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Abstract: Autonomous Fourier Ptychographic Microscopy (FPM) is a technology widely 

used in the field of pathology. It is compatible with high resolution and large field-of-view 

imaging and can observe more image details. Red blood cells play an indispensable role 

in assessing the oxygen-carrying capacity of the human body and in screening for clinical 

diagnosis and treatment needs. In this paper, the blood cell data set is constructed based 

on the FPM system experimental platform. Before training, four enhancement strategies 

are adopted for the blood cell image data to improve the generalization and robustness of 

the model. A blood cell detection algorithm based on SCD-YOLOv7 is proposed. Firstly, 

the C-MP (Convolutional Max Pooling) module and DELAN (Deep Efficient Learning Au-

tomotive Network) module are used in the feature extraction network to optimize the 

feature extraction process and improve the extraction ability of overlapping cell features 

by considering the characteristics of channels and spatial dimensions. Secondly, through 

the Sim-Head detection head, the global information of the deep feature map (mean aver-

age precision) and the local details of the shallow feature map are fully utilized to improve 

the performance of the algorithm for small target detection. MAP is a comprehensive in-

dicator for evaluating the performance of object detection algorithms, which measures the 

accuracy and robustness of a model by calculating the average precision (AP) under dif-

ferent categories or thresholds. Finally, the Focal-EIoU (Focal Extended Intersection over 

Union) loss function is introduced, which not only improves the convergence speed of the 

model but also significantly improves the accuracy of blood cell detection. Through quan-

titative and qualitative analysis of ablation experiments and comparative experimental 

results, the detection accuracy of the SCD-YOLOv7 algorithm on the blood cell data set 

reached 92.4%, increased by 7.2%, and the calculation amount was reduced by 14.6 G. 

Keywords: Fourier ptychographic microscopic imaging; YOLOv7 (You Only Look Once 

version 7); blood cell detection; feature fusion 

 

1. Introduction 

As science and technology continue to evolve, medical imaging technology has be-

come a crucial component in both clinical diagnosis and biomedical research [1]. This 

technology is provided to physicians as a robust tool for studying, monitoring, and diag-

nosing diseases [2]. By utilizing these technologies, medical professionals can gain a more 

profound understanding of the pathological process, thereby enabling them to provide 
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patients with more precise treatment plans. Clinical studies have demonstrated that when 

the human body is afflicted with diseases, there are corresponding changes in the number 

and structure of blood cells [3]. A significant basis for disease diagnosis can be served by 

these alterations. 

Microscopic imaging detection is a prevalent method in pathology, which is crucial 

for examining the microstructure and cell morphology of biological tissues [4]. The per-

formance of conventional microscopes is constrained by the diffraction effect of light. To 

achieve higher resolution, it is essential to increase the numerical aperture (NA) of the 

microscope objective. However, this approach reduces the imaging field of view, which is 

detrimental for studies requiring an overview of the entire smear. 

In order to address this issue, Fourier Stacked Microcomputed Tomography (FPM) 

is employed in this paper to gather images and construct datasets. Subsequently, a deep 

neural network is utilized as the training model.[5]. An enhanced algorithm for blood cell 

detection is proposed in the paper. The distinctive imaging capabilities of FPM have sig-

nificantly advanced biomedical research, enhancing the efficiency of blood cell detection 

and providing a more comprehensive diagnostic basis for physicians. Through deep 

learning, blood cell images can be automatically analyzed and identified, assisting doctors 

in making preliminary assessments and early predictions of patients’ conditions [6]. This 

has significant medical diagnostic implications. 

An introduction to the overarching research background, rationale, and objectives is 

provided in Section 1 of this paper. A thorough examination of select works relevant to 

the article is presented in Section 2. The methodology and architectural framework pro-

posed are detailed in Section 3. The experimental process is elucidated in Section 4, and 

the results obtained are discussed. The conclusion is succinctly summarized in Section 5. 

2. Related Works 

2.1. Fourier Microscopic Imaging 

The optical microscope is a traditional tool for microstructure analysis, consisting of 

core components such as the camera, lens, and lens barrel [7]. The performance of this 

instrument is typically gauged by two key indicators: resolution and field of view. Reso-

lution is primarily influenced by the numerical aperture of the lens, while the field of view 

is determined by the aperture size of each lens within the system [8]. In microscopic im-

aging systems, it is often challenging to optimize both spatial resolution and field of view 

simultaneously due to an inherent trade-off between them. To capture the minute charac-

teristics of a sample, it is necessary to increase the numerical aperture of the lens to en-

hance resolution [9]. However, this results in a narrowing of the field of view. Using a 

low-magnification lens allows for the acquisition of a comprehensive view of the sample, 

but details are difficult to discern. Conversely, a high-magnification lens can reveal de-

tailed features of the sample, but at the expense of observing the overall structure. 

In 2013, Professor Zheng Guoan and his team at the California Institute of Technol-

ogy pioneered a groundbreaking microscopic imaging technology known as FPM [10]. 

This technology offers an expanded field of view and superior resolution, surpassing the 

constraints of conventional optical microscopes [11]. By leveraging synthetic aperture 

technology and optimization theory, high-quality, high-resolution images can be 

achieved even with low-magnification lenses. Since its inception, FPM has been swiftly 

adopted across various domains, including biological sample imaging, cell detection, 

counting, and digital pathology. In recent years, significant advancements have been 

made in FPM’s implementation methods, imaging performance, and reconstruction effi-

ciency. These developments not only underscore the immense potential of FPM in the 

biomedical realm but also highlight its promise for sustainable growth [12,13]. 
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Compared with the images obtained by using a standard optical microscope, confo-

cal microscope, and standard dye, FPM technology has the advantages of high resolution 

and large field of view, no need for dyeing or low dyeing demand, high acquisition effi-

ciency, and wide applicability. 

The advent of FPM technology offers a robust solution to the challenges inherent in 

the current field of blood cell image acquisition [14]. By subtly modifying the structure of 

the light source, this technology not only markedly improves the clarity of conventional 

microscope images but also streamlines the experimental procedure. The design of the 

FPM light source is both straightforward and cost-efficient, capable of producing high-

resolution white blood cell images with an expansive field of view [15,16]. Leveraging the 

benefits of this technology in conjunction with the superior performance of deep learning 

networks in target recognition tasks, we have successfully achieved precise detection of 

blood cells within the bloodstream [17]. 

2.2. Blood Cell Detection 

The conventional method of microscope detection not only demands substantial hu-

man and material resources but also leaves room for subjective bias in the results [18]. 

While current blood cell analysis instruments offer rudimentary cell count data, they fall 

short in examining the morphological attributes of blood cells, thereby constraining their 

utility in adjunctive medical diagnoses [19]. However, with the swift advancements in 

digital and deep learning technologies within computer vision, the integration of com-

puter graphics has furnished physicians with a novel tool to ascertain both the number 

and morphology of blood cells with heightened precision [20]. This represents a signifi-

cant milestone in this domain. 

The international exploration of red blood cell counting methods commenced in 1852 

[21]. Three years later, in 1855, a specialized counting plate for blood cell analysis was 

invented. Currently, two primary technical approaches are employed for blood cell detec-

tion: one utilizes image processing technology, while the other employs deep learning 

techniques for analysis [22]. 

2.2.1. Methods Based on Image Processing 

Cuevas et al. developed an algorithm for the automatic recognition of white blood 

cells in complex images, optimizing the coding of candidate ellipses using a DE algorithm 

to adapt to the white blood cells present in the edge mapping image [23]. Kasim employed 

a hybrid spatial learning structure that integrates K-means clustering and expectation 

maximization to pinpoint the region of interest, thereby effectively mitigating the influ-

ence of staining and illumination on detection. Cheng introduced an innovative fuzzy 

morphological neuron model network that converts images from the RGB color space to 

the HSL color space, utilizing a fuzzy morphological network to identify white blood cells 

[24]. Lin et al. proposed a sophisticated white blood cell extraction algorithm based on 

feature weight adaptive K-means clustering. Prior to extracting white blood cells, they 

combined color space decomposition and K-means clustering for image segmentation, 

subsequently employing the watershed algorithm to separate complex white blood cells, 

ultimately achieving classification. 

While these methods can effectively detect blood cells, they typically necessitate the 

completion of cell color space conversion or segmentation prior to detection. Furthermore, 

the precision of detection is often contingent upon the outcomes of image processing. 

These techniques also entail intricate operational procedures, which can render cell detec-

tion laborious and consequently diminish its efficiency. Consequently, the utility of these 

methods in clinical diagnosis is constrained. 
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2.2.2. Methods Based on Deep Learning 

Currently, the utilization of deep learning in target detection algorithms predomi-

nantly falls into two categories. The first category encompasses single-stage detection al-

gorithms, exemplified by the YOLO series and SSD. The second category comprises two-

stage detection algorithms, with Faster-R-CNN being a notable representative. This algo-

rithm identifies potential target regions via the region proposal network. Liu et al. em-

ployed an enhanced Faster-R-CNN to detect and count red blood cells, demonstrating its 

efficacy in identifying such cells[25]. However, the detector’s demand for substantial com-

puting resources and its relatively low detection rate are notable drawbacks. Moreover, it 

exhibits a higher missed detection rate when dealing with overlapping and densely pop-

ulated areas. Zhang et al. proposed a density estimation method based on YOLO for cell 

counting, enhancing cell detection capabilities by modifying the backbone network of 

YOLO. Despite achieving certain improvements in the detection rate, the simplicity of the 

YOLO series’ network structure limits its feature extraction ability. Furthermore, the com-

bination of neck convolution and upsampling fails to fully incorporate high-quality con-

text information, thereby affecting the overall detection accuracy. 

3. Method 

To address the issues identified in current research, this paper introduces a blood cell 

detection algorithm utilizing SCD-YOLOv7. The primary enhancements are as follows: 

In the initial stage, the C-MP (Cross-Modality-Projection) module and the D-ELAN 

(Dual-Evolving Layer-Aggregation-Network) module are used, which work together in 

the feature extraction network. They not only focus on the channel dimension but also 

take into account the characteristics of the spatial dimension, thus optimizing the process 

of feature extraction and enhancing the recognition ability of overlapping cell features. 

Subsequently, the Sim-Head (Simplified Detection Head) detection module is pre-

sented. This module is designed for the optimal utilization of the global information em-

bedded in the deep feature map and the local nuances in the shallow feature map. Such 

an approach markedly improves the algorithm’s efficacy in detecting small-sized targets. 

In conclusion, the Focal-EIoU (Enhanced Intersection over Union) loss function is 

employed. This not only expedites the model’s convergence process but also markedly 

enhances the accuracy of blood cell detection. 

Through quantitative and qualitative analysis of ablation experiments and compara-

tive experimental results, the detection accuracy of the SCD-YOLOv7 algorithm on the 

blood cell data set reached 92.4%, increased by 7.2%, and the calculation amount was re-

duced by 14.6 G. 

In this study, the issue of blood cell detection using Fourier ptychographic micros-

copy is delved into. Initially, low-resolution images from the three RGB channels of the 

blood cells were captured using the FPM system’s experimental platform. These were 

subsequently reconstructed to yield high-resolution and large-field images of the blood 

cells. Following this, preprocessing steps were applied to the gathered images. To tackle 

this challenge, an efficient neural network classifier has been developed based on the 

PyTorch framework. The specific process is depicted in Figures 1 and 2. 
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Figure 1. Data set production of Fourier compression microscopy imaging technology. 

To address this challenge, the data set was constructed using FPM technology, and 

the light source of the experimental platform was replaced with a programmable LED 

array illumination module. Utilizing MATLAB software, the LED lamps were precisely 

controlled to achieve multi-angle lighting. As for image acquisition, the DMK33UX264 

camera was selected and successfully used to capture a substantial number of low-reso-

lution images containing white blood cells for storage. Subsequently, the FPM algorithm 

was applied to reconstruct the RGB three-channel low-resolution images, resulting in 

high-resolution cell images. Necessary preprocessing was conducted on peripheral blood 

cell images to establish a basic data set. During the dataset creation process, blank samples 

and those lacking white blood cells were eliminated. Firstly, 200 original blood cell images 

were manually labeled, and then these labeled images were input into the network for 

training, and a prediction model was obtained. Then, this model is used to detect the re-

maining 4800 images and export the TXT file containing the prediction results. After ver-

ification, the final blood cell image data set was constructed, including 5000 images. The 

data set production process of this experiment was assisted by pathologists to ensure the 

accurate labeling of data samples. Subsequently, the enhanced data were divided into 

training and test sets according to a specific proportion. 

 

Figure 2. SCD-YOLOv7 network structure. 

The Fluorescence Photometry Method (FPM) was employed to gather data on blood 

cells. Through meticulous data processing, a comprehensive dataset was derived, and the 
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blood cell dataset was subsequently constructed. Utilizing the experimental platform of 

the FPM system, low-resolution images of three RGB channels of blood cells were col-

lected. These images were then reconstructed to yield high-resolution images with a broad 

field of view. Prior to training, four enhancement strategies were applied to the blood cell 

image data to enhance the model’s generalization and robustness. Following this, the re-

fined YOLOv7 network was utilized for blood cell detection. The structure of the im-

proved YOLOv7 network is depicted in Figure 2. 

3.1. SCD-YOLOv7 Detection Model 

YOLOv7 is a high-performance deep learning model for object detection. In tests con-

ducted on the COCO public dataset, this model demonstrated superior detection accuracy 

and speed. The network structure of YOLOv7 comprises three components: Input, Back-

bone, and Head. Initially, the input section scales the image size to 640 × 640 × 3, which is 

then sent to the feature extraction network. This network includes several CBS modules, 

ELAN modules, and MP modules. In the prediction phase, feature maps of large, medium, 

and small scales are obtained through multi-scale feature fusion facilitated by the FPN 

(Feature Pyramid Network) and PAN (Path Aggregation Network) structures. These fea-

ture maps are subsequently sent to the detection head to generate three-scale prediction 

results. The final detection results are obtained through non-maximum suppression pro-

cessing. The network structure of YOLOv7 is depicted in Figure 3. 

 

Figure 3. The network structure of YOLOv7. 

This chapter addresses the challenges of detecting red blood cells, which often con-

stitute a large proportion of small targets in blood cell images, as well as the complexities 

of image backgrounds and overlapping cells. To achieve precise detection of both red and 

white blood cells, we propose a blood cell image detection model based on an enhanced 

version of YOLOv7-SCD-YOLOv7. The network structure of the SCD-YOLOv7 model is 

depicted in Figure 4. 
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Figure 4. The network structure of SCD-YOLOV7. 

3.1.1. Feature Extraction Network 

Blood cell imaging, an acquired optical microscopic image, presents a complex back-

ground and overlapping cells. This complexity often results in a significant number of 

invalid background features extracted by the YOLOv7 model, thereby hindering blood 

cell detection. Concurrently, the use of intricate models with numerous parameters esca-

lates the demand for computational resources and heightens the risk of overfitting. To 

address these issues, the integration of the C-MP module and D-ELAN module is pro-

posed. These modules consider the characteristics of both channel and spatial dimensions, 

effectively broadening the scope of feature information. They optimize the feature extrac-

tion process and enhance the ability to extract features from overlapping cells. 

Specifically, the coordinate attention mechanism (CA) is fused in the MP structure, 

and the output feature map is passed to the CA attention mechanism after 3 × 3 convolu-

tion. This fusion enables the network layer to simultaneously learn rich channel and spa-

tial attention weights, effectively retaining complex feature information. It not only im-

proves the model's ability to locate overlapping cells but also can extract the key feature 

information of the image more accurately in the feature extraction stage. Since the CA 

module requires a certain amount of computational overhead, in order to save computa-

tional costs, this chapter only adds C-MP modules at key locations in the backbone net-

work. This not only ensures the efficiency of the model on the blood cell data set but also 

improves the detection accuracy. The C-MP module structure is shown in Figure 5. 

 

Figure 5. MP module before and after improvement. 
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When analyzing the model, it is noted that although the improved C-MP module 

effectively improves the accuracy and recall rate of the model, there are also problems 

with increasing the number of parameters and increasing the complexity of the model. In 

order to balance the accuracy and model complexity, distributed shift convolution 

(DSConv) is introduced to further optimize the model structure. Through the analysis of 

the standard convolution, the ELAN module is improved, and the D-ELAN structure is 

proposed, as shown in Figure 6. The D-ELAN structure improves the convolution kernel 

from the second layer to the fifth layer to DSConv so as to improve the model detection 

speed and reduce the number of parameters. This improvement makes the SCD-YOLOv7 

model more efficient and lightweight while maintaining high performance and is suitable 

for complex tasks such as blood cell image detection. 

 

Figure 6. ELAN module before and after improvement. 

3.1.2. Sim-Head Detection Head 

Addressing the challenges of densely distributed small targets and the potential loss 

of detailed information in blood cell image detection, we introduce a non-parametric at-

tention module and design a detection head, Sim-Head, specifically for small target iden-

tification. The structure is depicted in Figure 7. The Sim-Head detection head optimally 

utilizes the information produced by the feature fusion network, thoroughly investigates 

the relationship between pixel features, and exhibits heightened sensitivity to small tar-

gets, particularly in scenarios with densely distributed small targets. The enhanced Sim-

Head detection head not only elevates the model’s detection accuracy but also bolsters its 

robustness, ensuring stable detection performance even under complex backgrounds and 

cell overlap conditions. 

 

Figure 7. Sim-Head detection head. 
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The SIMAM module is a streamlined attention mechanism. Unlike existing channel 

and spatial attention mechanisms, it can learn attention across both channels and spaces, 

thereby capturing key information in the feature map with greater flexibility. As a non-

parametric 3D attention module, SIMAM diverges from 1D and 2D attention mechanisms 

that solely focus on the importance of channels or spaces. It can concurrently emphasize 

the importance of each channel and spatial location feature, inferring the three-dimen-

sional attention weight through an in-depth analysis of feature mapping. In visual tasks, 

this mechanism assigns weights to neurons based on their importance, thereby directing 

more attention to information-rich neurons and significantly enhancing the model’s fea-

ture extraction capability. The structure of the SIMAM attention mechanism is depicted 

in Figure 8. The module not only takes into account the correlation between space and 

channel dimensions but also does not increase the number of additional parameters, ena-

bling efficient and accurate detection. 

 

Figure 8. SIMAM attention mechanism. 

3.1.3. Loss Function Optimization 

The efficacy of the YOLOv7 algorithm is significantly influenced by the bounding 

box loss function. The CIoU loss function, when applied to address the imbalance between 

positive and negative samples, results in a decrease in detection accuracy. To mitigate this 

issue, a novel loss function is presented in this chapter, Focal-EIoU, which integrates EIoU 

Loss and Focal Loss. The EIoU Loss component more precisely calculates the overlap be-

tween bounding boxes, thereby providing more accurate metrics for the loss function. On 

the other hand, Focal Loss aims to counteract the imbalance between positive and negative 

samples by diminishing the weight of samples that are prone to misclassification. This 

reduces the detrimental impact of negative samples on model training. The combined Fo-

cal-EIoU loss function not only optimizes the calculation method of bounding box overlap 

but also alleviates the imbalance between positive and negative samples by adjusting the 

sample weight, thereby enhancing the model’s detection performance. The Focal-EIoU 

loss function is defined as follows: 

𝐿𝐸𝐼𝑂𝑈 = 1 − 𝐼𝑂𝑈 +
𝜌2(ℎ, 𝑏𝑔𝑡)

(𝑤𝑐)2 + (ℎ𝑐)2
+
𝜌2(𝑤,𝑤𝑔𝑡)

(𝑤𝑐)2
+
𝜌2(ℎ, ℎ𝑔𝑡)

(ℎ𝑐)2
 (1) 

In the formula, and denotes the width and height of the minimum circumscribed 

rectangle that can cover both the true box and the prediction box, and the function is used 

to calculate the Euclidean distance between the two points. The EIoU function signifi-

cantly reduces the difference between the target bounding box and the real bounding box, 

thereby improving the positioning accuracy of the target detection. 

The mathematical expression of the Focal Loss function is as follows: It makes the 

loss of positive samples occupy a larger proportion of the total loss through a specific 

weight adjustment mechanism and optimizes the training process of the model. It not only 

solves the problem of gradient explosion in small target detection but also improves the 

detection ability of the model for targets of different sizes. 
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In the formula, the constant is used to balance the numerical range of the loss function 

and ensure the stability of the training. By integrating EIoU Loss and Focal Loss, the final 

Focal-EIoU loss function is obtained. 

In this chapter, the loss function is optimized to improve the accuracy of regression 

and the convergence speed of the model in the blood cell detection task. The improved 

loss function is Focal-EIoU, which inherits the advantages of the EIoU loss function in 

measuring the geometric difference of the bounding box. By explicitly considering the 

three key factors of overlapping area, center point, and side length, the model returns the 

position and size of the bounding box more accurately when locating the target. In addi-

tion, by integrating the idea of Focal Loss, the loss function further enhances the model’s 

attention to high-quality Anchors, so that the model can quickly learn effective feature 

representations during the optimization process, thereby improving the accuracy of target 

detection. 

4. Experiment and Results 

4.1. Experimental Environment and Configuration 

In this experiment, Python 3.8 is used as the compiled version of the code, and 

Pytorch1.13.0 is used as the deep learning framework. Code debugging is performed in 

the Windows 10 environment. In order to shorten the model training time, training is per-

formed on the cloud server. This chapter uses Intel (R) Xeon (R) CPU E5-2686 v4 proces-

sor, 3060 graphics card (12 GB memory), and 30 GB memory. All experiments are imple-

mented using the PyTorch 1.13.0 and CUDA11.7.0 framework. The experimental environ-

ment is shown in Table 1. 

Table 1. Experimental environment requirements. 

Name Parameter Description 

Operating system Windows10 

CPU Intel(R) Xeon(R) CPU E5-2686 v4 

GPU 3060-12G 

Memory 30G 

CUDA Version 11.7 

Python 3.8 

Pytorch 1.13.0 

In this experiment, the pre-training weight file used in the YOLOv7-main/train.py 

file is modified to be YOLOv7.pt, the image loading size is set to 640 × 640, and the data 

loading file is set to myYOLOv7.yaml. The SGD optimizer with simple, efficient, flexible, 

and good generalization ability is selected. In view of the limitation of computer resources 

and memory, the batch size is selected to be 2, and the initial learning rate, periodic learn-

ing rate, and weight attenuation coefficient are set as common default values. The specific 

hyperparameters are set as shown in Table 2. 

Table 2. Super parameter settings. 

Name Numerical Value 

Image size 640 × 640 × 3 

Batch size 2 

lr0 0.01 

lrf 0.1 

Optimizer SGD 

Weight decay 0.0005 
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Momentum 0.937 

4.2. Experimental Analysis 

4.2.1. Data Enhancement Strategy Results Analysis 

In this section, four enhancement strategies of Hsv, Flip, Mixup, and Mosaic are used 

to increase the diversity of samples. In order to verify the effect of the data enhancement 

strategy on the detection performance of the SCD-YOLOv7 model in the blood cell image 

data set, experiments are carried out. The results are shown in Table 3. 

Table 3. Experimental results of data augmentation strategy. 

Network Model 
Parameter Quantity 

(MB) 

Computation 

(GB) 
mAP(WBC) mAP(RBC) mAP(ALL) 

Yolov7 36.5 103.2 85.1 85.3 85.2 

Yolov7 + Flip 36.5 103.2 85.6 85.2 85.4 

Yolov7 + Flip + Mixup 36.5 103.2 86.1 85.4 85.7 

Yolov7 + Flip + Mixup + Hsv 36.5 103.2 86.4 85.7 86.0 

Y7 + Flip + Mixup + Hsv + Mosaic 36.5 103.2 87.3 85.6 86.5 

4.2.2. Analysis of Improved Detection Head Results 

In this paper, the small target detection head based on the SimAM non-parametric 

attention mechanism is optimized and improved. In order to further verify the effective-

ness of the Sim-Head detection head, this paper also compares it with the detection head 

structure that introduces attention mechanisms such as SE, CBAM, and ECA. The experi-

mental results are shown in Table 4, and the mAP of the improved model has an increase 

of three or four percentage points in WBC/RBC/ALL, which proves the superiority of the 

proposed improvement strategy. The detection head Sim-Head based on the non-para-

metric attention mechanism of SimAM can better capture the local features of the image, 

fully combine the deep features and shallow features, and make use of the advantages of 

both, so that the model has better detection ability in the detection scene where small tar-

gets are densely distributed. 

Table 4. Comparison of different attention mechanism experiments. 

Attention Mechanism 
Parameter Quantity 

(MB) 

Computation 

(GB) 
mAP (WBC) 

mAP 

(RBC) 
mAP(ALL) 

Yolov7 36.5 103.2 87.3 85.6 86.5 

Yolov7 + SE 36.5 103.7 87.4 86.9 87.2 

Yolov7 + CBAM 36.5 103.7 92.6 83.7 88.2 

Yolov7 + GAM 38.2 103.7 89.7 86.0 87.8 

Yolov7 + ECA 36.5 103.6 88.9 83.9 86.4 

Yolov7 + BiFormer 36.8 103.7 85.8 81.8 83.8 

Yolov7 + SimAM 36.5 103.6 90.4 86.4 88.4 

4.2.3. Analysis of Optimization Loss Function Results 

In this section, based on the improved detection head SimAM and feature extraction 

network, the IoU loss function is optimized, and the original CIoU is improved to Focal-

EIoU. During the experiment, the performance of Focal-EIoU in blood cell target detection 

was not only tested but also compared with other loss functions. Through comparative 

experiments, it is found that CIoU performs well in accuracy, while the Focal-EIoU loss 

function performs better in improving the mAP value. The experimental results are shown 

in Table 5; the improved loss function has an increase of two to three percentage points 
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compared with the original model. Choosing Focal-EIoU as the improved loss function 

not only helps to speed up the convergence of the model but also significantly improves 

the detection accuracy of the model. 

Table 5. Loss function experimental comparison. 

Loss Function 
Parameter Quantity 

(MB) 

Computation 

(GB) 
mAP (WBC) mAP (RBC) mAP (ALL) 

GIoU 36.5 88.6 93.3 87.0 90.2 

DIoU 36.5 88.6 94.2 86.9 90.5 

CIoU 36.5 88.6 95.7 87.4 91.6 

WIoU 36.5 88.6 93.2 87.5 90.4 

EIoU 36.5 88.6 95.9 86.9 91.4 

Focal-EIoU 36.5 88.6 96.9 87.4 92.2 

The parameters in the original Focal loss are used to adjust the weight distribution of 

positive and negative samples in the total loss. In the target detection task, the number of 

negative samples often far exceeds the number of positive samples, which may lead to the 

problem of sample imbalance during training. By selecting the value of the parameters, 

the influence of positive and negative samples on loss can be balanced, and the training 

effect of the model can be optimized. At the same time, parameters play an important role 

in adjusting the weight of difficult and easy samples in Focal loss. During the training 

process, the influence of samples with different difficulty levels on model optimization is 

also different. By adjusting the parameters, the model can focus on those samples that are 

difficult to distinguish, thereby improving the robustness and generalization ability of the 

model. In order to determine the optimal combination of parameters, multiple sets of ex-

periments are carried out, and the experimental results are shown in Table 6. 

Table 6. Experimental results of different Focal-EIoU parameters. 

a g 
Parameter Quantity 

(MB) 

Computation 

(GB) 
mAP(WBC) mAP(RBC) mAP(ALL) 

1 1 36.5 88.6 97.2 87.6 92.4 

1 0.75 36.5 88.6 96.0 86.4 91.2 

1 0.5 36.5 88.6 96.8 87.4 92.1 

2 1 36.5 88.6 94.2 87.0 90.6 

2 0.75 36.5 88.6 95.8 87.2 91.5 

2 0.5 36.5 88.6 95.4 86.8 91.1 

For different combinations of values, the average accuracy of the SCD-YOLOv7 

model for white blood cell and red blood cell detection is different. Due to the infinite 

value of the combined value, this paper does not carry out large-scale value experiments. 

Only a few sets of values are selected within the appropriate range for experiments. Fi-

nally, the value combination with the parameter of 1 is selected. 

4.2.4. Analysis of Ablation Experimental Results 

This section performs ablation experiments on the proposed improved SCD-YOLOv7 

model on the data set to verify the impact of each improved module on the network 

model. The ablation experiment is carried out based on data enhancement. The detection 

head Sim-Head with SimAM attention mechanism, the C-MP module with CA attention 

mechanism, the D-ELAN module with improved standard convolution, and the optimi-

zation strategy of improved Focal-EIoU loss function are analyzed in detail. The experi-

mental results are shown in Table 7. 
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Table 7. Ablation experiment. 

Y7 + Data Sim-Head C-MP D-ELAN Focal-EIoU 
Parameter

（MB） 

Computation

（GB） 
mAP(WBC) mAP(RBC) Map(ALL) 

Y     36.5 103.2 87.3 85.6 86.5 

Y Y    36.5 103.6 90.4 86.4 88.4 

Y  Y   36.5 103.2 89.0 86.8 87.9 

Y   Y  36.4 88.2 85.9 85.0 85.5 

Y    Y 36.4 103.2 90.5 84.3 87.4 

Y Y Y   36.5 103.7 93.5 88.2 90.9 

Y Y Y Y  36.5 88.6 95.7 87.4 91.6 

Y Y Y Y Y 36.5 88.6 97.2 87.6 92.4 

Each independent improvement strategy shows good performance in terms of pa-

rameter quantity and calculation amount, but it is not the optimal choice. By integrating 

the improvements of the above four parts, the performance of the model is maximized. 

Compared with the original model, the improved model has a significant improvement 

in detection accuracy. Specifically, the improved Sim-Head detection head has the most 

significant improvement in the performance of the blood cell detection model, and the 

mAP value has increased by 1.9%. Secondly, the C-MP module in the feature extraction 

network is improved, and the mAP value is increased by 1.5%. In addition, the improved 

D-ELAN module not only improves the detection accuracy mAP by 0.7% but also greatly 

reduces the amount of calculation by 15.1G, which proves the effectiveness of the module 

in improving the performance of the model. The optimization strategy of the Focal-EIoU 

loss function is introduced, which makes the mAP value increase by 0.8% on the previous 

basis. Through the comprehensive application of these improvement strategies, the final 

average accuracy mean mAP value reaches 92.4%, which is 7.2% higher than that of 

YOLOv7, and the calculation amount is reduced by 14.6G. The experimental results show 

that the proposed method significantly improves the detection performance of blood cell 

images for the network model. 

In the fifth line, the Focal IoU loss function is used with two parameters ranging from 

36.5M to 36.4M, reducing the number of parameters. In the second to last line, the Focal 

IoU loss function is used with 36.5M parameters and 103.7G of computation. In the last 

line, the Focal IoU loss function is used with 36.5M parameters and 88.6G of computation, 

without any change in the number of parameters. This is because in this case, the number 

of parameters remains unchanged, indicating that the network structure has not been fur-

ther optimized or adjusted when introducing the Focal IoU loss function. This is because 

a balance point has been reached, which is to improve model performance by optimizing 

the loss function without changing the number of parameters. 

4.2.5. Analysis of Comparative Experimental Results 

In order to evaluate the detection effect and performance of the model more compre-

hensively, the experimental results of the improved model SCD-YOLOv7 were quantita-

tively and qualitatively analyzed. In addition, with other commonly used target detection 

models, under the same configuration conditions, the same data set is used for training 

and verification, and the detection results are compared comprehensively. 

Quantitative results analysis: In order to objectively evaluate the detection perfor-

mance of the SCDYOLOv7 model on the blood cell image data set, the P-R curve of the 

model is drawn, as shown in Figure 9. In the P-R curve, the abscissa represents the recall 

rate, the ordinate represents the accuracy rate, and the mAP@0.5 value of the cell target to 

be tested is the area enclosed by the curve and the coordinate axis. When the recall rate is 

close to 1, that is, the model can almost identify all blood cell targets, and the accuracy 
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rate begins to decline rapidly. It fully proves the excellent performance of the SCD-

YOLOv7 network in blood cell detection. 

 

Figure 9. P-R curve of SCD-YOLOv7 model. 

F1-scores are a comprehensive parameter to evaluate detector Recall and Precision 

performance. As shown in Figure 10, it is the F1 score change curve of the algorithm in 

this paper. The three curves in the figure represent the average F1 score change of white 

blood cell and red blood cell categories in the data set, respectively. The ordinate is the 

F1-scores value of each target, and the abscissa is the threshold range. 

 

Figure 10. F1-scores curve of SCD-YOLOv7 model. 

Qualitative result analysis: In order to intuitively show the actual performance of the 

SCD-YOLOv7 model proposed in this paper in the blood cell image detection task, two 

sets of images in the test set were tested and verified. The results are visually displayed, 

as shown in Figure 11, and the real annotation box, YOLOv7 network prediction results, 

and SCD-YOLOv7 network prediction results are compared. 
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Ground Truth YOLOv7 SCD-YOLOv7 

Figure 11. Blood cell detection effect diagram. 

In Figure 11(a1–a3), the YOLOv7 model has three cases of missed detection of red 

blood cell targets and one case of false detection. It is caused by the overlapping of red 

blood cell targets and the complex background in the blood cell image. In contrast, the 

improved SCD-YOLOv7 model has significantly improved the detection effect, with only 

one missed detection and one false detection, which reflects the robustness of the model 

in complex backgrounds. In addition, the confidence in the prediction results of the SCD-

YOLOv7 model is generally higher than that of the YOLOv7 model, which verifies the 

effectiveness of the model in improving detection accuracy. In Figure 11(b1–b3), the pre-

diction results of the YOLOv7 model are also unsatisfactory, and there are more red blood 

cells and white blood cells missed. However, the SCD-YOLOv7 model can completely 

predict all the cell targets to be detected, fully demonstrating the superior performance of 

the model in the blood cell detection task. This is due to the improvement of the small 

target detection head and the feature extraction network part, which makes the model 

more advantageous in capturing local information and global information. 

In order to further verify the advantages of the SCD-YOLOv7 model proposed in this 

paper in the blood cell image detection task, in this paper, a comparison is made between 

the SCD-YOLOv7 model and other existing mainstream target detection models. The pa-

rameters, computational load, mAP values, and other performance indicators of these 

models are calculated and analyzed when they are applied to a blood cell dataset. The 

comparative experiments are carried out under the same experimental conditions and pa-

rameter configuration, and the results are shown in Table 8 the improved algorithm 

mAP/WBC increased from 75.8% to 97.2%, mAP/RBC increased from 71.8% to 87.6%, and 

mAP/ALL increased from 73.8% to 92.4% the detection performance is greatly improved 

compared with the original model. 

The SCD-YOLOv7 improved algorithm proposed in this paper performs best on 

mAP, and the parameter quantity and calculation amount are excellent. For the YOLOv5 

s model, although the parameter quantity and calculation amount are the lowest, which 

are 7.1 M and 16.3 G, respectively, its detection accuracy is only 82.3%. Compared with 
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YOLOX, the SCD-YOLOv7 model has obvious advantages in detection accuracy, param-

eter quantity, and calculation amount. The mAP value is 5.9% higher than that of the 

YOLOX model, the parameter amount is reduced by 17.7 M, and the calculation amount 

is reduced by 67 G. Compared with the YOLOv6 model, the accuracy mAP value is in-

creased by 7.7%. Compared with other algorithms, YOLOv5l, YOLOv4, Faster-RCNN, 

and SSD, the proposed improved model SCD-YOLOv7 has the lowest computational 

complexity, and the mAP values are increased by 6.6%, 10.8%, 13.9%, and 18.6%, respec-

tively. Compared with all the above algorithms, the model proposed in this paper per-

forms well in parameter quantity and calculation amount for blood cell detection, and the 

detection accuracy reaches 92.4%. At the same time, the effectiveness and feasibility of the 

improved algorithm in blood cell image detection are verified. 

Table 8. Experimental comparison of different network models. 

Network 

Model 

Parameter 

Quantity (MB) 

Computation 

(GB) 
mAP (WBC) 

mAP 

(RBC) 
mAP (ALL) 

SSD 24.0 274.5 75.8 71.8 73.8 

Faster-RCNN 136.7 401.8 81.3 75.7 78.5 

YOLOv4 52.4 119.7 85.1 78.0 81.6 

YOLOv5l 46.3 108.9 86.7 85.0 85.8 

YOLOv5s 7.1 16.3 87.4 77.3 82.3 

YOLOX 54.2 155.6 87.3 85.6 86.5 

YOLOv6 34.8 85.6 86.8 82.7 84.7 

YOLOv7 36.5 103.2 85.1 85.3 85.2 

SCD-YOLOv7 36.5 88.6 97.2 87.6 92.4 

5. Summary 

In this paper, a blood cell detection algorithm based on SCD-YOLOv7 is proposed to 

solve the problems of small red blood cell targets, complex image backgrounds, and cell 

overlap in the blood cell image cell detection task. Firstly, the framework of YOLOv7 and 

the improved blood cell image detection model SCDYOLOv7 are introduced, which are 

described from four aspects: feature extraction network, small target detection head, and 

loss function. Then, the parameter setting, experimental environment, and performance 

evaluation index are defined. Different improvement strategies are tested, and the abla-

tion experimental results of each module are analyzed in detail. Finally, the experimental 

results on the blood cell image data set are quantitatively and qualitatively analyzed. Un-

der the same configuration conditions, the detection effect is compared with other com-

monly used detection models, which proves the effectiveness of the model proposed in 

this paper. 

Author Contributions: Conceptualization, M.L. and L.Y.; methodology, X.L.; software, S.F. and L.Y.; 

validation, S.F. and L.Y.; formal analysis, X.W.; investigation, H.Y. and J.W.; resources, M.L. and 

L.Y.; data curation, S.F.; writing—original draft preparation, L.Y.; writing—review and editing, M.L. 

and L.Y.; visualization, Q.D. and Z.H.; supervision, M.L. and L.Y.; project administration, M.L; 

funding acquisition, M.L. All authors have read and agreed to the published version of the manu-

script. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data are contained within the article. 



Sensors 2025, 25, 882 17 of 18 
 

 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Shaikh, I.M.; Akhtar, M.N.; Aabid, A.; Ahmed, O.S. Enhancing sustainability in the production of palm oil: Creative monitoring 

methods using YOLOv7 and YOLOv8 for effective plantation management. Biotechnol. Rep. 2024, 44, e00853. 

2. Nirapai, A.; Leelasantitham, A. A new adoption model for quality of experience assessed by radiologists using ai medical im-

aging technology. J. Open Innov.: Technol. Mark. Complex. 2024, 10, 100369. 

3. Sabate, A.; Caballero, M.; Perez, L. Comments on: Tranexamic acid administration during liver transplantation is not associated’ 

with lower blood loss or with reduced utilization of red blood cell transfusion. Anesth. Analg. 2024, 139, e32–e33. 

4. Tran, M.H.; Ma, L.; Mubarak, H.; Gomez, O.; Yu, J.; Bryarly, M.; Fei, B. Detection and margin assessment of thyroid carcinoma 

with microscopic hyperspectral imaging using transformer networks. J. Biomed. Opt. 2024, 29, 093505. 

5. Qiong, M.; Jufeng, Z.; Guangmang, C. Optimization of the fpm iterative process based on bright-field spectral overlap rate 

analysis. Opt. Lett. 2024, 49, 5244–5247. 

6. Jagtap, N.S.; Bodade, V.; Kadrolli, V.; Mahajan, H.; Kale, P.P.; Pise, P.; Hingmire, A. Deep learning-based blood cell classification 

from microscopic images for haematological disorder identification. Multimedia Tools Appl. 2024, 2, 1–28. 

7. V.K., A.K.; Chalissery, M.D.; Thomas, S. A bibliometric review of market microstructure literature: Current status, development, 

and future directions. Finance Res. Lett. 2024, 69, 106086. 

8. Yue, P.; Yang, M.; Jiao, Q.; Xu, L.; Wang, X.; Zhang, M.; Tan, X. Compact numerical aperture 0.5 fiber optic spectrometer design 

using active image plane tilt. Sensors 2024, 24, 3883. 

9. Liu, Z.H.; Lu, S.Y.; Li, X.B.; Chen, H.M.; Chen, H.Y.; Chen, X.Y.; Fang, J.Y.; Cui, Y. Endoscopic, clinicopathological, and growth 

characteristics of minute gastric cancer. J. Dig. Dis. 2022, 23, 628–635. 

10. Nicolas B, Xiaowen S, Daniel P, et al. Evaluation of partial coherence correction in X-ray ptychography[J].Optics ex-

press,2015,23(5):5452-67. 

11. Anishchik, S.V.; Dantus, M. Optical microscope with nanometer longitudinal resolution based on a linnik interferometer. J. Opt. 

2024, 26, 115602. 

12. Yan, W.; Ying, L.; Yilin, G.; Jiahao, K.; Weijia, W.; YuLe, Y.; Xiaoyan, Q.; Xiaomin, D.; Dong, S.; Yongping, S.; et al. Fine partic-

ulate matter exposure disturbs autophagy, redox balance and mitochondrial homeostasis via jnk activation to inhibit prolifera-

tion and promote emt in human alveolar epithelial a549 cells. Ecotoxicol. Environ. Saf. 2023, 262, 115134. 

13. Cathrine, K.D.A.; Carolyn, B. Evaluating the family partnership model (fpm) program and implementation in practice in new 

south wales, Australia. Aust. J. Adv. Nurs. 2007, 25, 28–35. 

14. Yüksel, N.; Çifci, H. A New Model for Technology Foresight: Foresight Periscope Model (fpm); In 2017 International Conference 

on Engineering, Technology and Innovation (ICE/ITMC); IEEE: Piscataway, NI, USA, 2017, pp. 807–817. 

15. Fan, Y.; Sun, J.; Shu, Y.; Zhang, Z.; Zheng, G.; Chen, W.; Zhang, J.; Gui, K.; Wang, K.; Chen, Q. et al. Efficient synthetic aperture 

for phaseless fourier ptychographic microscopy with hybrid coherent and incoherent illumination. Laser Photon- Rev. 2022, 17, 

2200201. 

16. Habibzadeh, M.; Krzyzak, A.; Fevens, T. White Blood Cell Differential Counts Using Convolutional Neural Networks for Low 

Resolution Images; In Proceedings of the Artificial Intelligence and Soft Computing: 12th International Conference, ICAISC 

2013, Zakopane, Poland, 9–13 June 2013; Part II 12; Springer: Berlin/Heidelberg, Germany, 2013; pp. 263–274. 

17. Jia, G.; Wang, J.; Wang, H.; Hu, X.; Long, F.; Yuan, C.; Liang, C.; Wang, F. New insights into red blood cells in tumor precision 

diagnosis and treatment. Nanoscale 2024, 16, 11863–11878. 

18. Gopinath, S.C.; Tang, T.-H.; Chen, Y.; Citartan, M.; Lakshmipriya, T. Bacterial detection: From microscope to smartphone. Bio-

sens. Bioelectron. 2014, 60, 332–342. 

19. Merino, A.; Puigví; L.; Boldú, L.; Alférez, S.; Rodellar, J. Optimizing morphology through blood cell image analysis. Int. J. Lab. 

Hematol. 2018, 40, 54–61. 

20. Hassaballah, M.; Awad, A.I. Deep Learning in Computer Vision: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2020. 

21. Verso, M. Some nineteenth-century pioneers of haematology. Med. Hist. 1971, 15, 55–67. 

22. Mathew, A.; Amudha, P.; Sivakumari, S. Deep Learning Techniques: An Overview; In Advanced Machine Learning Technologies 

and Applications: Proceedings of AMLTA 2020; Springer: Singapore, 2021; pp. 599–608. 

23. Djemame, S.; Fichouche, S. A novel edge detection algorithm based on outer totalistic cellular automata. Rev. D’intelligence Artif. 

2022, 36, 19–30. 



Sensors 2025, 25, 882 18 of 18 
 

 

24. Sheng, W.F.; Yu, W.T.; Hsiung, W.W. Fuzzy multiobjective hierarchical optimization with application to identify antienzymes 

of colon cancer cells. J. Taiwan Inst. Chem. Eng. 2022, 132, 104121. (Prepublish). 

25. Xiang, G.; Jingyi, F. Design of public cultural sign based on faster-r-cnn and its application in urban visual communication. 

PeerJ. Comput. Sci. 2023, 9, e1399. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-

thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 

people or property resulting from any ideas, methods, instructions or products referred to in the content. 


