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Abstract: IoT-based applications require effective anonymous authentication and key agree-
ment (AKA) protocols to secure data and protect user privacy due to open communication
channels and sensitive data. While AKA protocols for these applications have been exten-
sively studied, achieving anonymity remains a challenge. AKA schemes using one-time
pseudonyms face resynchronization issues after desynchronization attacks, and the high
computational overhead of bilinear pairing and public key encryption limits its applicability.
Existing schemes also lack essential security features, causing issues such as vulnerability
to ephemeral secret leakage attacks and key compromise impersonation. To address these
issues, we propose two novel AKA schemes, PUAKA and RCAKA, designed for different
IoT traffic patterns. PUAKA improves end device anonymity in the periodic update pattern
by updating one-time pseudonyms with authenticated session keys. RCAKA, for the re-
mote control pattern, ensures anonymity while reducing communication and computation
costs using shared signatures and temporary random numbers. A key contribution of
RCAKA is its ability to resynchronize end devices with incomplete data in the periodic
update pattern, supporting continued authentication. Both protocols’ security is proven
under the Real-or-Random model. The performance comparison results show that the
proposed protocols exceed existing solutions in security features and communication costs
while reducing computational overhead by 32% to 50%.

Keywords: anonymity; authentication and key agreement; traffic pattern; periodic update
pattern; remote control pattern; desynchronization; internet of things

1. Introduction
The Internet of Things (IoT) facilitates seamless interaction between smart sensors,

actuators, and servers, enabling autonomous operation without human intervention and
supporting a wide range of innovative applications [1]. Currently, IoT-based applications
are being increasingly deployed in diverse sectors such as industry, agriculture, transporta-
tion, environmental protection, healthcare, and security. In these applications, systems
typically involve lightweight sensors, actuators, and more powerful servers. Sensor nodes
are deployed in designated areas to periodically monitor and collect real-time data on
specific events or changes in the environment and transmit them to the server for anal-
ysis and processing or to the actuator side for control. Actuators, in turn, receive data
or commands that enable the operation of the instruments or devices in which they are
embedded. The gateway connects various devices such as sensors and actuators through
various wired or wireless means to achieve comprehensive data coverage and efficient
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transmission. The server is the core of the entire IoT architecture and contains functions
such as device management, data visualization, and remote control to facilitate the man-
agement and monitoring of IoT devices. However, data exchanged between sensors and
actuators in IoT systems typically transmit over potentially unsecured communication
channels. The openness of these channels introduces significant security vulnerabilities [2].

Authentication and key agreement (AKA) protocols are essential for secure IoT com-
munications. They enable end devices to authenticate with each other, securely exchange
keys, and verify the integrity of messages. These protocols also create shared session
keys between end devices and servers to maintain subsequent communications [3]. The
increasing adoption of IoT-based applications has raised significant concerns about privacy
and security. Effective AKA proposals must be resistant to various attacks, including key
compromise impersonation (KCI), replay, impersonation, and ephemeral secret leakage
(ESL) attacks [4]. Furthermore, privacy issues have intensified the demand for anonymity in
AKA protocols. Anonymity protects the sender’s identity, while untraceability ensures that
different communications cannot be linked to the same entity. Both are essential for safe-
guarding user privacy in IoT environments. Elliptic Curve Cryptography (ECC) has gained
popularity in IoT security because of its efficiency. With smaller key sizes, ECC provides
robust security while minimizing computational overhead, storage needs, and bandwidth
usage—key advantages for resource-constrained IoT devices. Therefore, designing efficient
and secure ECC-based anonymous AKA protocols is essential to improve the security and
robustness of IoT-based systems.

Recent efforts have aimed to address security concerns in the ECC-based anonymous
AKA protocol for IoT-based applications. In 2016, Tsai et al. [5] presented an anonymous
AKA scheme with ECC bilinear pairing for smart grids. However, the protocol has high
computational overhead for bilinear pairing and lacks message integrity. He et al. [6]
subsequently improved the Tsai et al. protocol to reduce computational and commu-
nication costs, but it lacks anonymity and remains vulnerable to ESL attacks. In 2018,
Odelu et al. [7] demonstrated that the scheme [5] cannot withstand ESL attacks and pro-
posed an alternative based on bilinear pairing. However, the alternative cannot cope
with ESL attacks and does not provide message integrity or anonymity. Saeed et al. [8]
introduced an AKA scheme for secure IoT communication between end devices and cloud
servers, which offers verification of data integrity, but it is still subject to ESL attacks
and does not provide anonymity. In 2020, Garg et al. [9] presented an AKA solution for
smart grids that uses fully halved Menezes–Qu–Vanstone for participant authentication.
However, Chaudhry et al. [10] later noted that this scheme is susceptible to KCI attacks
and does not support anonymity or perfect forward secrecy (PFS). Chaudhry et al. [10]
then introduced a new protocol that uses ECC and symmetric encryption for smart grids
but remains vulnerable to key escrow problems and Man-in-the-Middle attacks. In 2020,
Chaudhry et al. [11] introduced the use of one-time pseudonyms to ensure anonymity for
smart grids, but this creates challenges in synchronization. If a pseudonym is blocked or
lost, the sensor cannot re-authenticate without re-registration. Similar resynchronization is-
sues are present in the schemes of Park et al. [12] and Zhang et al. [13]. In 2023, Hu et al. [14]
highlighted vulnerabilities in the scheme [8], such as the non-resistance of ESL attacks and
the absence of anonymity. They then presented an AKA protocol for smart meters and
virtual server nodes. However, Wu et al. [15] identified that the protocol [14] suffers from
KCI attacks and lacks untraceability. Wu et al. [15] then presented an improved scheme,
but it suffers from high computational overhead and susceptibility to Denial of Service
(DoS) attacks. The anonymity methods used by both Hu et al. [14] and Wu et al. [15] lead
to poor usability due to the server’s need to enumerate stored identities for verification.
In 2024, Hu et al. [16] introduced an anonymous AKA protocol for the IoT-based system,
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using temporary public key encryption to improve anonymity. Although this approach
strengthens security, it significantly increases computational overhead, which poses chal-
lenges for resource-constrained IoT environments. In general, despite extensive research,
achieving effective anonymity in IoT systems remains a significant challenge. Protocols
using one-time pseudonyms face serious resynchronization issues after desynchronization
attacks, while public key encryption and bilinear pairing introduce high computational
costs. Many existing protocols also remain vulnerable to ESL and other security threats.

In contrast to traditional human-type communication applications, IoT-based systems
exhibit unique traffic patterns [17]. Specifically, IoT communication often follows periodic
update patterns and remote control patterns, where sensors send regular status updates or
receive commands from the server for remote control. These patterns differ significantly
from conventional human-driven communication behaviors, which are typically more
dynamic and less predictable. This distinction is critical when designing AKA protocols for
IoT-based applications, as traditional approaches are often designed with human commu-
nication patterns in mind, leading to inefficiencies when applied to IoT-based systems.

To address these challenges, we propose a pair of secure anonymous AKA protocols,
PUAKA and RCAKA, designed specifically for different IoT traffic patterns. PUAKA is
optimized for the periodic update pattern, where sensors periodically send data to the
server. It uses authenticated session key parameters to update one-time pseudonymous
identities, ensuring sensor anonymity with minimal communication overhead. RCAKA,
on the other hand, is suited for the remote control pattern, where the server issues com-
mands to control sensors. RCAKA uses shared signatures and temporary random numbers
to maintain anonymity while minimizing computational costs. RCAKA can also resynchro-
nize unfinished sensors in the periodic update pattern and perform authentication and
session key negotiation.

The contributions of this paper are as follows:

(1) We review existing ECC-based anonymous AKA schemes for IoT-based systems and
identify key limitations, such as lack of resynchronization mechanisms and high
computational overhead.

(2) We introduce two novel AKA protocols, PUAKA and RCAKA, tailored to traffic pat-
terns. PUAKA ensures efficient anonymous authentication in the periodic update
pattern, while RCAKA supports both anonymous authentication and resynchroniza-
tion in the remote control pattern.

(3) We provide a formal security analysis of our proposals, demonstrating mutual authen-
tication, anonymity, PFS, and resilience against ESL, KCI, and impersonation attacks.

(4) Our protocols significantly reduce computational and communication overhead while
offering more robust security features compared to existing schemes.

The paper is structured as follows: In Section 2, we describe the network model,
the complexity assumptions, and the traffic patterns. The proposed schemes are introduced
in Section 3. Sections 4–6 offer detailed security analysis and performance comparisons.
Finally, Section 7 concludes the paper.

2. Preliminaries
2.1. Network Model

As shown in Figure 1, IoT-based application systems consist of components such
as end devices, gateways, and servers [18]. End devices typically include sensors and
actuators. Sensors are deployed in designated areas to monitor and collect real-time data
on environmental changes or events at intervals set by the server. Then, these data are
transmitted to servers for analysis or control of actuators. Actuators, in turn, receive data
or commands to operate embedded instruments or devices. The gateway connects various
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devices, such as sensors and actuators, through wired or wireless methods to ensure
extensive data coverage and efficient transmission. The server acts as the central hub of the
IoT architecture, providing device management, data visualization, and remote control to
monitor and manage IoT devices. An IoT-based application system may include multiple
servers, and trust authorities (TA) act as dedicated servers for key generation, dissemination,
and management. The proposed protocols involve Si(1 ≤ i ≤ l), SPj(1 ≤ j ≤ m),
and TAk(1 ≤ k ≤ n), where l ≫ n and m ≫ n, with l, m, and n representing the number of
end devices, servers, and TAs, respectively.

Gateway
Internet

多个服务器

Servers

Sensors Actuators

End devices

Figure 1. Network model.

2.2. Complexity Assumptions

Given a large prime p, an elliptical curve E(Fp) is chosen. The points in E, along with
the identity point O, form an additive group G of order q, with P as a generator of G.

Definition 1. Elliptic Curve Discrete Logarithm Problem (ECDLP): Given two points A and P
in E(Fp), the ECDLP is to find the positive integer x such that X = x · P. The probability that
an algorithm A can solve the ECDLP within time t is negligible for a sufficiently small ϵ, and is
given by

AdvAECDL(t) = Pr[A(P, xP) = x : x ∈ Z∗
q ] < ϵ (1)

Definition 2. Elliptic Curve Computational Diffie–Hellman Problem (ECDHP): Given three
points, P, X = x · P, and Y = y · P in E(Fp), computing xy · P is considered computationally
infeasible. The probability that an algorithm A can solve this problem within time t is negligible for
a sufficiently small ϵ, and is given by

AdvACDH(t) = Pr[A(xP, yP) = xyP : x, y ∈ Z∗
q ] < ϵ (2)

2.3. IoT Traffic Pattern

Nikaein et al. [17] analyzed the functions of most applications and identified the traffic
patterns listed below.

(1) Periodic update: sensors and actuators send updated status reports, such as smart
meter readings (e.g., gas, electricity, water), to the server periodically at intervals
configured by the server.

(2) Remote control: The server sends commands to the sensors and actuators to control
them remotely, such as remotely starting or stopping smart home devices.

(3) Event driven: The sensor sends real-time emergency messages to the server when
a parameter exceeds a threshold and a given phenomenon occurs, such as a fire
or tsunami.
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In the event-driven pattern, participants must share symmetric keys in advance to ensure
timely data transmission as soon as an event occurs. In this paper, we focus on periodic
update and remote control patterns.

3. Proposed Scheme
This section provides an overview of the proposed schemes, covering initialization,

registration, authentication, and key agreement. The processes of PUAKA and RCAKA are
described in the authentication phase. By default, RCAKA runs in remote control mode,
by setting type = RC. If RCAKA runs in periodic update mode for resynchronization,
type = PU is set. Table 1 shows some symbols of the proposed schemes.

Table 1. Notations.

Notation Description Notation Description

S Sensor or actuator SP Server
TA Trust authority A Adversary
zi Entity-generated partial private key zta

i TA-generated partial private key
wi Temporary secret of entity i Wi Temporary public key of entity i

yi/Yi Private/public key of entity i TSi Timestamp of entity i
SSKi Session key of entity i TCssp One-time pseudonym identity

3.1. Initialization

The TA follows these processes to initialize the system:

T1: The TA chooses a curve E(Fp) with a base point P, and the additive group G of order q.
T2: The TA chooses two one-way hash functions:

- h : {0, 1}∗ → {0, 1}l , which is used to generate the hash values and the verifier.
- h1 : {0, 1}∗ → {0, 1}64, which is used to generate the one-time pseudonym identity.

T3: Finally, the TA loads the parameters {(E(Fp), P, q, h1, h)}, along with their own identi-
fier, onto each server and end device.

3.2. Registration

The end device Ss and the server SPsp register with the TA as follows:

R1: Ss selects a random zs ∈ Z∗
q , computes Zs = zs · P, and transmits the registration

request {IDs, Zs} to the TA through a secure channel. Likewise, SPsp selects zsp,
computes Zsp = zsp · P, and sends {IDsp, Zsp} to the TA.

R2: The TA chooses a random zta
s ∈ Z∗

q for Ss with a valid identifier IDs and calculates the
public key Ys = Zs + zta

s · P and the one-time pseudonym identity TCssp = h1(IDs∥zta
s )

for the S. Similarly, the TA selects zta
sp for SPsp and computes Ysp = Zsp + zta

sp · P.

R3: The TA stores {IDs, Ys} and {IDsp, Ysp}. Then, the TA transmits {TCssp, Ys, zta
s , IDsp, Ysp}

to Ss and {Ysp, zta
sp, IDs, TCssp, Ys} to SPsp securely.

R4: Once the response is received, Ss computes ys = (zs + zta
s ) mod q as its private key

and checks if Ys = ys · P. If true, the S computes the signature shared with the SP
Xsp = ys · Ysp and stores {IDs, Ys, ys, TCssp, IDsp, Xsp}.

Similarly, the SP computes ysp = (zsp + zta
sp) mod q, Ysp = ysp · P, and Xs = ysp · Ys.

Then, the SP initializes the pattern of RCAKA, type = RC. Finally, the SP stores
{IDsp, Ysp, ysp, IDs, TCssp, type}. When a blocked or new end device, S′

s, registers, the TA
delivers {ID′

s, TC′
ssp, Y′

s} to SPsp through secure channels.

Remark 1. Signatures Xsp and Xs are equal, where Xsp = ys ·Ysp = ysysp · P = yspys · P = Xs.
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3.3. Authentication and Key Agreement

The PUAKA and RCAKA authentication and key agreement processes between SS

and SPs p are described in this subsection.

3.3.1. PUAKA

PUAKA is designed for the periodic update pattern, as illustrated in Figure 2, using
authenticated session key parameters to update one-time pseudonym identities.

SPS

𝑀𝑠
1

𝑆𝐾𝑠 = (𝑤𝑠𝑦𝑠 𝑚𝑜𝑑 𝑞) ∙ 𝑊𝑠𝑝

𝑇𝐶𝑠𝑠𝑝
𝑛𝑒𝑤 = 𝑇𝐶𝑠𝑠𝑝 ⊕ℎ(𝑆𝐾𝑠 ∥ 𝑊𝑠𝑝)

𝑉𝑠𝑝?= ℎ(𝑋𝑠𝑝||𝐼𝐷𝑠𝑝 ∥ 𝑇𝐶𝑠𝑠𝑝
𝑛𝑒𝑤 ∥ 𝑊𝑠𝑝 ∥ 𝑆𝐾𝑠)

𝑆𝑆𝐾𝑠 = ℎ(𝐼𝐷𝑠||𝐼𝐷𝑠𝑝 ∥ 𝑆𝐾𝑠)

𝑇𝐶𝑠s𝑝 = 𝑇𝐶𝑠𝑠𝑝
𝑛𝑒𝑤

If 𝑇𝐶𝑠sp does not exist, aborts

𝑉𝑠?= ℎ(𝐼𝐷𝑠||𝑇𝐶𝑠𝑠𝑝 ∥ 𝑊𝑠 ∥ 𝑋𝑠)

Chooses 𝑤𝑠𝑝 ∈ 𝑍𝑞
∗

𝑊𝑠𝑝 = 𝑤𝑠𝑝 ∙ 𝑌𝑠𝑝
𝑆𝐾𝑠𝑝 = (𝑤𝑠𝑝𝑦𝑠𝑝 𝑚𝑜𝑑 𝑞) ⋅ 𝑊𝑠

𝑆𝑆𝐾𝑠𝑝 = ℎ(𝐼𝐷𝑠||𝐼𝐷𝑠𝑝 ∥ 𝑆𝐾𝑠𝑝)

𝑇𝐶𝑠𝑠𝑝 = 𝑇𝐶𝑠𝑠𝑝 ⊕ℎ(𝑆𝐾𝑠𝑝 ∥ 𝑊𝑠𝑝)

𝑉𝑠𝑝 = ℎ(𝑋𝑠||𝐼𝐷𝑠𝑝 ∥ 𝑇𝐶𝑠𝑠𝑝 ∥ 𝑊𝑠𝑝 ∥ 𝑆𝐾𝑠𝑝)

𝑀𝑠𝑝
1 = {𝑊𝑠𝑝, 𝑉𝑠𝑝}

𝑀𝑠𝑝
1

Chooses 𝑤𝑠 ∈ 𝑍𝑞
∗

𝑊𝑠 = 𝑤𝑠 ∙ 𝑌𝑠
𝑉𝑠 = ℎ(𝐼𝐷𝑠||𝑇𝐶𝑠𝑠𝑝 ∥ 𝑊𝑠 ∥ 𝑋𝑠𝑝)

𝑀𝑠
1 = {𝑊𝑠, 𝑇𝐶𝑠sp, 𝑉𝑠}

Figure 2. Processes of PUAKA.

PA1: First, Ss selects a random nonce ws ∈ Z∗
q , computes Ws = ws · Ys, and generates its

verifier Vs = h(IDs∥TCssp∥Ws∥Xsp). Finally, Ss sends the authentication request
M1

s = {Ws, TCssp, Vs} to SPsp.
PA2: In response, SPsp first checks the received TCssp to identify the sender. If TCssp

is not recognized, the session is terminated. Next, SPsp verifies the completeness
of M1

s and the effectiveness of Ss by confirming that Vs = h(IDs∥TCssp∥Ws∥Xs) is
valid. If this verification fails, SPsp aborts.

PA3: Then, SPsp selects a random nonce wsp ∈ Z∗
q , computes Wsp = wsp · Ysp, and de-

rives the session key SKsp = (wsp · ysp mod q) · Ws. The session key is then
computed as SSKsp = h(IDs∥IDsp∥SKsp). SPsp updates the pseudonym iden-
tity of S as TCssp = TCssp ⊕ h(SKsp∥Wsp) and calculates its verifier Vsp =

h(Xs∥IDsp∥TCssp∥Wsp∥SKsp). Finally, SPsp sends the reply message M1
sp =

{Wsp, Vsp} to Ss.
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PA4: Upon receiving the response, Ss computes the session key SKs = ((ws · ys mod q) ·
Wsp) and updates the pseudonym identity as TCnew

ssp = TCssp ⊕ h(SKs∥Wsp). Ss

then verifies the equivalence Vsp = h(Xsp∥IDsp∥TCnew
ssp ∥Wsp∥SKs). If the check is

satisfied, Ss derives the session key SSKs = h(IDs∥IDsp∥SKs), updates TCssp with
TCnew

ssp , and completes the authentication and session key agreement.

3.3.2. RCAKA

RCAKA is designed for the remote control pattern, as depicted in Figure 3. During the
execution of PUAKA, if the one-time pseudo-identity synchronization fails or messages
are blocked during authentication, scheduled data updates may not be completed within
the configured intervals. In such cases, the server can resynchronize the end devices using
RCAKA to finalize the authentication and the session key agreement.

SP S

𝑀𝑠
2

𝑆𝐾𝑠𝑝 = (𝑤𝑠𝑝𝑦𝑠𝑝 𝑚𝑜𝑑 𝑞) ∙ 𝑊𝑠

𝐼𝐷𝑠 = 𝐸𝐼𝐷𝑠⨁ℎ(𝑊𝑠 ∥ 𝑆𝐾𝑠𝑃)
𝑆𝑆𝐾𝑠𝑝 = ℎ(𝐼𝐷𝑠||𝐼𝐷𝑠𝑝 ∥ 𝑆𝐾𝑠𝑝)

𝑉𝑠?= ℎ 𝐼𝐷𝑠 ∥ 𝑆𝑆𝐾𝑠𝑃 ∥ 𝐴𝑠 ∥ 𝑇𝑠

Chooses 𝑤𝑠𝑝 ∈ 𝑍𝑞
∗

𝑊𝑠𝑝 = 𝑤𝑠𝑝 ∙ 𝑌𝑠𝑝
Generates timestamp 𝑇𝑠𝑝
If 𝑡𝑦𝑝𝑒 = 𝑃𝑈

Chooses 𝑤𝑤𝑠 ∈ 𝑍𝑞
∗

𝑇𝐶𝑠𝑠𝑝= ℎ1 𝐼𝐷𝑠 ∥ 𝑤𝑤𝑠

𝐸𝑇𝐶𝑠𝑠𝑝= 𝑇𝐶𝑠𝑠𝑝⨁ℎ(𝑋𝑆 ∥ 𝑊𝑠𝑝)

𝑉𝑠𝑝= ℎ(𝐼𝐷𝑠𝑝 ∥ 𝑇𝐶𝑠𝑠𝑝 ∥ 𝑊𝑠𝑝 ∥ 𝑋𝑠 ∥ 𝑇𝑠𝑝)

𝑀𝑠𝑝
2 = {𝑊𝑠𝑝, 𝐸𝑇𝐶𝑠𝑠𝑝, 𝑉𝑠𝑝, 𝑇𝑠𝑝}

𝐸𝑙𝑠𝑒
𝑉𝑠𝑝 = ℎ(𝐼𝐷𝑠𝑝 ∥ 𝑊𝑠𝑝 ∥ 𝑋𝑠 ∥ 𝑇𝑠𝑝)

𝑀𝑠𝑝
2 = {𝑊𝑠𝑝, 𝑇𝑠𝑝, 𝑉𝑠𝑝}

𝑀𝑠𝑝
2

If 𝑀𝑠𝑝
2 = {𝑊𝑠𝑝, 𝐸𝑇𝐶𝑠𝑠𝑝, 𝑉𝑠𝑝, 𝑇𝑠𝑝}

𝑇𝐶𝑠𝑠𝑝
𝑛𝑒𝑤 = 𝐸𝑇𝐶𝑠𝑠𝑝⨁ℎ(𝑋𝑠𝑝 ∥ 𝑊𝑠𝑝)

𝑉𝑠𝑝?= ℎ 𝐼𝐷𝑠𝑝 ∥ 𝑇𝐶𝑠𝑠𝑝
𝑛𝑒𝑤∥ 𝑊𝑠𝑝 ∥ 𝑋𝑠𝑝 ∥ 𝑇𝑠𝑝

𝑇𝐶𝑠𝑠𝑝= 𝑇𝐶𝑠𝑠𝑝
𝑛𝑒𝑤

𝐸𝑙𝑠𝑒
𝑉𝑠𝑝?= ℎ(𝐼𝐷𝑠𝑝 ∥ 𝑊𝑠𝑝 ∥ 𝑋𝑠𝑝 ∥ 𝑇𝑠𝑝)

Chooses 𝑤𝑠 ∈ 𝑍𝑞
∗

Generates timestamp 𝑇𝑠
𝑊𝑠 = 𝑤𝑠 ⋅ 𝑌𝑠
𝑆𝐾𝑠 = (𝑤𝑠𝑦𝑠𝑚𝑜𝑑 𝑞) ⋅ 𝑊𝑠𝑝

𝐸𝐼𝐷𝑠 = 𝐼𝐷𝑠⨁ℎ(𝑊𝑠 ∥ 𝑆𝐾𝑠)
𝑆𝑆𝐾𝑠 = ℎ(𝐼𝐷𝑠𝑝 ∥ 𝐼𝐷𝑠 ∥ 𝑆𝐾𝑠)

𝑉𝑠 = ℎ(𝐼𝐷𝑠 ∥ 𝑆𝑆𝐾𝑠 ∥ 𝑊𝑠 ∥ 𝑇𝑠)
𝑀𝑠

2 = {𝑊𝑠, 𝑇𝑠 , 𝐸𝐼𝐷𝑠, 𝑉𝑠}

Figure 3. Processes of RCAKA.
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RA1: First, SPsp generates a random nonce wsp ∈ Z∗
q and a timestamp Tsp. Next, SPsp

computes Wsp = wsp · Ysp.
If the type is PU, SPsp selects another random wws ∈ Z∗

q and constructs a new
pseudonym identity for the client S as TCssp = h1(IDs∥wws). Subsequently,
SPsp masks TCssp by computing ETCssp = TCssp ⊕ h(Xs∥Wsp), where Xs is a
shared secret between SPsp and Ss. Furthermore, SPsp computes the verifier
Vsp = h(IDsp∥TCssp∥Wsp∥Xs∥Tsp). Finally, SPsp sends the resynchronization and
authentication request message M2

sp = {Wsp, ETCssp, Vsp, Tsp} to Ss.
If the type is not PU, SPsp calculates a verifier Vsp = h(IDsp∥Wsp∥Xs∥Tsp) and
sends the authentication request message M2

sp = {Wsp, Vsp, Tsp} to Ss.

RA2: When receiving M2
sp, Ss first verifies the freshness of Tsp. Next, if M2

sp =

{Wsp, ETCssp, Vsp, Tsp}, Ss de-masks TCnew
ssp = ETCssp ⊕ h(Xsp∥Wsp), then checks

Vsp = h(IDsp∥TCnew
ssp ∥Wsp∥Xsp∥Tsp). If the condition is satisfied, Ss updates TCssp

with TCnew
ssp . Otherwise, Ss verifies if Vsp = h(IDsp∥Wsp∥Xsp∥Tsp). If it is not

satisfied, Ss will terminate.
RA3: Ss begins by selecting a random nonce ws ∈ Z∗

q and generating a timestamp Ts.
Secondly, Ss calculates Ws = ws · Ys and derives the session key SKs = (ws ·
ys mod q) · Wsp. The session key is used to compute SSKs = h(IDs∥IDsp∥SKs).
Next, Ss masks its identity using EIDs = IDs ⊕ h(Ws∥SKs). Afterward, Ss computes
its verifier as Vs = h(IDs∥SSKs∥Ws∥Ts). Finally, Ss sends the reply message M2

s =

{Ws, Ts, EIDs, Vs} to SPsp.
RA4: Upon receiving M2

s , SPsp first confirms the freshness of Ts. Then, SPsp calculates the
session key SKsp = (wsp · ysp mod q) · Ws and recovers IDs by de-masking EIDs

using IDs = EIDs ⊕ h(Ws∥SKsp). Next, SPsp computes the session key SSKsp =

h(IDs∥IDsp∥SKsp). Finally, SPsp verifies the equivalence of the verifier: Vs =

h(IDs∥SSKsp∥Ws∥Ts). If the condition does not hold, the session is terminated.

4. Formal Security Proof
Taking PUAKA as an example, this section discusses its security using the ROR

model [19].

4.1. Participant

In the PUAKA protocol, there are two main participants: an end device S and a server
SP. Each participant might involve a number of oracles involved in individual parallel
implementations of PUAKA. Each oracle is represented as Si for the end device and SPj

for the server, where i, j ∈ Z. A general oracle is denoted as I ∈ SP ∪ S. The messages
exchanged by oracle I define its session identifier, denoted as Sid.

An oracle can be in one of three potential states:

• Accept: An oracle I reaches state accept when it receives the latest expected proto-
col message.

• Reject: If the oracle accepts an incorrect message, it enters the reject state.
• ⊥: If I does not receive any response, then it switches to the state ⊥.

4.2. Adversary Model

Under the eCK adversary model [20], A controls the public channels. In addition,
A can learn the secrets of Si and SPj. A interacts with the oracles through the following
queries [21]:
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(1) Execute(Ii): A can obtain the messages {Ws, ETCssp, Vs} from Si and {Wsp, Vsp}
from SPj.

(2) Send(mI , I): A transmits a message mI to I and receives a response according to the
PUAKA protocol.

(3) Corrupt(I): A has the ability to compromise I and retrieve its long-term secrets.
(4) SKReveal(I): The session key owned by I can be obtained by A.
(5) ESReveal(I): The ephemeral secrets of I can be acquired by A.
(6) h(m): The output of a randomized hash for a given message m can be obtained for A.
(7) Test(I): This query is designed to define the semantic security of the session key. If no

session key of I is defined, the query returns ⊥. Otherwise, a private coin d is flipped.
If d = 1, the actual session key is returned to A; otherwise, a random value of the
same size is returned. The objective of the adversary is to distinguish between the real
session key and a random one.

(8) Expire(I): The session key held by I will be deleted by this query.

Fresh: A session si is considered fresh if neither the session itself nor its associated
partner session has been revealed. If the adversary A issues any of the following queries
before invoking Expire(I), the session se is considered exposed, even if it has not yet been
fully established: SKReveal(I), ESReveal(I), or Corrupt(I). Once a session is exposed, it is
regarded as locally exposed.

Partner: Si and SPj will be considered partners if they meet the following conditions:
both must reach the accept state, both oracles must be fresh, and they must share the same
session identifier Sid and mutually authenticate and agree on the session key.

Definition 3. Under the adversarial model of eCK, an AKA scheme is considered semantically
secure if Adv(A) ≤ ϵ for a sufficiently small ϵ.

4.3. Formal Security Analysis

Theorem 1. Assuming that the semantic security of PUAKA is to be broken, A can execute a
maximum of qs Send( ) queries, qe Execute( ) queries, and qh h( ) queries in time t. In light of a
hash length of l, A has the advantage that

Adv(A) ≤
(q2

h + 2qs)

2l +
(qs + qe)2

2(q − 1)

+ (
3qs

q − 1
+

3qs

2l )max{AdvAECDL(t), AdvAECD(t)}
(3)

Proof. For the proof below, a set of six games GMi(i = 0, 1, . . . , 5) is defined. When A
successfully predicts the bit d returned by the Test(I) query, event Si appears in each
corresponding game.

GM0: The ROR model simulates an actual attack in this game. Therefore, the A′

advantage is given by
Adv(A) =| 2Pr[S0]− 1 | (4)

GM1: A can retrieve all messages via the Execute( ) query, including {Ws, TCssp, Vs}
and {Wsp, Vsp}. Afterward, A is able to validate the validity of the computed session keys
SSKs and SSKsp with the SKReveal(I) and Test(I) queries. {Ws, TCssp, Vs} and {Wsp, Vsp}
do not allow inferring with the session key. Therefore, it is infeasible to distinguish between
the actual attack and the game GM1. Thus,

Pr[S1] = Pr[S0] (5)
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Additionally, three lists are used to track the relevant outcomes:
Lh: This list contains the tuples of <input, output> for all h(·) queries.
LA

h : This list stores the responses to h(·) queries issued by the adversary A.
LE: This list records the tuples of <input, output> for all Execute (·) queries.
GM2: This game models the scenario where A is capable of forging messages that

could be accepted via Send (·) and h(·) queries. The semantic security of PUAKA is only
threatened when A has detected collisions and successfully sends a valid message. Ac-
cording to the birthday paradox, the collision probability in the h(·) output is bounded

by q2
h

22+1 . The collision probability of random numbers is bounded by (qs+qe)2

2(q−1) . Conse-
quently, unless such collisions occur, it is impossible to distinguish between GM2 and
GM1. Therefore,

|Pr[S2]− Pr[S1]| ≤
(qs + qe)2

2(q − 1)
+

q2
h

2l+1 (6)

GM3: This game simulates the scenario where A manages to deduce certain param-
eters and forge messages {Ws, TCssp, Vs} and {Wsp, Vsp} without using random oracles.
Additional operations are introduced in the Send(·) queries for GM3. If there is a validation
failure, the queries will terminate.

(1) For send(Ws, TCssp, Vs), if (IDs∥TCssp∥Ws∥∗, Vs) ∈ LA
h , the probability is at most qκ

2l .

(2) For send(Wsp, Vsp), if (∗∥IDsp∥ ∗ ∥Wsp∥SKsp, Vsp) ∈ LA
h , the probability is at most qκ

2l .

If these checks are considered, GM3 and GM2 are indistinguishable. Thus,

|Pr[S3]− Pr[S2]| ≤
2qs

2l (7)

GM4: This game simulates the corruption capacity of A. A cannot determine SSKs or
SSKsp unless it captures (ys, ws) or (ysp, wsp). There are four possible cases where A can
use execute (·) and h(·) queries to compute the session keys:

(1) A obtains both long-term private keys, ys and ysp, by issuing Corrupt(Si) and
Corrupt(SPj) queries. Then, A attempts to obtain information about ws and wsp

via Send(·) queries. The attack probability is at most 2qs
q−1 .

(2) A issues Corrupt(Si) and ESReveal(SPj), then obtains ys and wsp. Afterward, A
attempts to retrieve information about ws and ysp via Send(·) queries. The attack
probability is at most qs

2t +
q∗

q−1 .

(3) A issues ESReveal(Si) and Corrupt(SPj), then obtains ws and ysp. It then attempts to
retrieve information about ys and wsp via Send(·) queries. The attack probability is at
most qs

q−1 + qs
2 .

(4) A issues ESReveal(SMi) and ESReveal(SPj), then obtains ws and wsp. A then attempts
to retrieve information about ys and ysp via Send(·) queries. The attack probability is
at most 2q∗

2t .

In all cases, A cannot compute SSKs or SSKsp except if it resolves the ECDL or ECD
problems in time t. Thus,

|Pr[S4]− Pr[S3]| ≤ (
3qs

q − 1
+

3qs

2l )max{AdvAECDL(t), AdvAECD(t)} (8)
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GM5: The simulation of GM5 is identical to that of GM4, with the exception that the
Test(·) query halts if A makes an h(IDs|IDsp|SSKs) query. The maximum probability that

A successfully obtains SSKs is bounded by q2
h

22 . Therefore,

|Pr[S5]− Pr[S4]| ≤
q2

h
22 (9)

Unless A provides the correct input for the h(·) query, it will not be able to distinguish
between the actual session key and the randomized session key. Hence, the probability is

Pr[S5] =
1
2

(10)

Considering all probabilities together, we can conclude that Theorem 1 holds.

5. Descriptive Security Analysis
5.1. Anonymity

In the PUAKA protocol, the one-time pseudo-identity is updated using the temporary
public key TCnew

ssp = TCssp ⊕ h(SKs∥Wsp). This guarantees the anonymity and untraceabil-
ity of the end device. Similarly, in the RCAKA protocol, the identity is masked with the
authenticated session key EIDs = IDs ⊕ h(ws∥SKs), ensuring the same level of anonymity
and untraceability.

5.2. Perfect Forward Secrecy

A protocol prevents an adversary from accessing the keys of the previous session,
thus ensuring perfect forward secrecy, even if long-term secrets are later compromised.
The session key SSKs = h(IDs∥IDsp∥SKs), where SKs = ((xsys) mod q) · Wsp is derived
from the long-term secret values and ephemeral parameters. Even if an adversary A gains
access to the long-term secrets ys, ysp, Xs, and Xsp, it cannot compute the session key SSKs.
This is because A does not have access to the ephemeral values ws and wsp required for the
derivation of the session key.

5.3. Ephemeral Secret Leakage Attack Resistance

As shown in the above subsection, SSKs = h(IDs∥IDsp∥SKs), where SKs =

((xsys) mod q) · Wsp. If A gains access to ephemeral secrets ws and wsp, it cannot yet
determine SSKs because it lacks long-term keys ks and ysp.

5.4. No Key Escrow Problem

After registration, the end device S receives its long-term private key ys = (Zs + zta
s )

modq. Only the TA generates the partial key zta
s , ensuring that there is no key escrow

problem. The process for the SP is analogous.

5.5. IoT Node Capture Attack Resistance

In the event of a capture of an IoT node, A can extract long-term credentials such as
{IDs, Ys, ys, TCssp, IDsp, Wsp}. However, since each device has unique credentials, the ses-
sion key between the compromised device and the associated server Ssp is the only part at
risk. The security of other session keys remains intact between uncompromised devices
and servers.
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5.6. Key Compromise Impersonation Attack Resistance

Although A has acquired long-term secrets for the end device, it is not possible for
it to impersonate the server to perform authentication with the end device. The reason
for this is that the shared secret for S is calculated as SSKs = h(IDs∥IDsp∥SKs), where
SKs = ((ws · ys) mod q) · Wsp and Wsp = wsp · Ysp. The values ws and wsp are random
values generated for the session and are critical for calculating the session key. Even with
the credentials of S, A cannot reconstruct these random values. Without them, A cannot
compute the correct session key SKs, and therefore cannot complete the authentication
process with S or impersonate SP.

5.7. Impersonation Attack Resistance

In the case of S-impersonation attacks, the adversary lacks long-term secrets, including
ys, ysp, TCssp, and Xsp. As a result, it cannot generate the authentication request message
{Ws, TCssp, Vs}, which contains Xsp. Without this information, the adversary cannot imper-
sonate S. Similarly, the adversary is also unable to impersonate SP due to the unavailability
of the required secrets.

5.8. Man-in-the-Middle Attack Resistance

During authentication, the SP authenticates the S by checking whether Vs =

h(IDs∥TCssp∥Ws∥Xs), and the S authenticates the SP by checking the equivalence of
Vsp = h(Xsp∥IDsp∥TCnew

ssp ∥Wsp∥SKs), where WTs = WTsp are the shared signatures be-
tween the S and SP, which are only known to the SP and S. In other words, the scheme is
resistant to Man-in-the-Middle attacks.

6. Performance Comparison
This section provides a comparison of the computational and communication costs,

as well as the security and functional attributes, of the proposed protocols with those of
other existing schemes, including [10,14–16].

6.1. Computation Cost

We assume that Th, Tpa, and Tpm denote the runtime of hash computation, point
addition, and point multiplication, respectively. The tests were carried out on a server
equipped with an Intel Core i5 2.0 GHz processor and 16 GB of RAM running macOS
13.4.1. When using the Curve25519 elliptic curve with a point length of 384 bits and a prime
modulus p = 2192, the average runtime for each operation was as follows: 0.005 ms for
hashing, 0.006 ms for point addition, and 1.258 ms for point multiplication. The end device
nodes used a Raspberry Pi 3 Model B+ board with an ARM Cortex-A53 1.4 GHz processor
and 1 GB of RAM. Under the same test conditions, the measured average runtime was
0.019 ms for hashing, 0.025 ms for point addition, and 2.225 ms for point multiplication.

As illustrated in Table 2, the PUAKA protocol demonstrates the lowest computational
overhead for both authentication and key agreement operations. Compared with existing
related works, the proposed schemes achieve a significant reduction in computational
overhead, with reductions ranging from 32% to 50%. This considerable improvement in
efficiency underscores the effectiveness of the proposed approach in optimizing perfor-
mance, especially in resource-constrained environments where minimizing computational
costs is essential to ensure scalability and responsiveness in IoT systems.
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Table 2. Computation cost.

Scheme End Device (ms) Server (ms) Total (ms) Decline

PUAKA 2Tpm + 4Th ≈ 7.624 2Tpm + 4Th ≈ 2.536 10.16 -
RCAKA(PU) 2Tpm + 5Th ≈ 7.656 2Tpm + 6Th ≈ 2.546 10.202 -
RCAKA(RC) 2Tpm + 4Th ≈ 7.624 2Tpm + 4Th ≈ 2.536 10.16 -

[10] 4Tpm + 4Th ≈ 15.12 4Tpm + 4Th ≈ 5.052 20.172 49%
[14] 3Tpm + Tpa + 4Th ≈ 11.413 3Tpm + Tpa + 4Th ≈ 3.8 15.213 33%
[15] 4Tpm + 2Tpa + 6Th ≈ 15.266 4Tpm + 2Tpa + 6Th ≈ 5.074 20.34 50%
[16] 3Tpm + 3Th ≈ 11.34 3Tpm + 3Th ≈ 3.789 15.129 32%

6.2. Communication Cost

Let G, H, ID, R, and TS denote the lengths of the ECC point, hash output, identity,
random number, and timestamp, respectively. Based on the length of communication
overheads in studies [14–16], these lengths are 384 bits, 128 bits, 64 bits, 128 bits, and 32 bits,
respectively. According to Table 3, the proposed solutions significantly reduce commu-
nication costs by optimizing message exchange patterns and minimizing the volume of
transmitted data. As a result, the proposed schemes achieve the lowest communication
overhead when compared to related studies, further improving their suitability for deploy-
ment in resource-constrained IoT environments, where reducing communication burden is
crucial to improve overall system performance and ensuring faster authentication.

Table 3. Communication cost.

Scheme End Device (Bits) Server (Bits) Total (Bits)

PUAKA G + H + ID = 608 G + H = 544 1152
RCAKA(PU) G + H + ID + TS = 640 G + H + ID + TS = 640 1280
RCAKA(RC) G + H + TS = 576 G + H + ID + TS = 640 1216

[10] G + H + TS + ID = 640 G + H + TS = 576 1216
[14] G + H + R + TS + ID = 800 G + H + R + TS + ID = 800 1600
[15] G + 2H + 2TS + ID = 832 G + H + TS + ID = 640 1472
[16] G + H + TS + ID = 640 G + H + TS = 576 1216

6.3. Performance Comparison

As demonstrated in Table 4, the proposed protocol stands out as more prominent
compared to the related protocols [10,14–16]. The proposed schemes not only offer superior
security features, but also provide a range of additional functional attributes that make
them more adaptable and efficient in real-world IoT applications.

Table 4. Performance comparison.

Scheme F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

[10] ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ×
[14] × ✓ ✓ × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ × ×
[15] ✓ ✓ ✓ × ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ ×
[16] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ×

Ours ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

F1: KCI attack resistance; F2: IoT node capture attack resistance; F3: impersonation attack resistance; F4: availabil-
ity; F5: MIM attack resistance; F6: replay attack resistance; F7: desynchronization attack resistance; F8: DoS attack
resistance; F9: mutual authentication without RC/TA; F10: PFS; F11: no key escrow problem; F12: ESL resistance;
F13: anonymity; F14: high computation cost. ✓: supports functional features or security; ×: does not support
functional features or the program is insecure.
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7. Conclusions
We reviewed related ECC-based anonymous AKA schemes for IoT and identified

several key limitations. First, anonymous authentication using one-time pseudo-identities
suffers from desynchronization attacks because of the absence of resynchronization mech-
anisms. Second, schemes based on public key cryptography, while offering anonymity,
often result in increased computational overhead. In addition, existing solutions fail to
address critical security issues, such as vulnerability to ESL and KCI attacks. To address
these issues, we propose two secure ECC-based anonymous AKA protocols tailored to IoT
traffic patterns: PUAKA and RCAKA. PUAKA operates using a periodic update pattern
and leverages one-time anonymous identities to maintain end device anonymity. These
identities are refreshed with authenticated session key parameters, reducing communi-
cation overhead compared to existing schemes. In contrast, RCAKA follows a remote
control pattern, employing shared signatures and temporary random numbers to ensure
anonymity while minimizing both communication and computational costs. RCAKA also
includes a resynchronization mechanism to update sensors that have not yet completed
their data updates, allowing secure authentication and key agreement during the session.
Both protocols have been formally analyzed to ensure anonymity and PFS and are secure
against attacks such as impersonation, KCI, and ESL. Performance comparison results
indicate that the proposed schemes excel in security features and communication costs,
reducing computational overhead by 32% to 50% compared to existing schemes.

ECC-based authentication schemes have been regarded as classical security proto-
cols, with increasing concerns about their efficiency, particularly in light of emerging
side-channel and quantum-based attacks. Although ECC continues to be widely used
in IoT infrastructures, it faces vulnerabilities to these advanced attacks, such as those
demonstrated by the Downfall and Inception side-channel attacks, as well as potential
risks from quantum computing. Given these concerns, the adoption of recent quantum
resistant cryptographic protocols, such as CRYSTALS-Kyber for general encryption and
CRYSTALS-Dilithium, FALCON, and SPHINCS+ for digital signatures, represents an impor-
tant direction for the future of secure authentication schemes. Although our study focuses
primarily on ECC-based solutions due to their current efficiency in resource-constrained
IoT environments, we recognize the need to incorporate quantum-resistant protocols as
part of ongoing and future research efforts to address emerging security threats.
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Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
AKA Authentication and key agreement
TA Trusted authority
DoS Denial of Service
ECC Elliptic Curve Cryptography
WBAN Wireless body area networks
WSN Wireless sensor networks
SG Smart grid
PFS Perfect forward security
KCI Key compromise impersonation
ESL Ephemeral secret leakage
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