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Abstract: The refinement of acquired well logs has traditionally relied on predefined rock
physics models, albeit with their inherent limitations and assumptions. As an alternative,
effective yet less explicit machine learning (ML) techniques have emerged. The integration
of these two methodologies presents a promising new avenue. In our study, we used four
ML algorithms: Random Forests (RF), Gradient Boosting Decision Trees (GBDT), Multi-
layer Perceptrons (MLP), and Linear Regression (LR), to predict porosity and clay volume
fraction from well logs. Throughout the entire workflow, from feature engineering to
outcome interpretation, our predictions are guided by rock physics principles, particularly
the Gardner relations and the Larionov relations. Remarkably, while the predictions them-
selves are satisfactory, SHapley Additive exPlanations (SHAP) analysis uncovers consistent
patterns across the four algorithms, irrespective of their distinct underlying structures.
By juxtaposing the SHAP explanations with rock physics concepts, we discover that all
four algorithms align closely with rock physics principles, adhering to its cause–effect
relationships. Nonetheless, even after intentionally excluding crucial controlling input
features that would inherently compromise prediction accuracy, all four ML algorithms and
the SHAP analysis continue to operate, albeit in a manner that seems irrational and starkly
contradicts the fundamental principles of rock physics. This integration strategy facilitates
a transition from solely mathematical explanations to a more philosophical interpretation
of ML-based predictions, effectively dismantling the traditional black box nature of these
ML models.

Keywords: machine learning; well logs; rock physics; SHapley Additive exPlanations
(SHAP); explainable artificial intelligence (XAI)

1. Introduction
Well logs are capable of capturing a diverse array of geophysical parameters within

the penetrated formations, encompassing caliper measurements, acoustic velocity, gamma-
ray radioactivity, neutron density, spontaneous potential, resistivity, nuclear magnetic
resonance, and more. These vast well logging datasets are extensively employed in com-
prehensively analyzing the physical attributes of the target strata, offering indispensable
insights into the geological composition and potential of hydrocarbon reservoirs [1,2].

Rock physics models are typically employed in the refinement of initially acquired
well logs, aimed at correcting inaccuracies or predicting missing data segments [3,4].
These models bridge the gap between macroscopic measured seismic properties and
microscopic rock features, such as porosity, resistivity, mineralogy, fluid saturation, and pore
pressure [5–7].These models can be broadly categorized into two types: empirical and
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physically based [8]. Physically grounded models, such as Gassmann’s equation, often
hinge on certain assumptions, thus restricting their scope of application [9–12]. In contrast,
empirical models, exemplified here by the Gardner relations and the Larionov relations, are
founded on experimental data and stem from straightforward regression analyses [13–17].
Despite their simplicity, these empirical models have demonstrated remarkable practicality
and widespread applicability in the petroleum industry [18,19].

Alternatively, machine learning (ML) algorithms offer a solution for correcting errors
or filling in gaps in well logs [20,21]. In recent years, the application of ML technology
has experienced a dramatic surge in popularity and adoption across the logging industry,
marking a significant leap in technological progress [22–25]. While rock physics relies
on explicit knowledge gained through extensive experience and experimentation, ML
algorithms depend on data training [26,27]. This often renders ML a black box with limited
interpretability, significantly reducing its perceived enhanced value and credibility within
the industry [28–31]. Explainable artificial intelligence (XAI) serves as an umbrella term,
encompassing the incorporation of human expertise into ML workflows [32–35]. This
integration spans a wide spectrum, from precisely defined equations (PINN) where human
knowledge is explicit [36–38], to more implicit and less readily articulated experience that
individuals possess [39,40]

In this study, we propose to integrate the SHapley Additive exPlanations (SHAP)
framework and rock physics into the workflow for predicting well logs, leveraging four
distinct ML algorithms. This approach strives to dismantle the traditional opacity of
ML models, thereby fostering unprecedented transparency. Specifically, SHAP allows
us to quantify, on a localized level, the precise impact of each input feature on indi-
vidual predictions, while also presenting a holistic, global overview across the entire
dataset [41–43]. Furthermore, rock physics serves as a pivotal guide, quality guardian, and
reference point throughout the ML-based workflow, spanning from feature engineering to
results interpretation. By leveraging this integration, we aim to not only bolster the accu-
racy but also elevate the interpretability of ML-based well log predictions, thus propelling
the field forward towards more reliable and intelligible outcomes.

2. Methodology
2.1. Rock Physics

To describe the dependency between bulk density and compressional velocity, a set of
relations were formulated as [16]

ρb = aVp
b (1)

where ρb is bulk density in g cm−3, Vp is the P-wave velocity in ft s−1, and a and b are
lithology-specific constant coefficients that vary across different rock types.

In this study, the Gardner relations were initially used to calibrate the correlation
between acoustic logs and density logs. Subsequently, these relations were used to generate
density logs in cases of suspicion or inaccuracies. It is noteworthy that, besides acoustic data,
density can also correlate with shear wave velocity, neutron porosity, or gamma ray [44].
Therefore, in addition to the Gardner relations, a machine learning-driven approach can be
implemented to generate density logs from a diverse range of inputs.

To describe the clay volume fraction in a rock, the gamma index, Ic, was
introduced [14], which is simply a normalized representation of the recorded nature gamma
logs. Specifically,

Ic =
GR − GRmin

GRmax − GRmin
(2)

where GR is the measured value of gamma logs expressed in American Petroleum In-
stitute (API) units, and GRmax and GRmin are the respective maximum and minimum
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values encountered in shales and sands, with these thresholds herein specified as 140 and
20 API units.

Since the gamma index tends to exceed the actual clay volume fraction, Vc, alternative
modified equations are often employed [14]:

Vc = 0.083
(

23.7Ic − 1
)

(3)

The formula holds applicability for both the Tertiary period and more recent geological
epochs. The gamma logs capture the natural gamma radiation emanating from radioactive
elements such potassium (K), uranium (U), and thorium (Th), which are primarily present in
clays. However, it is worth noting that non-shale radioactive mineral like Sylvite, feldspars,
and micas can also contribute to gamma logs, potentially introducing inaccuracies [45–48].
Therefore, for specific geological problems, the above equations may be further modified
or machine learning algorithms can be employed, using either gamma logs alone or a
combination of multivariate inputs including gamma logs, density, P-wave velocity, and
acoustic impedance, among others.

2.2. Data

Nestled in the southern North Sea basin, the F3 block (54.8669◦ N, 4.8131◦ E) in the
Dutch sector lies atop the Central Graben, bordered by the Ringkøbing-Fyn High to the
east and the Mid-North Sea High to the west. Geologically, the Mid-Miocene Unconformity
(MMU) serves as a demarcation line, separating the Cenozoic into the underlying Paleogene
units and the overlying Neogene units [49]. The Paleogene units beneath have been
structurally influenced by the syn-depositional halokinetic movements of the underlying
Zechstein evaporates, manifesting in the formation of faults and drapes. In contrast, the
Neogene units overlaying them consist primarily of coarse-grained prograding sediments
with an overall high porosity of 22–30%. These sediments have formed immense polycyclic
fluvio-deltaic systems, a direct response to high-frequency relative sea-level cycles [50].
Evidence of these cycles can be seen in large-scale sigmoidal beddings of truncations, with
onlaps onto them to the east, and downlaps to the west [51,52]. Within this geological
context, our study focuses specifically on a select interval of log data (FS2–FS6) obtained
from four wells within the F3 block, providing insights into a subset of these remarkable
fluvio-deltaic systems.

The 3D seismic data and log data for this study originate from the F3 block, with the
seismic data acquired in 1987 by NAM for petroleum exploration purposes [53]. dGB Earth
Sciences has kindly provided the upper segment of the seismic data, encompassing a time
range of 0 to 1.848 s. The inline range ranges from 100 to 750, while the crossline range
extends from 300 to 1250, both with a 25 m line spacing, covering a total area of 386.93 km2.
An inline is shown in Figure 1b. Four vertical wells inside the survey are provided: F02-1,
F06-1, F03-2, and F03-4, all measured by NLOG. These wells are equipped with sonic and
gamma ray logs. However, it is noteworthy that according to dGB’s records, only F02-1
and F03-2 have density logs available. For F03-4 and F06-1, density logs were predicted
using a neural network model trained on data from the first two wells, using sonic and
gamma logs as input. Additionally, the original porosity logs for all wells were calculated
from density data based on a linear formula [3,13]:

ϕ =
ρma − ρb
ρma − ρfl

(4)

where ϕ is porosity, and ρma and ρfl are the densities of the matrix and mud filtrate
respectively, with ρma set to 2.65 g cm−3 and ρfl set to 1.05 g cm−3. Furthermore,
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for this study, the clay volume fraction was calculated from gamma logs using the
Larionov relations.
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Figure 2 gives a comprehensive overview of the seven logs corresponding to the four 
distinct wells. For each well, a specific interval ranging from FS2 to FS6 is selected and 
presented. In comparison to F03-2 and F03-4, the depths recorded for F02-1 and F06-1 are 
notably deeper and shorter. This difference is due to their geographic position, which lies 
in the southwestern periphery of the survey area, precisely at the foreland of the prograd-
ing delta, as depicted in Figure 1. 

 

Figure 2. Log data obtained from the four wells. From left to right: acoustic, bulk density, acoustic 
impedance, P-wave velocity, porosity, gamma, clay volume. The top of each interval in each well is 
denoted using the same color as the line of the logs. 

2.3. Machine Learning 

Four different popular ML algorithms were used, comprising Linear Regression (LR), 
Multi-Layer Perceptron (MLP), Random Forests (RF), and Gradient Boosting Decision 

Figure 1. Geology setting of the F3 block. (a) Structural setting of the North Sea basin. The location of
the F3 block is highlighted by a blue rectangle. (b) Seismic section of the F3 block (Inline 362). The
geological periods of strata are annotated. The green line is the Truncation horizon. The inset is the
Truncation horizon in 3D, with the four wells and the prograding direction annotated. The red line
serves as the intersection between the horizon and the seismic section.

Figure 2 gives a comprehensive overview of the seven logs corresponding to the four
distinct wells. For each well, a specific interval ranging from FS2 to FS6 is selected and
presented. In comparison to F03-2 and F03-4, the depths recorded for F02-1 and F06-1 are
notably deeper and shorter. This difference is due to their geographic position, which lies in
the southwestern periphery of the survey area, precisely at the foreland of the prograding
delta, as depicted in Figure 1.

Sensors 2025, 25, x  4 of 18 
 

 

where ϕ is porosity, and ρma and ρfl are the densities of the matrix and mud filtrate respec-
tively, with ρma set to 2.65 g cm−3 and ρfl set to 1.05 g cm−3. Furthermore, for this study, the 
clay volume fraction was calculated from gamma logs using the Larionov relations. 

 

Figure 1. Geology setting of the F3 block. (a) Structural setting of the North Sea basin. The location 
of the F3 block is highlighted by a blue rectangle. (b) Seismic section of the F3 block (Inline 362). The 
geological periods of strata are annotated. The green line is the Truncation horizon. The inset is the 
Truncation horizon in 3D, with the four wells and the prograding direction annotated. The red line 
serves as the intersection between the horizon and the seismic section. 

Figure 2 gives a comprehensive overview of the seven logs corresponding to the four 
distinct wells. For each well, a specific interval ranging from FS2 to FS6 is selected and 
presented. In comparison to F03-2 and F03-4, the depths recorded for F02-1 and F06-1 are 
notably deeper and shorter. This difference is due to their geographic position, which lies 
in the southwestern periphery of the survey area, precisely at the foreland of the prograd-
ing delta, as depicted in Figure 1. 

 

Figure 2. Log data obtained from the four wells. From left to right: acoustic, bulk density, acoustic 
impedance, P-wave velocity, porosity, gamma, clay volume. The top of each interval in each well is 
denoted using the same color as the line of the logs. 

2.3. Machine Learning 

Four different popular ML algorithms were used, comprising Linear Regression (LR), 
Multi-Layer Perceptron (MLP), Random Forests (RF), and Gradient Boosting Decision 

Figure 2. Log data obtained from the four wells. From left to right: acoustic, bulk density, acoustic
impedance, P-wave velocity, porosity, gamma, clay volume. The top of each interval in each well is
denoted using the same color as the line of the logs.

2.3. Machine Learning

Four different popular ML algorithms were used, comprising Linear Regression (LR),
Multi-Layer Perceptron (MLP), Random Forests (RF), and Gradient Boosting Decision Tree
(GBDT). LR, without any regularization, as the first type of regression analysis to undergo
rigorous study and extensive practical application, is widely used owing to its simplic-
ity, interpretability, and ease of implementation [54]. MLP, a commonly applied artificial
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neural network model, boasts robust expressive and generalization capabilities, enabling
it to tackle non-linear problems and high-dimensional data [55–57]. Both GBDT and RF
are ensemble learning techniques rooted in decision trees. GBDT sequentially constructs
multiple decision trees, with each subsequent tree aiming to correct the prediction errors of
its predecessor, optimizing predictive performance by gradually minimizing residuals [58].
Conversely, RF concurrently builds numerous decision trees, utilizing averaging for re-
gression and voting for classification, thereby mitigating the risk of overfitting and often
yielding more stable and accurate predictions [59].

Due to the limited availability of only four well logs, we opted to utilize three of
them for training the ML algorithms, reserving the remaining well for validating the pre-
dictions of the trained models. However, in scenarios where there were suspicions of
inaccuracies in these logs, we relied on rock physics principles to calibrate and recon-
struct the logs as replacements. As detailed in the Data section, we were able to generate
density logs employing the Gardner relations, while Vc logs were derived utilizing the
Larionov relations.

Standard scaling was applied to the input features for MLP and LR, whereas it was
omitted for the two tree-based algorithms. The coefficient of determination (R2) and root
mean squared error (RMSE) were used as metrics to evaluate the accuracy of predictions
made by ML algorithms. Furthermore, to interpret the mathematical principles of how
these ML algorithms operate, both locally and globally, we used the SHapley Additive
exPlanations (SHAP) framework [41]. Based on the solid theoretical foundation of coopera-
tive game theory and the utilization of Shapley values, SHAP offers quantitative insights
into the specific contributions of each feature to individual predictions, as well as their
collective influence across the entire dataset [60,61]. This approach not only facilitates the
assessment of ML algorithm performance but also serves as a valuable guide for feature
selection and model design optimization.

The Python scripts used in this study for ML and SHAP analysis were based on the
Scikit-learn and SHAP libraries [62,63].

Our primary objective is to elucidate the mathematical frameworks that underpin
ML algorithms and interpret the causality behind their predictions within the context
of rock physics. As such, we prefer to use standard and straightforward ML methods
to facilitate their explanations and to derive conclusions that are broadly applicable. In
interpreting SHAP, it is crucial to concentrate solely on the influence of input features by
maintaining the consistency of the ML models. Our benchmarks, detailed in Appendix A,
reveal that optimizing the models’ hyperparameters did not significantly improve their
performance compared to using fixed settings (Tables A1 and A2), but it did lead to notable
changes in SHAP explanations (Figure A1). Therefore, we consistently avoid making any
modifications based on optimization outcomes.

To address variability from random initialization, we tested 40 random seeds and
found consistent results within each stochastic model, except for the MLP which showed
significant fluctuations. This is shown in Figure A2.

3. Results and Discussions
3.1. Porosity

First, we show the results of ML-based prediction of porosity logs.
Figure 3 shows the density logs of the four wells, before and after correction using

the Gardner relations. The original density of F02-1 is significantly lower than the other
three wells. Since density logs were calculated from measured acoustic logs, we used the
Gardner relations to fit the density of the three wells, where in the exponential function we
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optimized the coefficient to be 0.1018 and the index to be 0.3445. Relying on the Gardner
relations, density logs of F02-1 were corrected using acoustic logs as inputs.
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Figure 3. Density logs of the four wells before and after correction using the Gardner relations.

To gain a deeper understanding, we compiled a crossplot that illustrates the inter-
relationships among the seven log data sets, as shown in Figure 4. Notably, we have
incorporated an additional well, F02-1Cor, which is a corrected version of F02-1. In this
updated version, the density was fine-tuned using the Gardner relations, leading to a subse-
quent recalculation of the porosity. As observed in the crossplot comparing ρb and AC, the
data points of F02-1 stand out conspicuously, indicating the need for further scrutiny. The
corrected F02-1Cor, however, exhibits a seamless alignment with the other wells, demon-
strating the effectiveness of the corrections. Moreover, we recalculated Vp as the reciprocal
of AC, and consequently, AI was recalculated as the product of ρb and Vp. This corrected
well, and F02-1Cor, exhibits an exceptional correlation across all seven logs, testament to
the rigor and reliability of our findings. However, as Figure 4 indicates, the correlations
are poor between gamma logs (and consequently Vc) and elastic logs, including AC, Vp,
ρb, AI, and ϕ. This incongruence in characteristics could potentially influence ML-based
predictions, and its implications will be discussed in the next section.

Figure 5 presents a comparative analysis of the ML-based prediction of porosity logs,
highlighting the difference between the pre- and post-correction states of density logs.
In this process, four parallel ML algorithms were used, specifically RF, GBDT, MLP, and
LR. The training of these ML algorithms encompassed data from three wells, whereas the
remaining well served as the testing ground. Notably, the problematic density logs from
F02-1 posed a challenge.
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In the pre-correction scenarios, two distinct approaches were adopted for ML training
and testing: either including F02-1 in the training set or reserving it for testing. Given that
porosity measurements were not readily available for all wells and were instead estimated
from density logs using a linear formula, density itself was excluded as an input variable
for ML training. Similarly, Vp and AI were also excluded, leaving only the measured logs,
comprising AC and GR, as the input features.

Remarkably, for all four ML algorithms, the prediction accuracy of pre-correction states
was deemed unsatisfactory. However, an interesting trend emerged when the problematic
F02-1 was included in the training dataset, resulting in improved prediction performance
compared to when it served as the testing well. Furthermore, the prediction accuracy of all
four algorithms underwent a significant enhancement when both acoustic and gamma logs
were used as inputs, surpassing the accuracy achieved by relying solely on acoustic logs.
Despite the fact that gamma logs display a notably feeble correlation with porosity, as depicted
in Figure 5, their integration with acoustic logs contributes to a more precise prediction.

After the correction of density logs, however, the prediction accuracy for all four ML
algorithms experienced a substantial surge, achieving exceptionally high levels of accuracy,
with R2 values approaching 1 for each algorithm. This trend was observed when F03-4
served as the testing well, and the corrected F02-1 was incorporated into the training dataset,
as shown in Figure 5c. It is crucial to emphasize that the achieved optimal performance
hinges critically on the establishment of the ideal dataset setting, where the porosity data
is systematically derived from the measured acoustic data through the application of a
distinct and carefully calibrated formula. This underscores the paramount importance of a
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rigorous and systematic approach to data processing and model training, which is essential
for attaining predictions of both high fidelity and precision.
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To gain a deeper insight into the mechanisms underlying ML-based predictions, global
SHAP values were calculated to interpret the results. These analyses consistently pointed
to acoustic logs as having an overarching influence on predicting porosity, regardless of
the ML algorithm, training and testing scenarios, or prediction accuracy, as summarized in
Figure 5d. Conversely, the other input logs, namely gamma logs, were largely disregarded,
with the exception of one instance when the problematic F02-1 log was incorporated as
an input. In this particular scenario, the inclusion of gamma logs resulted in a marginal
improvement in prediction accuracy. This interpretation aligns with the weak correlation
exhibited between gamma logs and porosity logs, as illustrated in Figure 4. Generally, MLP
exhibits a greater reliance on gamma logs compared to the other three algorithms.

3.2. Clay Volume Fraction

Here we present the outcomes of ML-based prediction of clay volume fraction (Vc)
logs and their interpretations.

Typically, Vc is derived from gamma logs, which records the natural gamma radiation
emitted from radioactive elements present in clays. In this study, the Larionov relations
were used to calculate Vc from the measured gamma logs. As depicted in Figure 4, Vc

theoretically exhibits a strong correlation with gamma logs, but it correlates weakly with
acoustic logs and other logs derived from acoustic logs, such as density, acoustic impedance,
P-wave velocity, and porosity. Figure 6c shows the prediction of Vc for F03-4 when the in-
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puts for training the ML algorithms included logs that correlate poorly with Vc. Specifically,
the ML algorithm used was RF. The training data originated from the other three wells,
spanning the interval between FS2 and FS4. As anticipated, the prediction performance was
unsatisfactory. However, when gamma logs were incorporated into the training process, the
prediction accuracy was improved significantly, as shown in Figure 6c. Similar results were
observed when F03-2 served as the testing well and the other three wells as the training
well, as shown in Figure 6e. Nonetheless, there were sections of the Vc logs for both F03-4
and F03-2 that remained inaccurately predicted.
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Figure 6. Prediction of clay volume fraction using RF and the SHAP explanations. (a) Prediction for
F03-4 where gamma logs were excluded as inputs. (b) Feature importance for (a) as explained by
SHAP summary plot and decision plot. (c) Prediction for F03-4 where gamma logs were incorporated
as inputs. (d) SHAP explanations for (c). (e) Prediction for F03-2 where gamma logs were incorporated
as inputs. (f) SHAP explanations for (e). Arrows indicate unpredictable samples.

To gain a more comprehensive understanding of the prediction’s performance using
RF and the other three ML algorithms, we calculated both global and local SHAP values
for each individual prediction. In the case of predicting Vc for F03-4 using RF, gamma
logs emerged as the predominant input feature, as explained by both the SHAP summary
plot and decision plot (comparing Figure 6b with Figure 6d). This finding aligns with
the anticipation based on human knowledge, as gamma logs are the physical trigger for
the effect, namely Vc. Meanwhile, the impact of the other four input features is minimal.
However, in scenarios where gamma logs are absent from the training dataset, the accuracy
of Vc predictions declines significantly, rendering the importance of the four remaining
input features indispensable. In such a situation, irrespective of the prediction inaccuracy,
and regardless of the weak correlation between the input features and the prediction target,
the ML algorithm relies heavily on the provided inputs, as it lacks alternative data sources.
When assessing the impact on the inaccurate prediction results, the four input features
are approximately of equal significance. This trend is observed across the other three
algorithms, as shown in Figure 7b. However, if a ranking is necessary, acoustic logs emerge
as the most crucial input except for LR, likely attributed to their status as the only measured
feature among the inputs.
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Figure 7. Accuracy and feature importance in predicting clay volume fraction for F03-4 as explained
by SHAP summary plot for four ML algorithms. (a) Predicted Vc logs under three different scenarios.
In contrast to a standard scenario, two variations were tested: one excluded GR in training, and the
other employed a noise-robust training and testing approach with an SNR of 30. (b) Both local and
global SHAP explanations for these three different prediction scenarios. For each algorithm: Top,
training without GR. Middle, standard training and testing with GR. Bottom, noise-robust training
and testing.

The interpretation of the significance of various features across all four ML algorithms
is summarized in Figure 7. Notably, although MLP initially failed to prioritize gamma
logs as the primary input feature, it regained its rationality after undergoing a noise-robust
training procedure. This can be observed in Figure 7b for MLP, which demonstrates
the algorithm’s adaptability. Within this noise-robust training paradigm, the predictions
attained satisfactory levels, albeit with a notable decline in MLP’s performance due to
a relatively low signal-to-noise ratio (SNR) of 30, as evident in Figure 7a for MLP. The
SHAP analysis revealed consistent patterns among all four algorithms, regardless of their
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varied underlying architectures—whether tree-based, neutron network-driven, or linear
regression-oriented. By comparing the SHAP explanations with rock physics principles, we
observed a close alignment of the four algorithms with the fundamentals of rock physics,
indicating adherence to its cause relationships.

To interpret the sections of the Vc logs that exhibited unpredictable patterns at a
depth of approximately −960 m, a review of the training and the testing dataset was
undertaken. Specifically, considering the scenario where F03-4 serves as the testing well
and the other three wells as the training well, we note that the Vc range for the other
three wells ranges from 0.050 to 0.300, whereas the Vc range for F03-4 to be predicted is
0.025 to 0.200. Therefore, the predicted lowest values of Vc for F03-4 exceed the bounds
of the training dataset, which is indicative of an Independent and Identically Distributed
(IID) issue. Analogously, reversing the roles of the testing and training well also leads to an
inaccurate prediction of the higher Vc values in F03-2. The lowest and highest unpredictable
Vc values are positioned at the periphery of both the SHAP summary plot and the decision
plot, as indicated by the grey arrows in Figure 6c,d, and the yellow arrows in Figure 6e,f.

To further elaborate on the intricacies of the IID problem and explain the inability to
make accurate predictions, we employed a straightforward binary logarithm function of
y = log2x, with the range of x set from 1 to 11. We subjected the prediction of y to a rigorous
test using four different ML algorithms, contrasting the results against those obtained from
cubic spline interpolation and the ground truth. As shown in Figure 8a at x = 2.4, where
the true value of y is denoted by black crosses along the black line, RF predicted y = 1.291,
marked by a black dot, exceeding the actual value. From x = 2.0 to 2.8, the predictions
either exceeded or fell below the true values, as evident in the lower inset. Notably, as
we incrementally removed one or two neighboring labels from the training dataset, the
predicted values rose significantly, depicted by blue dots. Conversely, the predicted values
decreased progressively when one or two labels to the right were eliminated. A comparison
with the ground truth is illustrated in the upper inset. Similar trends were observed for
the x range from 9.0 to 9.8, as shown in Figure 8b. The performance of the remaining three
algorithms is presented in Figure 8c–e. Despite the remarkable success ML has achieved
owing to its numerous advantages, the predictions generated by the four ML algorithms
can still trail behind the accuracy of cubic spline interpolation, even with a substantially
vast training dataset.
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predictions versus truth as neighboring samples eliminated from training. Lower inset, prediction
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These findings underscore the sensitivity of ML-based predictions to the training
dataset. Furthermore, as neighboring samples are gradually removed, the IID assump-
tion becomes invalid, leading to an out-of-distribution (OOD) problem that ultimately
compromises the predictive accuracy.

4. Conclusions
We have integrated SHAP and rock physics into the ML-based approach for predicting

well logs, specifically targeting porosity and clay volume fraction. While ML excels in
handling complex, nonlinear challenges that involve diverse input features and extensive
datasets, its operational mechanisms are often less mathematically transparent compared
to traditional algorithms such as least squares and Bayesian methods. Conversely, rock
physics, with its clear and intuitive foundations, faces constraints in its applicability due
to the numerous inherent assumptions, hampering its capacity to address ambiguous or
uncertain scenarios.

The union of these two methodologies has yielded significant advantages in our
study. Rock physics has played a pivotal role in feature engineering, selection, algorithm
comparison, and the comprehensive evaluation of four distinct algorithms: RF, GBDT,
MLP, and LR. Despite their varied architectures—tree-based, neutron network-driven,
or linear regression-oriented—the SHAP analysis has uncovered consistent operational
patterns across these algorithms in noise-robust training and testing scenarios. Moreover,
the SHAP explanations closely align with the causal relationships outlined in rock physics
principles. However, when crucial controlling input features were intentionally omitted,
affecting prediction accuracy, all four ML algorithms and the SHAP analysis continued
to operate in a seemingly irrational manner, starkly contrasting with the fundamental
principles of rock physics. By comparing SHAP explanations with rock physics concepts,
we have established parallels and contrasts with human knowledge, inherently rooted in
causal relationships. The invaluable guidance provided by rock physics has empowered
us to intervene in ML-based predictions, not only enhancing our comprehension of the
strengths and limitations of ML models but also potentially paving the way for optimizing
the performance of these workflows. This approach has propelled a transition from purely
mathematical explanations to a more philosophical interpretation of ML-based predictions,
effectively dismantling the traditional black-box nature of ML models.
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Appendix A
In this appendix, we provide a comprehensive account of the execution of the ML and

SHAP methodologies.
To assess the effectiveness of hyperparameter optimization, two comprehensive benchmark

tests were conducted for the three stochastic models, RF, GBDT and MLP. One test, termed
case-ϕ (corresponding to Figure 5c), evaluated the porosity prediction with exceptional accuracy
across all four algorithms. The other test, termed case-Vc (corresponding to Figure 6a), evaluated
the Vc prediction and found significantly lower accuracy for all four algorithms.

Table A1 summarizes all hyperparameters and their respective final values for each
model. Table A2 provides a detailed description of the hyperparameter tuning process,
which utilized random search and k-fold cross-validation.

The benchmark tests indicate that optimizing the models’ hyperparameters does not
yield a substantial improvement in their performance metrics, specifically R2 and RMSE,
compared to using fixed settings. Furthermore, as illustrated in Figure A1, while optimization
has a negligible effect, it significantly modifies the SHAP explanations for case-Vc. Both the
magnitude and the relative importance of input features exhibit notable variations.

To assess the effect of random initialization on the performance of the three stochastic
models with fixed hyperparameter settings, we conducted experiments using 40 different
random seeds. Our findings indicated that the results were generally consistent for each
model for case-ϕ. Random initialization exhibits minimal influence on the performance of
all three models. Nevertheless, for case-Vc, there are substantial fluctuations in prediction
accuracy, especially for MLP, as illustrated in Figure A2.
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Table A1. Hyperparameters for the three stochastic ML models.

Model Hyperparameters Performance

RF

n_estimators max_depth min_samples_splits bootstrap min_samples_leaf random_state R2 RMSE

fixed
case-ϕ

200 none 2 true 1 42
0.999984 0.000057

case-Vc −1.505964 0.053555

optimization
range 100–500 10–50, none 2–10 true, false 1–4 42

opt.
case-ϕ 200 20 2 false 1 42 0.999977 0.000068

case-Vc 300 10 9 true 1 42 −1.110164 0.049144

GBDT

n_estimators max_depth learning_rate subsample min_samples_leaf random_state R2 RMSE

fixed
case-ϕ

200 3 0.1 1.0 1 42
0.999861 0.000167

case-Vc −0.916561 0.046836

optimization
range 100–500 3–7 0.01–0.3 0.6–1 1–6 42

opt.
case-ϕ 300 6 0.03 0.6 1 42 0.999992 0.000039

case-Vc 200 3 0.01 0.7 3 42 −0.823654 0.045686

MLP

hidden
layers

number
of

neurons
activation batch

size
learn.
rate solver beta1 beta2 epsilon tol max

iter

n_iter
no

change

early
stop. alpha random

state R2 RMSE

fixed
case-ϕ

2 L1
100

L2
50 relu auto 0.001 adam 0.9 0.999 10−8 0.0001 200 50 true 0.0001 42

0.990195 0.001403

case-Vc −0.982821 0.047638

optimization
range 1–3

logistic,
relu,
tanh

16–128 0.001–0.1 adam, sgd 0.9 0.999 10−8 0.0001–0.01 200–2000 50 true 0.0001–1 42

opt.
case-ϕ 2 L1

100
L2
100 logistic 40 0.003 adam 0.9 0.999 10−8 0.01 200 50 true 0.0001 42 0.998986 0.000451

case-Vc 1 50 relu 126 0.05 sgd 0.9 0.999 10−8 0.01 1200 50 true 0.9474 42 −0.883199 0.046426
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Table A2. Optimization of model hyperparameters via random search (200 iterations) with k-fold
cross-validation, using RMSE as the performance metric.

K-Fold (n_Folds = 5)
Testing: F03-4

Models
Training: F02-1, F06-1, F03-2

Mean_R2 Mean_RMSE R2 RMSE

RF
case-ϕ 0.999910 0.000186 0.999977 0.000068

case-Vc 0.020244 0.046256 −1.110164 0.049144

GBDT
case-ϕ 0.999965 0.000114 0.999992 0.000039

case-Vc 0.110894 0.044113 −0.823654 0.045686

MLP
case-ϕ 0.999084 0.000615 0.998986 0.000451

case-Vc 0.122800 0.043823 −0.883199 0.046426
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