the motion sickness fre-
quency range using a band-stop filter.

This study enhances the feasibility of real-time implementation by integrating con-
straints into LQR-based control. Prior research has addressed the constrained linear quad-
ratic regulation problem for linear systems through approaches such as dynamic pro-
gramming and partial quadratic function approximation techniques, as well as using
model predictive control (MPC) to efficiently manage constraints and tackle complex con-
trol challenges [23,24]. However, this study employs LOR control due to its inherent sim-
plicity, low computational cost, and suitability for real-time applications, particularly in
autonomous vehicles.

Although handling constraints in traditional LQR may pose potential stability chal-
lenges in specific scenarios, the proposed approach strikes a practical balance between
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computational efficiency and implementation feasibility. This makes it particularly ad-
vantageous for dynamic and complex real-time driving environments, offering a robust
and effective solution for the control of autonomous vehicles.

The state variable x is defined using position and speed, and the control input is
defined as acceleration.

x = Ax + Bu (14)
x=[pv] (15)
A= - 9

The control objective of the LQR controller is to find the optimal gain that minimizes
the cost function defined in Equation (17).

Ji =J. (xTQx+uTRu) dt (17)
0

The state weighting matrix @ and control weighting R represent the weights for the
cost function and control input, respectively. The optimal gain that minimizes the cost
function in Equation (18) can be determined by solving the Riccati equation.

ATP +PA—PBR'BTP+Q =0 (18)

Using the solution P obtained from the Riccati equation, the optimal gain K is cal-
culated as follows:

K = R™BTP (19)

The control input u, which minimizes the cost function, is computed using the fol-
lowing formula. To prevent sudden acceleration or deceleration, an upper limit for
+1.5m/s? is applied as shown in Equation (21).

u=—Kx. (20)

u = max(—1.5min(—Kx, 1.5) (21)

In this study, it is anticipated that both the lateral acceleration and the frequency of
the lateral acceleration will vary depending on the path-following control. To analyze this,
the Pure Pursuit algorithm, which significantly affects path-following performance based
on the look-ahead distance settings, was utilized to conduct motion sickness analysis ac-
cording to variations in the look-ahead distance.

3.2.2. Band-Stop Filter Design

A band-stop filter was implemented to reduce the low frequency components of ac-
celeration being generated during vehicle acceleration and deceleration. A Butterworth
filter was employed as the band-stop filter, referencing the frequency weighting function
W, defined in ISO 2631-1. The stopband was set between 0.08 Hz and 0.4 Hz. To imple-
ment the Butterworth filter as a band-stop filter, both a low-pass filter and a high-pass
filter are utilized in combination. The mathematical expressions for the low-pass and high-
pass filters are as follows:

_
frrae (22)

wc,lp

Hlp gw) =
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1
\/1 + (%)Zn

In this context, w, represents the cutoff frequency, and n is the filter order. The at-
tenuation of the designed band-stop filter was set to 10 dB, which helped reduce motion

th gw) = (23)

sickness while preventing significant increases in travel time and avoiding sudden decel-
eration and acceleration. The diagram of longitudinal control with motion-sickness fre-
quency reduction via acceleration filtering is presented in Figure 11.

0,081z \
Low-Pass
Filter
| &
Longitudinl ., SN
ongitudina = G e B :
Controller Acceleration Amplification Filtered Vehicle
Input Accls_;\:::mm
High-Pass

Filter

oatz |/

Figure 11. Diagram of longitudinal control with motion-sickness frequency reduction via accelera-
tion filtering.

3.2.3. Target Speed Based on Road Curvature

The target speed of the vehicle was determined using the relationship among speed,
curvature, and acceleration to ensure the lateral acceleration during cornering does not
exceed 3 m/s?, as specified in ISO 11270 for Lane Keeping Assistance Systems (LKASs).
The target speed equation is as follows:

a
Vtarget = \/ ta;get (24)

Here, Vigrgee is the target speed, aiqrger is the target lateral acceleration, and k is
the road curvature. By inputting the desired target lateral acceleration, the corresponding
speed based on curvature can be determined.

According to a highway engineering study, drivers adjust their speed to maintain a
lateral acceleration within the acceptable range of 0.2-0.4 g’s [25]. Another study indicates
that drivers manage their acceleration or braking to ensure their cornering lateral acceler-
ation stays within the range of 0.3-0.5 g’s [26]. In this study, based on the lateral accelera-
tion typically experienced by general drivers and the lateral acceleration limit enforced by
ISO 11270 for Lane Keeping Assistance Systems (LKAS), a limit of 3 m/s?is applied. How-
ever, these values, along with the control parameters, damping, and bandwidth, can be
adjusted based on individual or group requirements. Studies on personalized control
strategies for different driving styles and real-world conditions address the possibility of
adjusting these values. Research has highlighted the critical role of dynamically adjusting
control parameters based on road conditions and driver preferences to improve the adapt-
ability and performance of autonomous systems. Some studies have concentrated on uti-
lizing machine learning and predictive modeling to understand and classify driving styles
[27,28], while others have focused on integrating social and individual preferences into
decision-making processes for specific scenarios, such as lane changes or urban intersec-
tions [29,30]. Furthermore, methodologies inspired by human decision-making frame-
works have been proposed to address the complexities of mixed-traffic environments [31].
However, in this study, fixed values were used for comparison with the MSDV of the
existing path-following controller. Future work will focus on fine-tuning and optimizing
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the control parameters to better match the driver’s style, enabling a more personalized
control system.

4. Simulation and Result
4.1. Simulation Environment

To validate the proposed control method, a control environment was constructed us-
ing MATLAB/Simulink, and simulation tests were conducted using Carmaker. The test
vehicle was the autonomous shuttle KAMO_U, with a maximum speed of 40 km/h. De-
tailed specifications of the simulation vehicle are summarized in Table 2.

Table 2. Specifications of the simulation vehicle.

Autonomous Shuttle (KAMO_U)

Driveline Front Drive
Motor Power 91 kW
Max. Torque 310 Nm

Unload Weight 2500 kg
Length 5300 mm
Height 2500 mm

Wheelbase 3700 mm

Width 1735 mm

Rear overhang 800 mm
Tire 235/65 R17

The evaluation route was selected to include various conditions such as tight curves
and frequent turns in community and urban areas of K-City, merging sections and narrow
roads in suburban areas, and straight sections on highways, as shown in Figure 12.

Figure 12. Composite K-city Route for MSDV evaluation.

4.2. Simulation Results

For comparison, a control system using PID-based speed control and the speed-adap-
tive look-ahead distance for the Pure Pursuit algorithm was employed. The simulation
results, including MSDV, travel time, and maximum cross-track error, are summarized in
Table 3. These results demonstrate the effectiveness of the proposed method in reducing
motion sickness and maintaining lane stability across the evaluation routes.

Figure 13 compares the frequency components of lateral and longitudinal accelerations
for the controllers. The motion-sickness-reducing variable look-ahead distance effectively
reduced acceleration components in the frequency range associated with motion sickness.
Similarly, LOR optimal control and the band-stop filter significantly suppressed motion-
sickness-inducing frequency components in the longitudinal acceleration spectrum.

As aresult, the proposed method achieved a 35.8% reduction in MSDV compared to
the baseline controllers, as shown in Figure 14.
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Figure 15 compares vertical path errors. Although the proposed control exhibited
higher vertical path errors in curved sections than the baseline, the maximum vertical path
error remained within 0.776 m, ensuring the vehicle stayed within the lane. In contrast,
the baseline controller showed lower average vertical path errors but a higher maximum
error of 0.96 m. This occurred in narrow radius rotary sections due to the lack of curvature
consideration in the speed-adaptive look-ahead distance, leading to lane departure.

Table 3. Simulation results of comparative control and motion sickness reduction control on the K-

city evaluation route.

Comparative Motion Sickness Reduction
Control Control
MSDV (m/s?) 16.3 10.46
Travel Time (s) 300.2 295
Max Cross-Track Error (m) 0.96 0.776
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Figure 13. Frequency comparison for each controller: (a) frequency of lateral acceleration; (b) fre-

quency of longitudinal acceleration.
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Figure 15. Comparison of cross-track error for each controller.

The proposed method demonstrated significant improvements in reducing MSDV
and maintaining lane-keeping performance. However, several limitations must be ad-
dressed. First, while the use of the variable look-ahead distance effectively reduced
MSDV, it also increased the average cross-track error, which may indicate potential risks
in real-world driving conditions. Further optimization of the look-ahead distance is nec-
essary to improve overall stability. Second, although the computational efficiency of the
combined LQR and band-stop filter approach was validated in the given scenarios, addi-
tional evaluations under high-speed and highly dynamic conditions are required. Ad-
vanced control strategies, such as model predictive control (MPC) and predictive control,
could be considered to enhance performance. Finally, real-world testing is essential to
evaluate the effects of sensor noise, latency, and hardware limitations on the practical im-
plementation of the proposed method.

5. Conclusions

This study presented an integrated control framework designed to enhance ride qual-
ity and path-following accuracy in Electric Autonomous Vehicles (EAVs) while mitigating
motion sickness. The proposed approach combines lateral control using a variable look-
ahead distance (LAD) in the Pure Pursuit algorithm and longitudinal control through Lin-
ear Quadratic Regulator (LQR) optimization integrated with a band-stop filter. By directly
targeting motion-sickness-inducing accelerations in the frequency range defined by ISO
2631-1, this framework offers a practical solution to improve passenger comfort.

In lateral control, the adaptive adjustment of the LAD enabled a smoother path-fol-
lowing performance by reducing lateral acceleration and its motion-sickness-sensitive fre-
quency components. This adjustment significantly decreased the Motion Sickness Dose
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Value (MSDV) while maintaining lane adherence. For longitudinal control, LOR optimi-
zation coupled with a band-stop filter effectively attenuated longitudinal accelerations
within critical frequency ranges, balancing ride comfort and motion sickness mitigation.

Simulation results validated the effectiveness of the proposed framework, showing
significant reductions in MSDV and suppressing motion-sickness-inducing frequency
components in both lateral and longitudinal directions. The findings underscore the po-
tential of this scalable and adaptable control strategy for autonomous PBVs, offering ro-
bust performance across diverse driving conditions.

1.  The proposed control framework achieved a 35.8% reduction in MSDV, demonstrat-
ing its superior effectiveness compared to conventional control methods.

2. A frequency domain analysis confirmed substantial suppression of motion-sickness-
inducing accelerations in both lateral and longitudinal directions.

3. The combination of variable LAD and LOR optimal control with a band-stop filter
reduced MSDV while maintaining lane adherence, meeting the requirements for both
motion sickness mitigation and path-following performance.

Future work will focus on optimizing and precisely tuning the control parameters,
evaluating the performance under various traffic and road conditions, and validating the
control strategy’s applicability through real-world road tests.
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