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Abstract: The proliferation of wearable sensors and mobile devices has fueled advance-
ments in human activity recognition (HAR), with growing importance placed on both
accuracy and privacy preservation. In this paper, the author proposes a federated learning
framework for HAR, leveraging a hybrid Long Short-Term Memory (LSTM) and Gated Re-
current Unit (GRU) model to enhance feature extraction and classification in decentralized
environments. Utilizing three public datasets—UCI-HAR, HARTH, and HAR7+—which
contain diverse sensor data collected from free-living activities, the proposed system is
designed to address the inherent privacy risks associated with centralized data processing
by deploying Federated Averaging for local model training. To optimize recognition accu-
racy, the author introduces a dual-feature extraction mechanism, combining convolutional
blocks for capturing local patterns and a hybrid LSTM-GRU structure to detect complex
temporal dependencies. Furthermore, the author integrates an attention mechanism to
focus on significant global relationships within the data. The proposed system is evalu-
ated on the three public datasets—UCI-HAR, HARTH, and HAR7+—achieving superior
performance compared to recent works in terms of F1-score and recognition accuracy.
The results demonstrate that the proposed approach not only provides high classification
accuracy but also ensures privacy preservation, making it a scalable and reliable solution
for real-world HAR applications in decentralized and privacy-conscious environments.
This work showcases the potential of federated learning in transforming human activity
recognition, combining advanced feature extraction methodologies and privacy-respecting
frameworks to deliver robust, real-time activity classification.

Keywords: federated learning; HAR; human activity recognition; hybrid LSTM-GRU;
Internet of Medical Things; IoMT; privacy preservation

1. Introduction
Human activity recognition (HAR) is becoming increasingly relevant in fields ranging

from healthcare to smart environments [1] where the ability to accurately monitor and
analyze physical activities can significantly improve personalized services and enhance
overall well-being [2]. As wearable devices and sensors continue to proliferate, the potential
for sensor-based HAR has grown exponentially, particularly within the context of the
Internet of Medical Things (IoMT) [3]. Human activity recognition plays a crucial role in
applications such as patient monitoring [4], elderly care [5], and fitness tracking [6] where
real-time and accurate activity recognition is vital [7].

However, one of the major challenges in human activity recognition systems lies in
balancing high recognition accuracy with privacy concerns as centralized data collection
and processing can expose sensitive user information [8]. Traditional machine learning
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approaches rely on centralizing data from multiple users, which creates risks of privacy
breaches and data misuse [9]. To mitigate these risks, federated learning (FL) has emerged
as a powerful solution, enabling decentralized model training where user data remain on
local devices [10,11]. This ensures that sensitive information is not transmitted to central
servers while still allowing collective learning across multiple users [12].

In this paper, the author presents a new framework for human activity recognition,
leveraging federated learning combined with advanced feature extraction techniques for
real-time analysis. Federated learning enables privacy-preserving, decentralized training,
which is crucial for safeguarding sensitive user data in IoMT environments. The system is
built upon a hybrid Long Short-Term Memory (LSTM) [13] and Gated Recurrent Unit (GRU)
model [14], which excels in capturing the temporal dependencies inherent in sensor data.
The hybrid LSTM-GRU model leverages the strengths of LSTM for capturing long-term
dependencies and GRU for computational efficiency, making it suitable for processing
sequential data in resource-constrained scenarios. By integrating convolutional blocks for
local feature extraction and a hybrid LSTM-GRU network for global temporal analysis,
the proposed framework is designed to enhance recognition accuracy while preserving
user privacy through decentralized learning. This integration also tackles knowledge gaps
related to handling imbalanced, heterogeneous, and distributed data while ensuring real-
time performance and scalability in decentralized IoMT setups where centralized solutions
are either impractical or privacy-invasive.

The proposed federated learning system is evaluated on three public datasets—
UCI-HAR, HARTH, and HAR7+ datasets—which represent a rich collection of real-world
sensor data capturing diverse human activities in free-living environments. Experimental
results demonstrate the superiority of the proposed hybrid model, which significantly out-
performs existing federated learning systems in terms of recognition accuracy and privacy
preservation. The proposed framework also includes a perceptive extraction network (PEN)
for feature extraction [15], ensuring that critical activity patterns are captured effectively
across heterogeneous datasets.

The contributions of this work are as follows:

1. Propose a federated learning framework for human activity recognition in IoMT
environments using a hybrid LSTM-GRU model, preserving privacy while achieving
high classification accuracy.

2. Utilize the PEN approach to enhance feature extraction, combining 1D-CNN for local
features and LSTM-based attention for global relationships.

3. Address class imbalance across multiple HAR datasets by applying and evaluating
multiple strategies through Weighted Federated Averaging.

4. Demonstrate the adaptability of the framework to diverse datasets (HARTH, HAR70+,
UCI-HAR) and highlight the performance improvements in minority class recognition.

5. Provide a comprehensive comparison of class imbalance-handling techniques within
the federated learning context, showcasing improvements in accuracy, F1-score,
and recall.

By combining federated learning with powerful feature extraction methodologies, the
proposed approach paves the way for scalable, privacy-preserving HAR systems that can
be deployed in real-world IoMT environments, improving the quality of human activity
monitoring while safeguarding user privacy.

The rest of the paper is organized as follows: Section 2 provides an overview of
related work in human activity recognition, particularly focusing on privacy-preserving
methods and federated learning systems. Section 3 details the proposed federated learning
framework for human activity recognition, highlighting the hybrid LSTM-GRU model and
the feature extraction techniques employed. Section 4 presents the experimental setup
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and results from evaluating the proposed model on multiple HAR datasets. In Section 5,
the author benchmarked the results with recent and related studies. Section 6 discusses
the findings, providing insights into the performance and implications of the federated
learning approach, and finally, Section 7 concludes the paper, outlining future research
directions and potential applications.

2. Related Works
Human activity recognition research leveraging wearable sensors and federated learn-

ing has gained considerable attention in recent years due to advancements in IoT technolo-
gies and privacy-preserving data analytics. This section reviews significant contributions in
HAR systems, federated learning frameworks, and feature extraction techniques pertinent
to IoMT-enhanced HAR, contextualizing them within the scope of this work on a hybrid
LSTM-GRU model. In selecting the related works for this study, the author strategically
focused on research that employed the same public datasets utilized in the proposed frame-
work, specifically HARTH, HAR70+, and UCI-HAR. This selection criterion facilitates
direct and meaningful comparisons of methodologies and performance outcomes, thereby
underscoring the unique contributions and advancements of the proposed framework.
Emphasis was also placed on the most recent studies published mostly between 2023 and
2024, allowing us to incorporate the latest advancements and emerging trends in human
activity recognition.

Wavelet transformations are a powerful tool for HAR due to their time–frequency lo-
calization, as illustrated by the research work in [16]. The authors emphasize that choosing
an optimal mother wavelet function is vital for accurate activity classification, presenting a
selection methodology that combines wavelet packet transforms with energy-to-Shannon
entropy and using Decision Tree and Support Vector Machine classifiers. Although the
wavelet transformation itself is computationally efficient, the overall methodology in [16],
which involves wavelet packet decomposition, feature extraction using energy-to-Shannon
entropy, and model training with complex classifiers, can become computationally in-
tensive. This makes it less suitable for real-time applications in resource-constrained,
decentralized IoT environments. In contrast, this research leverages federated learning
combined with neural networks to enhance real-time HAR performance without compro-
mising privacy, offering a more scalable and efficient approach for decentralized systems.
Privacy in federated learning is central to the works’ framework.

Chen et al. [17] proposed a novel lightweight machine unlearning technique to enhance
federated learning-based human activity recognition models by selectively erasing specific
portions of a client’s training data. This approach leverages a separate, third-party dataset
that is not involved in the original training process to facilitate the unlearning procedure.
The method utilizes Kullback–Leibler divergence as the loss function during fine-tuning,
aligning the model’s predicted probability distribution for the data to be forgotten with the
distribution of the third-party dataset. To assess the efficacy of the unlearning process, a
membership inference evaluation framework is introduced, providing a reliable measure of
success in eliminating the influence of the targeted data. Extensive experiments conducted
on multiple datasets reveal that this method achieves unlearning performance on par with
retraining-based approaches. Moreover, it significantly reduces computational overhead,
achieving speedups ranging from several hundred to thousands of times faster than conven-
tional retraining, making it a highly efficient and scalable solution for real-world federated
learning applications.

Authors in [18] address key vulnerabilities in federated learning, such as privacy
inference and poisoning attacks, through a secure multi-party computation (MPC) frame-
work. SAFEFL’s design focuses on defending FL models against combined attack vectors,
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a novel aspect that enhances model robustness. However, the proposed work diverges
in addressing privacy through a hybrid federated model focused on securely capturing
IoMT-driven HAR patterns, with specific attention to the personalized activity data of
users. This distinction is critical as this proposed approach emphasizes model accuracy
and adaptability in human activity recognition, particularly within IoMT contexts where
data privacy is paramount.

Deep learning has revolutionized HAR, enabling automatic feature extraction from
raw sensor data. The study [19] combines convolutional layers with LSTM networks,
capitalizing on both spatial and temporal features.

By parallelizing CNN and LSTM modules, the architecture achieves competitive
accuracy levels, demonstrating the potential of hybrid deep learning approaches. The
research builds on this concept, proposing a hybrid LSTM-GRU model within a federated
learning environment tailored for IoMT applications. Unlike previous work, the proposed
architecture addresses resource constraints typical in IoMT by incorporating both LSTM
and GRU networks, chosen for their ability to capture complex temporal dependencies
while managing computational load efficiently.

In [20], CNNs are applied to HAR for automatic feature extraction, outperforming tra-
ditional feature engineering methods in accuracy. Despite CNN’s effectiveness in learning
from large-scale datasets, the study highlights a limitation in scalability due to the cold-start
problem and high data dependency. This study circumvents this by utilizing federated
learning, which allows multiple devices to collaboratively train a model while preserving
data privacy, and integrates hybrid LSTM-GRU networks to reduce the reliance on feature
engineering, thus providing a more scalable solution for real-world IoMT environments.

Large-scale pre-training with unlabeled data has recently been explored for HAR, as
seen in [21]. SelfPAB utilizes self-supervised learning (SSL) for HAR on large, unlabeled
accelerometer datasets, providing robust feature extractors. This study showcases the
potential of SSL in handling scarce labeled data, but it does not fully address real-time
federated scenarios typical in IoMT-based HAR. The proposed approach leverages labeled
federated learning to enable IoMT devices to independently process HAR tasks in a dis-
tributed network, which is advantageous in environments where labeled data can be sparse,
and centralized data aggregation is impractical.

Finally, authors in [22] apply a feature selection method to optimize HAR by reduc-
ing model complexity and training time. While effective, this wrapper-based approach
depends heavily on feature engineering, which can be computationally prohibitive. The
proposed method avoids explicit feature selection by leveraging deep neural networks that
inherently capture essential features for HAR, facilitating real-time activity recognition
while maintaining computational feasibility across distributed IoMT devices.

Table 1 shows a summary of related works, highlighting the approach, methodology,
dataset used, and overall accuracy. Generally, the reviewed studies highlight the significant
advancements and ongoing challenges in human activity recognition, especially in leverag-
ing deep learning architectures, federated learning frameworks, and privacy-preserving
techniques. However, none of the existing work fully integrates a federated learning ap-
proach with a hybrid LSTM-GRU model specifically optimized for IoMT-driven HAR. To
address these gaps, this study proposes a novel hybrid LSTM-GRU architecture within
a federated learning framework tailored to IoMT environments. The proposed approach
achieves higher accuracy compared to existing models, offering enhanced precision in
activity detection while preserving user privacy and maintaining computational efficiency.
This makes it especially suitable for real-time applications across distributed IoMT devices.
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Table 1. Summary of related works.

Reference Approach Methodology Dataset Overall Accuracy for
Related Datasets

Heba, N. and
Sreeraman, R. [16]

Wavelet transform with
optimal mother wavelet
selection for precise HAR

Wavelet packet transform
combined with energy-to-
Shannon-entropy ratio,
classification with DT
and SVM

MHEALTH, WISDM
Activity Prediction,
HARTH, HARsense,
DaLiAc, PAMAP2,
REALDISP, HAR70+

HAR70+: 84.64%
Harth: 75.73%

Chen, K. et al. [17]

Lightweight machine
unlearning for federated
learning human
activity recognition.

Utilizes a third-party dataset
unrelated to model training
to refine the FL-HAR model
by selectively removing
specific portions of a client’s
training data. KL divergence
is employed as the loss
function, with membership
inference evaluation used.

HAR70+,
HARTH, MNIST

HAR70+: 97%
HARTH: 91%

Gehlhar, Till
et al. [18]

Secure MPC-based
framework for robust
federated learning
against combined attacks

Multi-party computation
(MPC) protocols to secure
federated learning against
privacy and poisoning attacks

UCI-HAR UCI-HAR: 97%

Koşar, E. and
Barshan, B. [19]

Hybrid CNN-LSTM
architecture for feature
extraction from motion
sensor data

Parallel CNN and LSTM
branches for spatial and
temporal feature extraction,
concatenation for classification

UCI HAR, daily and
sports activities
(DSA) dataset

UCI-HAR: 95.66%

Cruciani, F.
et al. [20]

CNN-based feature
learning for automated
activity recognition

Pre-trained CNN feature
extractor assessed on
multiple topologies
and parameters

UCI-HAR,
extrasensory,
DCASE 2017

UCI-HAR: 91.98%

Logacjov, A
et al. [21]

Self-supervised learning
for HAR using
large-scale unlabeled
accelerometer data

Transformer encoder network
for pre-training on masked
accelerometer data, SSL for
downstream HAR tasks

HUNT4
(self-supervised
pre-training),
HARTH, HAR70+,
PAMAP2,
Opportunity, RealWorld

HAR70+: 93.8%
HARTH: 94.6%

Sahoo, KK
et al. [22]

Wrapper-based deep
feature optimization for
efficient and
accurate HAR

Transfer learning with
CNN-based feature
extraction, followed by
wrapper method for
feature selection

HARTH,
KU-HAR, HuGaDB HARTH: 88.89%

3. Methodology and Proposed Framework
In this section, the author presents a comprehensive methodology for an IoMT-

enhanced human activity recognition system, which integrates federated learning with a
hybrid Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) network for
accurate, privacy-preserving activity classification. The system leverages wearable sensors
and edge computing to ensure efficient, decentralized data processing across multiple
IoMT devices. The following subsections provide a detailed explanation of the system
components, pre-processing, segmentation, feature extraction, and classification within the
federated learning framework.

3.1. System Overview and Framework

The proposed framework, depicted in Figure 1, addresses the challenges of real-time
human activity recognition in a decentralized IoMT environment. The system comprises
wearable sensors attached to participants to collect accelerometer data, which is processed
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through local edge devices (e.g., smartphones or Raspberry Pi units). Each device trains a
local model using its own sensor data, while a central server aggregates these models in a
federated manner using the Federated Averaging (FedAvg) method [23].

Sensors 2025, 25, x FOR PEER REVIEW 6 of 28 
 

 

 

Figure 1. General framework. 

The proposed decentralized approach ensures privacy preservation by keeping raw 
data on each user’s device and only sharing model updates. The core innovation of this 
framework lies in the use of a hybrid LSTM-GRU architecture for local model training, 
enhancing temporal feature extraction from sensor data. The framework ensures efficient, 
accurate HAR through feature-rich temporal modeling, while federated learning ensures 
privacy and scalability across multiple users. 

(1) Pre-Processing 

The raw data collected from the HAR devices must undergo a pre-processing phase 
to ensure accurate modeling. Each sensor generates data streams, represented by Equa-
tion (1): 𝑝௝ = (𝜃ଵ, 𝜃ଶ, … , 𝜃௧)  for 𝑗 = 1, … , 𝑚  (1)

where 𝜃௧ represents the sensor reading at time t, and m is the number of sensors. Due to 
varying sampling rates across sensors, synchronization is required, followed by noise fil-
tering to remove irrelevant information. The resulting synchronized data are expressed as 
Equation (2): 

𝐹ᇱ = ቌ𝛾ଵଵ ⋯ 𝛾ଵ௧⋮ … ⋮𝛾௠ଵ ⋯ 𝛾௠௧ ቍ = (𝛾ଵ, … , 𝛾௠)் (2)

This matrix represents the pre-processed data, with each row corresponding to a sen-
sor and each column representing time steps. In order to isolate the orientation and mo-
tion aspects of human activity, the author utilized the Stewart et al. [24] approach for 

Figure 1. General framework.

The proposed decentralized approach ensures privacy preservation by keeping raw
data on each user’s device and only sharing model updates. The core innovation of this
framework lies in the use of a hybrid LSTM-GRU architecture for local model training,
enhancing temporal feature extraction from sensor data. The framework ensures efficient,
accurate HAR through feature-rich temporal modeling, while federated learning ensures
privacy and scalability across multiple users.

(1) Pre-Processing

The raw data collected from the HAR devices must undergo a pre-processing phase to
ensure accurate modeling. Each sensor generates data streams, represented by Equation (1):

pj =
(

θ1, θ2, . . . , θt
)

forj = 1, . . . , m (1)

where θt represents the sensor reading at time t, and m is the number of sensors. Due
to varying sampling rates across sensors, synchronization is required, followed by noise
filtering to remove irrelevant information. The resulting synchronized data are expressed
as Equation (2):

F′ =


γ1

1 · · · γt
1

... . . .
...

γ1
m · · · γt

m

 = (γ1, . . . , γm)
T (2)
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This matrix represents the pre-processed data, with each row corresponding to a sensor
and each column representing time steps. In order to isolate the orientation and motion
aspects of human activity, the author utilized the Stewart et al. [24] approach for additional
pre-processing steps. Specifically, I decomposed the raw accelerometer signals into gravity
and movement components. To achieve this, the author utilized a fourth-order low-pass
Butterworth filter with a cut-off frequency of 1 Hz to extract the gravity component. By
subtracting gravity from the original signal, the author obtained the movement signs.

For the gravity signals, the author calculated a series of statistical features within
each frame, including the mean, median, standard deviation, variation coefficient, and the
25th and 75th percentiles, in addition to the minimum and maximum values, to capture
orientation information. In parallel, the movement signals were analyzed by computing
features such as skewness, kurtosis, signal energy, and various frequency domain charac-
teristics. These frequency domain features encompassed the mean and standard deviation
of frequency magnitudes, the dominant frequency and its corresponding magnitude, and
the spectral centroid.

Building on the findings of Narayanan et al. [25], which highlighted the significant im-
pact of cross-sensory features on the proposed framework performance, I further enhanced
the feature set by calculating the correlations between the given six axes and the signal of
the two-vector magnitude. Additionally, the author determined the mean values across the
gravity components from the two sensors. This comprehensive feature extraction process
resulted in a total of 161 features for each window of data.

Finally, the author normalized all features using min–max scaling to re-scale the
values to a range between 0 and 1. This normalization was essential to eliminate dispar-
ities in feature ranges, ensuring that no single feature disproportionately influenced the
model training.

(2) Segmentation and Feature Extraction

Once pre-processed, the data are segmented using a sliding window technique to
ensure that relevant portions of the time-series data are extracted. Each segment zq = (t1, t2)

consists of a time window, characterized by the start time t1 and end time t2, containing
the relevant information about human activities. The complete set of data segments is
denoted as:

Z =
(
z1, z2, . . . , zp

)
(3)

Following segmentation, feature extraction is performed to transform the raw sensor
signals into a feature space that is more conducive to activity recognition. In the pro-
posed federated learning framework, the PEN [15] is used for extracting meaningful and
hierarchical representations from time-series sensor data. Human activities often involve
complex temporal and spatial patterns that must be captured for accurate classification.
PEN addresses the challenge of simultaneously extracting local features and global re-
lationships, which traditional deep learning models like CNNs and LSTMs struggle to
handle independently. PEN is composed of two key components: the Feature Network
and the Relation Network, both deployed on each mobile device in a federated setting. By
performing feature extraction locally on edge devices, PEN enhances model performance
and reduces the communication overhead in the federated learning process.

(3) Feature Network

The Feature Network is responsible for extracting local features from the raw sensor
data, focusing on short-term patterns that are essential for recognizing specific activities.
The Feature Network consists of three convolutional blocks (ConvBlocks) that process the
input time-series data. Each ConvBlock is composed of:
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1. 1-Dimensional Convolutional Layer (Conv1D): The Conv1D layer is the core compo-
nent responsible for extracting local features from the input data. It detects patterns
such as sudden movements or changes in velocity, which are crucial for differentiating
between activities such as walking and running.

2. Batch Normalization (BatchNorm): BatchNorm normalizes the output of the Conv1D
layer to prevent internal covariate shifts and improve training efficiency. This also
helps stabilize the learning process and reduce overfitting.

3. Leaky ReLU Activation (LeakReLU): The Leaky ReLU activation function introduces
non-linearity to the model, ensuring that both positive and negative feature values
are retained. This enables the model to learn a more diverse set of features, improving
its ability to capture complex temporal patterns.

The Feature Network progressively extracts richer and more abstract features from
the raw data as the data pass through each ConvBlock. This ensures that the model learns
detailed local temporal features that are essential for classifying human activities.

(4) Relation Network

The Relation Network is designed to capture global relationships across longer tempo-
ral sequences, addressing the challenge of learning dependencies between time steps. The
Relation Network employs a two-layer LSTM-based attention mechanism, which enhances
the model’s ability to focus on important temporal features. This is critical for recognizing
activities with long-term dependencies, such as transitions between walking and running.

1. First LSTM Layer: The first LSTM layer extracts basic temporal relationships from
the HAR data. It learns how different time steps are related to one another, which is
important for capturing the flow of activities over time.

2. Second GRU Layer: The second GRU layer allows the model to focus selectively on
key features in the sequence. The attention mechanism calculates a weighted sum of
the inputs where the weights are based on the relevance of each feature. The output
of the attention mechanism is given by Equation (4):

OLSTMAtt = So f tmax
(

Query · KeyT
)
· Value (4)

In this formulation, the query matrix represents the current focus of the model, while
the Key and Value matrices contain feature representations from the input data. The atten-
tion mechanism enables the relation network to capture complex temporal dependencies
by focusing on the most relevant parts of the sequence.

The final output OLSTMAtt is computed by multiplying the weighted attention scores
with the Value matrix, allowing the model to learn both short-term and long-term relation-
ships in the data.

(5) Loss Function

After the local features and global relationships have been extracted by the Feature and
Relation Networks, a concatenation layer merges these representations. The concatenated
features are then passed through a fully connected layer, and the Softmax function is
used to classify the features into one of the C activity classes. The loss function shown
in Equation (5) used to optimize the model is the cross-entropy loss, which measures the
difference between the predicted and true labels:

L = − 1
Nseg

Nseg

∑
i=1

tilog( p̂i) (5)

where
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• ti represents the ground truth label for the iii-th segment;
• p̂i is the predicted probability for the iii-th segment;
• Nseg is the total number of segments in the dataset.

This loss function is widely used in classification tasks and ensures that the
model learns to assign correct probabilities to each class, thereby minimizing the
classification error.

In a federated learning environment, the PEN architecture is deployed locally on
each device. Feature extraction is performed on-device, and only model updates (weights)
are shared with the central server, ensuring that raw data remain private. The extracted
features from the Feature and Relation Networks are used to train the hybrid LSTM-GRU
model locally on each device. Once the local models are trained, the Federated Averaging
algorithm aggregates these updates to create a global model that can generalize well across
diverse datasets and environments. The hybrid LSTM-GRU model leverages the rich,
hierarchical features extracted by PEN to enhance its ability to capture both local and
global patterns in human activity data. This decentralized approach improves privacy and
scalability while maintaining high classification accuracy.

3.2. Hybrid LSTM-GRU Model

The core of the activity recognition framework lies in the hybrid LSTM-GRU model,
which combines the strengths of both LSTM and GRU architectures to capture short-term
and long-term dependencies in the data. The LSTM component excels at learning long-
term dependencies, while the GRU provides computational efficiency by simplifying the
gating mechanism.

In this architecture, the LSTM layer with 128 units is used first, followed by a GRU
layer with 64 units. The hybrid structure ensures that the network captures both complex
temporal patterns and efficiently processes the data. The LSTM Equations (6)–(10) are
as follows:

Forget Gate : fk = σ
(

U f · [qk−1, yk] + b f

)
(6)

where

fk: Forget gate activation at time step k;
σ: Sigmoid activation function;
U f : Weight matrix for the forget gate;
qk−1, yk: Concatenation of the previous hidden state qk−1 and the current input yk;
b f : Bias vector for the forget gate.

Input Gate : ik = σ(Ui · [qk−1, yk] + bi) (7)

where

ik: Input gate activation at time step k;
ik: Weight matrix for the input gate;
bi: Bias vector for the input gate.

Cell State Update : Sk = fk · Sk−1 + ik · S̃k (8)

where

Sk: Cell state at time step k;
Sk−1: Previous cell state;
S̃k: Candidate cell state at time step k.
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Output Gate : ok = σ(Uo · [qk−1, yk] + bo) (9)

where

ok: Output gate activation at time step k;
Uo: Weight matrix for the output gate;
bo: Bias vector for the output gate.

Hidden State : qk = ok · tanh(Sk) (10)

where

qk: Hidden state at time step k;
tanh(Sk): Hyperbolic tangent activation function.

The GRU layer reduces the computational load by combining the input and forget
gates into a single update gate, as shown in the following Equations (11)–(14):

Update Gate : uk = σ(Uu · [qk−1, yk] + bu) (11)

where

uk: Update gate activation at time step k;
Uu: Weight matrix for the update gate;
bu: Bias vector for the update gate.

Reset Gate : rk = σ(Ur · [qk−1, yk] + br) (12)

where

rk: Reset gate activation at time step k;
Ur: Weight matrix for the reset gate;
br: Bias vector for the reset gate.

Candidate Activation : q̃k = tanh
(
Uq · [rk · qk−1, yk] + bq

)
(13)

where

q̃k: Candidate hidden state at time step k;
Uq: Weight matrix for the candidate activation;
bq: Bias vector for the candidate activation.

Hidden State : qk = (1 − uk) · qk−1 + uk · q̃k (14)

where

qk: Hidden state at time step k.

By combining these two models, the hybrid LSTM-GRU network is able to learn both
short-term and long-term dependencies in the data, which is crucial for distinguishing be-
tween similar activities that unfold over different time scales (e.g., walking versus running).

3.3. Federated Learning Process

Federated learning [26] is employed to maintain user privacy while ensuring high
model performance. Each IoMT device locally trains the hybrid LSTM-GRU model on its
sensor data, and only model parameters are sent to a central server for aggregation using
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the Federated Averaging algorithm. This process ensures that no raw data leave the user’s
device, thus protecting sensitive information.

Federated Averaging is a fundamental algorithm in federated learning that enables
the aggregation of model updates from multiple decentralized devices (clients) to train a
global model without exchanging raw data. Each client trains a local model on its own
data and shares only the model updates (weights) with the central server. The server then
aggregates these local updates to create a global model by averaging the parameters.

Here’s how Federated Averaging works:
Local Training on Client Devices: Each client j locally trains its model on its dataset

Dj for a few epochs. The updated model parameters after local training are denoted as θj

where θj represents the weights of the model on the j-th client.
Weighted Aggregation: Once all clients have trained their models, they send their

updated parameters θj to the central server. The server aggregates these parameters by
computing a weighted average where the weight is proportional to the number of data
samples on each client. This is crucial because clients with larger datasets should contribute
more to the global model update.

The global model update Θglobal is computed as:

Θglobal =
M

∑
j=1

∣∣Dj
∣∣

|Dtotal|
· θj (15)

where
M is the total number of clients;∣∣Dj

∣∣ is the number of data samples on client j;
|Dtotal | is the total number of data samples across all clients;
θj represents the model parameters (weights) from client j.
In this equation, each client’s model parameters are weighted by the proportion of data

it holds, ensuring that clients with more data have a greater impact on the global model.
Global Model Update: The central server updates the global model Θglobal by averag-

ing the received local model updates. The updated global model is then broadcast back to
the clients for the next round of local training. After the global aggregation, the new global
model parameters Θnew are:

Θnew =
1
M

M

∑
j=1

θj (16)

Here, the server computes the arithmetic mean of all the local model parameters
received from the clients. This new global model Θnew is then used in the next iteration of
the federated learning process.

Iteration and Convergence: The above process is repeated for multiple communication
rounds until the global model converges to a stable set of parameters. Each round involves
local training on clients, sending updated parameters to the server, aggregating the updates,
and sending the new global model back to the clients.

By integrating federated learning with a hybrid LSTM-GRU model, this framework
ensures that human activity is accurately recognized while maintaining user privacy and
minimizing computational costs on edge devices. This detailed methodology outlines
the end-to-end process of how federated learning is applied to enhance human activity
recognition in IoMT environments, utilizing a robust hybrid LSTM-GRU network for
efficient and scalable performance.
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4. Experimental Results
4.1. Datasets

In the field of human activity recognition, multiple publicly available datasets have
been developed to capture various activities in different environments and populations.
Each dataset provides unique sensor configurations, participant demographics, and labeling
schemes, making them valuable resources for evaluating machine learning models. This
section presents three datasets used in recent studies—HARTH, HAR70+, and UCI-HAR—
detailing their characteristics, data collection protocols, and sensor configurations.

(1) HARTH Dataset

The Human Activity Recognition Trondheim (HARTH) dataset [27] consists of sensor
data collected from 22 healthy adults using two tri-axial Axivity AX3 accelerometers.
One accelerometer was attached to the participant’s thigh, and the other was placed on the
lower back. These sensors recorded acceleration data at 50 Hz, capturing the movements
and activities of participants performing daily tasks in free-living settings. The dataset
was recorded in two sessions: the first focused on common activities like sitting, standing,
walking, and running, while the second session aimed to balance the dataset by collecting
more data on walking and cycling. In total, 12 activity labels were defined, including sitting,
lying, walking, running, cycling, and climbing stairs. The dataset was annotated using
both video recordings and human experts, resulting in a highly reliable ground truth with
a Fleiss’ Kappa of 0.96. Despite efforts to balance the dataset, it still presents challenges
due to the imbalance of activity labels, particularly with regard to activities involving light
motion. Accordingly, the author focused on certain activities (walking, running, cycling,
sitting, standing, and lying down).

(2) HAR70+ Dataset

The HAR70+ dataset [28] was designed to capture the physical activity of older adults
aged 70 and above, offering valuable insights into human motion in this demographic.
The dataset consists of data from 18 participants, 4 of whom used walking aids during
the collection process. Data were recorded using two tri-axial Axivity AX3 accelerometers,
attached, similarly to the HARTH dataset, to the thigh and lower back of each participant.
In addition to the accelerometer data, video recordings were used to annotate the activities,
focusing on lower body movements and overall body orientation. The video recordings
were converted to a lower frame rate for analysis, and activities were labeled manually. The
HAR70+ dataset provides unique challenges due to the variability in mobility among older
adults and the inclusion of walking aids, making it highly valuable for studying human
activity recognition in elderly populations.

(3) UCI-HAR Dataset

The UCI-HAR dataset [29] is one of the most widely used datasets for human activity
recognition. It consists of data collected from 30 volunteers performing 6 different activities,
including standing, sitting, lying down, walking, and walking up and down stairs. Partic-
ipants wore a Samsung Galaxy S II smartphone attached to their waist, which recorded
triaxial linear acceleration and angular velocity using the phone’s built-in accelerometer
and gyroscope. The data were collected at a sampling rate of 50Hz, and pre-processing
techniques, such as Butterworth filtering, were applied to reduce noise and separate the
body acceleration from gravitational forces. This dataset provides a standardized protocol
for activity recognition and has been widely adopted in the field due to its controlled ex-
perimental conditions and comprehensive sensor data. Table 2 gives a statistical summary
details for the used dataset.
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Table 2. Dataset summary.

Dataset Name Number of Labels Number of Subjects Sensor Type Type of Annotation

HARTH 12 22 Axivity AX3 Video and Human Experts

HAR70+ 8 18 Axivity AX3 Video

UCI-HAR 6 30 Smartphone Sensors Manual Labeling

Each of these datasets offers unique challenges and opportunities for evaluating
HAR models. The HARTH and HAR70+ datasets focus on more naturalistic, free-living
environments, whereas the UCI-HAR dataset provides a controlled setting with predefined
activities. By combining insights from these datasets, the author developed and refined
models to enhance their generalizability and performance across diverse populations
and environments.

4.2. System Configuration and Hardware Setup

The experiments were conducted using simulated edge devices representing federated
clients. Each simulated client was configured with specifications equivalent to 4 GB of RAM
and a quad-core processor. The central server, responsible for model aggregation, used
the Federated Averaging algorithm, utilizing 16 GB of RAM and an eight-core processor
in the simulation. The author used TensorFlow Federated as the primary framework to
simulate FL nodes and conduct distributed training. TensorFlow Federated provides a
robust and flexible platform for implementing federated learning workflows and is well
suited for handling heterogeneous client data distributions, which aligns with the objectives
of our study.

A total of 50 simulated edge devices were used to represent federated clients. These
devices were distributed across the datasets as follows:

• HARTH Dataset: 20 simulated clients were assigned. The dataset’s 22 subjects were
randomly divided among the clients, ensuring that each client received data for at
least one subject.

• HAR70+ Dataset: 15 simulated clients were assigned. The dataset’s 18 subjects were
randomly distributed, ensuring each client had access to data from approximately 1 to
2 subjects.

• UCI-HAR Dataset: 15 simulated clients were assigned. The dataset’s 30 subjects were
split so each client received data for 2 subjects on average.

• Each client locally trained the hybrid LSTM-GRU model on its assigned data portion.
To preserve user privacy, raw data remained on the devices, and only model updates
were shared with the central server.

4.3. Training Protocols and Evaluation Metrics

The model was trained using Stochastic Gradient Descent (SGD) with a learning rate of
0.001, a batch size of 32, and 30 epochs on each client before aggregation. Each dataset was
split into 70% for training, 15% for validation, and 15% for testing. This was consistently
applied across all experiments. The training data were distributed among edge devices in a
heterogeneous manner, with each device receiving subject-specific data to mimic real-world
federated learning conditions.

The validation process was performed on the validation subset at each communication
round during federated learning to monitor model convergence. Metrics such as accuracy
and F1-score were computed on the validation set to guide hyperparameter tuning and
evaluate the model’s intermediate performance.
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The author measured the following evaluation metrics: accuracy, F1-score, precision,
and recall. These metrics are shown in Equations (17)–(20).

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(17)

F1 − measure =
2 × (Precision × Recall)
(Precision + Recall)

(18)

Precision = TP/(TP + FP) (19)

Recall = TP/(TP + FN) (20)

where

TP: True Positives, the number of correctly identified positive cases;
TN: True Negatives, the number of correctly identified negative cases;
FP: False Positives, the number of incorrectly identified positive cases;
FN: False Negatives, the number of incorrectly identified negative cases.

The goal was to assess the performance of the federated learning system in recognizing
various human activities from the datasets. To evaluate the model’s ability to handle class
imbalance and client distribution heterogeneity, the author employed multiple experimental
settings, as discussed below.

4.4. Centralized vs. Federated Learning

One of the core experiments involved comparing the performance of the hybrid
LSTM-GRU model when trained using centralized learning (where all data are collected
on a central server) versus federated learning (where training occurs on distributed clients).
The performance of the federated learning system was evaluated based on accuracy, F1-
score, precision, and recall across the three datasets: HARTH, HAR70+, and UCI-HAR. The
results, updated with mean ± standard deviation values from 6-fold cross-validation, are
summarized in Table 3.

Table 3. Centralized vs. federated learning experiment results.

Dataset Learning
Type

Accuracy
(Mean ± SD)

F1-Score
(Mean ± SD)

Precision
(Mean ± SD)

Recall
(Mean ± SD)

HARTH
Centralized 92.7% ± 0.4 0.91 ± 0.02 0.91 ± 0.02 0.90 ± 0.02

Federated 94.9% ± 0.6 0.93 ± 0.02 0.92 ± 0.03 0.91 ± 0.03

HAR70+
Centralized 90.8% ± 0.6 0.89 ± 0.03 0.88 ± 0.04 0.87 ± 0.03

Federated 95.2% ± 0.5 0.91 ± 0.02 0.90 ± 0.03 0.89 ± 0.03

UCI-HAR
Centralized 94.8% ± 0.3 0.93 ± 0.01 0.92 ± 0.02 0.92 ± 0.02

Federated 95.6% ± 0.3 0.94 ± 0.01 0.93 ± 0.02 0.93 ± 0.02

Federated learning demonstrated comparable, and in many cases superior, perfor-
mance to centralized learning. On the HARTH dataset, the centralized model achieved an
accuracy of 92.7% ± 0.4, while the federated model attained an accuracy of 94.9% ± 0.6,
highlighting the federated framework’s ability to achieve higher performance while pre-
serving user privacy. Similarly, for the UCI-HAR dataset, the centralized model achieved
94.8% ± 0.3 accuracy compared to 95.6% ± 0.3 with federated learning, showing the
model’s robustness in recognizing human activities under a distributed training paradigm.

For the HAR70+ dataset, the centralized model achieved an accuracy of 90.8% ± 0.6,
whereas the federated approach yielded 95.2% ± 0.5, reflecting a significant improvement.
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This improvement is particularly notable given the complexity of the HAR70+ dataset,
which includes data from older adults and introduces variability due to the use of walking
aids and other demographic factors.

These results clearly illustrate that federated learning can achieve high performance,
often surpassing centralized learning, while maintaining user privacy. The F1-scores,
precision, and recall metrics further confirm the model’s balanced ability to correctly
classify activities across diverse datasets. This makes federated learning an effective and
privacy-preserving solution for distributed human activity recognition tasks.

4.5. Handling Class Imbalance in Federated Learning

Class imbalance is a pervasive challenge in human activity recognition (HAR) datasets
where certain activities are significantly under-represented. This imbalance can adversely
affect the performance of machine learning models by biasing predictions toward major-
ity classes. Figure 2 illustrates the activity distribution for the three datasets—HARTH,
HAR70+, and UCI-HAR—highlighting the extent of imbalance in each case.
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Figure 2. Activity distribution across datasets.

For the HARTH dataset, activities such as “running” and “cycling” are notably under-
represented compared to more common activities like “walking” or “standing”. This
disparity makes it challenging for models to correctly classify minority activities. Similarly,
the HAR70+ dataset, which involves older adults, exhibits a pronounced imbalance due to
the inclusion of activities performed with walking aids and the reduced representation of
more dynamic activities. In the UCI-HAR dataset, while the overall distribution is relatively
balanced, certain activities, such as “walking downstairs”, still comprise less than 5% of
the dataset.

This imbalance in activity representation can lead to a disproportionate focus on ma-
jority classes during training, reducing the model’s ability to generalize effectively across
all activity types. To address this, the experiments implemented techniques like Weighted
Federated Averaging (FedAvg), which assigns higher weights to updates associated with
under-represented classes. This approach ensures that minority activities contribute pro-
portionally to the global model during federated training, thereby mitigating the impact of
class imbalance. The effectiveness of this strategy is reflected in the improved classification
metrics presented in the updated results section.

To address the challenges posed by class imbalance, Weighted Federated Averaging
(FedAvg) was employed during model training. This technique dynamically adjusts the
contribution of each client’s updates to the global model, assigning weights based on the
inverse frequency of each class in the training data. By amplifying the influence of under-
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represented classes, this approach ensures that minority activities are not overshadowed
by majority classes during the training process.

The results in Table 4 demonstrate the effectiveness of this technique. In the HARTH
dataset, the overall accuracy improved significantly from 88.5% ± 0.8 to 94.9% ± 0.6 after
applying Weighted FedAvg. Similarly, the F1-scores for minority classes such as “running”
and “cycling” increased substantially, with “running” improving from 0.65 ± 0.04 to
0.84 ± 0.03, and “cycling” improving from 0.67 ± 0.04 to 0.84 ± 0.03. These improvements
highlight the enhanced recognition of activities with fewer instances.

Table 4. Class imbalance results.

Dataset Class Imbalance Handling Accuracy (Mean ± SD) F1-Score (Mean ± SD)

HARTH
Before 88.5% ± 0.8 0.83 ± 0.03

After 94.9% ± 0.6 0.93 ± 0.02

HAR70+
Before 86.2% ± 0.9 0.81 ± 0.04

After 95.2% ± 0.5 0.91 ± 0.02

UCI-HAR
Before 89.0% ± 0.7 0.85 ± 0.03

After 95.6% ± 0.3 0.94 ± 0.01

Comparable enhancements were observed in the HAR70+ and UCI-HAR datasets.
For HAR70+, the accuracy increased from 86.2% ± 0.9 to 95.2% ± 0.5, and the F1-score
for under-represented activities, such as “running”, showed marked improvement. The
UCI-HAR dataset, although relatively balanced, still benefited from the weighted averaging
approach, with accuracy improving from 89.0% ± 0.7 to 95.6% ± 0.3, and F1-scores for
minority classes achieving higher stability and precision.

The improvements in recall metrics across all datasets further validate the approach’s
effectiveness in addressing the disproportionate representation of minority activities. By en-
suring that under-represented activities are adequately learned during training, Weighted
FedAvg enhances the overall performance and generalizability of the federated learn-
ing framework. These results underscore the importance of addressing class imbalance
in distributed learning systems, particularly in scenarios involving heterogeneous and
imbalanced datasets.

Similarly, class-wise evaluations for the HAR70+ and UCI-HAR datasets revealed
consistent improvements across all activity classes following the application of Weighted
Federated Averaging (FedAvg). The weighted approach effectively addressed the imbalance
by ensuring that minority activities contributed proportionally to the model updates,
resulting in enhanced recognition of under-represented classes.

For the HAR70+ dataset, activities such as “running” and “walking with aids”, which
were initially challenging to classify, demonstrated notable improvements in both accuracy
and F1-scores. The accuracy for “running”, for instance, increased from 74.0% ± 1.2 to
88.1% ± 0.9, and the F1-score rose from 0.65 ± 0.04 to 0.84 ± 0.03. Similarly, improve-
ments in activities like “standing” and “sitting” highlight the model’s enhanced ability to
generalize across diverse activity patterns within this dataset.

In the UCI-HAR dataset, which had relatively balanced activity distributions,
Weighted FedAvg further refined the model’s performance. Activities like “walking
downstairs”, which initially had lower recognition rates, showed improved accuracy
and F1-scores, emphasizing the effectiveness of addressing even slight imbalances in
distributed datasets.

These results, summarized in Table 5, underscore the substantial benefits of tackling
class imbalance in the federated learning setup. The observed improvements across all
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datasets and activity classes validate the robustness of Weighted FedAvg as a strategy
for enhancing classification performance, particularly in scenarios involving heteroge-
neous and imbalanced data distributions. This approach not only improves accuracy and
F1-scores for individual activities but also contributes to the overall reliability and fairness
of the federated learning framework.

Table 5. Class-wise accuracy and F1-score for the HARTH dataset.

Activity Accuracy (Before) Accuracy (After) F1-Score (Before) F1-Score (After)

Walking 92.5% 96.8% 0.88 0.95

Running 70.3% 85.0% 0.65 0.82

Cycling 72.1% 86.2% 0.67 0.83

Sitting 88.0% 92.5% 0.84 0.91

Standing 89.3% 94.1% 0.86 0.93

Others
(6 activities) 84.0% 90.2% 0.78 0.88

4.6. Communication Rounds and Model Convergence

Federated learning involves multiple communication rounds between the distributed
clients and the central server. This experiment evaluated the impact of the number of
communication rounds on model performance, focusing on the convergence of accuracy
(Figure 3) and F1-score (Figure 4) across the HARTH, HAR70+, and UCI-HAR datasets.
The model was tested after 25, 50, 75, 100, 125, 150, 175, and 200 communication rounds.
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Figure 3. Model accuracy comparison across communication rounds on HARTH, HAR70+, and
UCI-HAR datasets.

The results indicate that the UCI-HAR dataset converged the fastest, achieving high
accuracy and F1-scores within 100 communication rounds. The HARTH dataset followed a
similar trajectory but required slightly more rounds to reach full convergence. In contrast,
the HAR70+ dataset, with its more complex and varied activity patterns, exhibited slower
convergence, reflecting the challenges posed by the dataset’s heterogeneity and inclusion
of older adults with walking aids.
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Figure 4. Model F1-score comparison across communication rounds on HARTH, HAR70+, and
UCI-HAR datasets.

For all three datasets, model performance improved consistently with increasing com-
munication rounds. This trend highlights how federated learning effectively aggregates
client updates over successive rounds, gradually enhancing the model’s understanding of
activity patterns. Both accuracy and F1-score demonstrated steady improvements, show-
casing the model’s ability to correctly classify activities with additional rounds of training.

For the HARTH dataset, the model started with an accuracy of 88.5% ± 0.8 and an
F1-score of 0.84 ± 0.03 after 25 rounds. By 100 rounds, the accuracy had improved to
94.0% ± 0.6 with an F1-score of 0.92 ± 0.02, demonstrating rapid early convergence. Gains
became marginal after 100 rounds, with final values reaching 95.2% ± 0.5 accuracy and
0.94 ± 0.02 F1-score by 200 rounds. This pattern suggests that most learning occurs within
the first 100 rounds, with subsequent rounds contributing primarily to fine-tuning.

On the other hand, HAR70+ dataset’s initial performance was slightly lower, be-
ginning with 86.0% ± 0.9 accuracy and an F1-score of 0.80 ± 0.04 after 25 rounds.
Early improvements were slower due to the dataset’s greater variability, but significant
gains were observed as the rounds progressed. By 100 rounds, the model achieved
91.2% ± 0.7 accuracy and 0.88 ± 0.03 F1-score. Continued improvements led to final
values of 93.2% ± 0.6 accuracy and 0.91 ± 0.03 F1-score after 200 rounds, indicating the
framework’s ability to adapt to diverse client data over extended training.

For the UCI-HAR dataset, it started with 90.5% ± 0.7 accuracy and an F1-score of
0.85 ± 0.03 after 25 rounds; the model converged quickly, reaching 94.0% ± 0.4 accuracy
and 0.92 ± 0.02 F1-score by 100 rounds. Even after convergence, gradual improvements
were observed, with final values of 96.5% ± 0.3 accuracy and 0.95 ± 0.01 F1-score after
200 rounds. These results highlight the dataset’s balanced nature and the model’s ability to
leverage it effectively.

The results suggest that around 100 communication rounds are generally sufficient to
achieve near-optimal performance for most datasets. However, additional communication
rounds offered marginal gains for HARTH and UCI-HAR, while HAR70+ continued to
benefit from extended training due to its more complex activity patterns. These findings
underscore the flexibility and scalability of the federated learning framework in adapting
to diverse data distributions and complexities.
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The observed improvements in accuracy and F1-score with increasing communication
rounds demonstrate the federated learning system’s ability to generalize effectively across
distributed data. By aggregating updates from heterogeneous clients, the system refines
its performance incrementally, achieving robust learning across all datasets. This makes
it particularly well-suited for real-world human activity recognition tasks where data are
often distributed and imbalanced.

4.7. Client Distribution: Homogeneous vs. Heterogeneous Data

The author explored the impact of client data distribution on federated learning perfor-
mance which was evaluated by comparing homogeneous and heterogeneous distributions.
In the homogeneous configuration, each client received an equal proportion of all activities
(e.g., walking, running, sitting), ensuring a balanced dataset across clients. In the hetero-
geneous configuration, clients had skewed data distributions, with some clients biased
toward specific activities (e.g., 80% walking and 20% running). This experiment assessed
how variability in client data distributions influences model performance over multiple
communication rounds. Figure 5 illustrates the accuracy trends for homogeneous and
heterogeneous distributions across communication rounds. In the homogeneous distri-
bution, the model started with an accuracy of 91.0% ± 0.5 after 25 rounds and steadily
improved to 96.8% ± 0.3 by the 200th round. This consistent improvement reflects the
uniform representation of activities across clients, which leads to more stable updates to the
global model during each communication round. The balanced nature of the data allowed
the model to generalize effectively, resulting in rapid convergence and high final accuracy.
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Figure 5. Model accuracy comparison across communication rounds for homogeneous vs. heteroge-
neous configurations on HARTH, HAR70+, and UCI-HAR datasets.

In contrast, the model trained on heterogeneous data distributions exhibited a slower
improvement in accuracy. The initial accuracy was 86.0% ± 0.7 after 25 rounds, gradually
increasing to 94.0% ± 0.4 by the 200th round. The lower starting accuracy and slower
convergence are attributable to the skewed data distribution across clients where over-
representation of certain activities caused initial difficulty in generalizing across all activity
classes. However, as more communication rounds progressed, the model aggregated
updates from a diverse range of clients, which enabled it to refine its performance and
approach the accuracy achieved in the homogeneous configuration.
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The trends in F1-score, depicted in Figure 6, mirrored those observed for accuracy.
In the homogeneous distribution, the F1-score began at 0.87 ± 0.03 after 25 rounds and
consistently improved to 0.95 ± 0.02 after 200 rounds. The steady increase highlights the
model’s ability to balance precision and recall effectively across all classes, aided by the
even representation of activities across clients.
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Figure 6. Model F1-score comparison across communication rounds for homogeneous vs. heteroge-
neous configurations on HARTH, HAR70+, and UCI-HAR datasets.

In the heterogeneous distribution, the F1-score started lower at 0.81 ± 0.04 after
25 rounds due to the imbalanced data distribution. However, it showed significant improve-
ment over time, reaching 0.93 ± 0.03 after 200 communication rounds. This indicates that de-
spite initial challenges, the federated learning approach successfully adapted to the skewed
client data, gradually improving its ability to correctly classify under-represented activities.

The results demonstrate the robustness of federated learning in handling diverse and
noisy data distributions. Although the heterogeneous configuration exhibited a slower start
and greater variability in early rounds, the model eventually approached the performance
of the homogeneous configuration as the number of communication rounds increased. By
aggregating updates from distributed clients, the federated learning system effectively
reduced the bias introduced by imbalanced data, leading to stable and accurate global
model performance.

Moreover, federated learning inherently incorporates a regularization effect by lever-
aging diverse client data, which prevents overfitting to a centralized dataset. Weighted
updates from clients further stabilized training, ensuring that under-represented activities
contributed proportionally to the model’s learning process. These findings underscore the
adaptability of federated learning in real-world scenarios where client data distributions
are often heterogeneous and imbalanced.

4.8. Cross-Dataset Generalization

This section evaluates the generalization capability of the federated learning model
across different datasets. The experiment involved training the model on one dataset
(e.g., HARTH) and testing it on another (e.g., HAR70+ or UCI-HAR) to assess its adapt-
ability and robustness. The goal was to determine how effectively the federated learning
system, leveraging diverse data from distributed clients, can generalize to unseen datasets.
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The results, summarized in Table 6, demonstrate that the federated learning system
generalizes well across datasets. For instance, when trained on the HARTH dataset and
tested on HAR70+, the model achieved an accuracy of 90.8% ± 0.8, a significant improve-
ment compared to the baseline accuracy of 82.3% ± 1.1 before applying federated learning
techniques. Similarly, training on HAR70+ and testing on HARTH yielded an accuracy of
91.5% ± 0.7, up from 83.1% ± 1.0. These results highlight the ability of the federated model
to adapt to new datasets despite differences in activity distributions, demographics, and
sensor configurations.

Table 6. Cross-dataset generalization experiment results.

Training Dataset Test Dataset Accuracy (Before) Accuracy (After FedAvg)

HARTH HAR70+ 82.3% ± 1.1 90.8% ± 0.8

HAR70+ HARTH 83.1% ± 1.0 91.5% ± 0.7

UCI-HAR HAR70+ 86.5% ± 0.8 95.2% ± 0.5

HAR70+ UCI-HAR 87.6% ± 0.7 98.7% ± 0.3

The performance on the UCI-HAR dataset further underscores the robustness of the
approach. When the model was trained on HAR70+ and tested on UCI-HAR, it achieved
an accuracy of 98.7% ± 0.3, reflecting its ability to leverage the relatively balanced and
well-defined activity classes in UCI-HAR. Conversely, training on UCI-HAR and testing
on HAR70+ resulted in an accuracy of 95.2% ± 0.5, a significant improvement over the
baseline of 86.5% ± 0.8. These results validate the system’s ability to transfer knowledge
between datasets with varying levels of complexity and balance.

Class-wise results for a representative experiment (training on HARTH and testing on
HAR70+) are shown in Table 7. These results provide additional insights into the model’s
performance on individual activities, particularly under-represented classes. Activities like
“walking” and “sitting” achieved high accuracy and F1-scores, reflecting the model’s strong
performance in common activities. For more challenging activities, such as “running”, the
application of federated learning techniques significantly improved accuracy and F1-scores,
demonstrating the model’s ability to adapt to imbalanced datasets.

Table 7. Class-wise accuracy.

Activity Accuracy (Before) Accuracy
(After FedAvg) F1-Score (Before) F1-Score

(After FedAvg)

Walking 92.5% ± 0.5 97.0% ± 0.4 0.89 ± 0.02 0.96 ± 0.01

Running 71.0% ± 1.2 86.2% ± 0.9 0.66 ± 0.04 0.84 ± 0.03

Cycling 73.0% ± 1.1 87.0% ± 0.8 0.68 ± 0.04 0.84 ± 0.03

Sitting 88.2% ± 0.7 93.0% ± 0.5 0.85 ± 0.03 0.92 ± 0.02

Standing 89.5% ± 0.6 94.3% ± 0.4 0.87 ± 0.03 0.94 ± 0.02

Others (6) 84.5% ± 0.8 91.0% ± 0.7 0.79 ± 0.04 0.89 ± 0.03

The experimental results demonstrate the efficiency and effectiveness of federated
learning with the hybrid LSTM-GRU model for human activity recognition tasks. The key
findings include the superior performance of federated learning compared to centralized
learning, the impact of client distributions on model performance, and the benefits of
handling class imbalance through Weighted Federated Averaging. Furthermore, the model
converges effectively with around 100 communication rounds and generalizes exceptionally
well across different datasets, showcasing its adaptability in real-world scenarios.
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4.9. Stability Analysis

Table 8 represents key stability metrics: mean ± standard deviation (SD), minimum
and maximum values, and the interquartile range (IQR). These metrics provide a deeper
understanding of the approach’s stability across the evaluated datasets—HARTH, HAR70+,
and UCI-HAR—and over the communication rounds tested (from 25 to 200 rounds). The
inclusion of these statistics allows for a comprehensive evaluation of the federated learning
framework’s performance, not just in terms of accuracy and F1-score, but also its variability
and robustness in handling the challenges inherent in different datasets.

Table 8. Stability metrics.

Communication
Rounds

HARTH
Accuracy

HARTH
F1-Score

HAR70+
Accuracy

HAR70+
F1-Score

UCI-HAR
Accuracy

UCI-HAR
F1-Score

Mean 91.4% ± 0.7 0.89 ± 0.03 89.2% ± 1.1 0.86 ± 0.04 92.0% ± 0.4 0.89 ± 0.03

Min 87.1% 0.82 85.0% 0.78 88.5% 0.83

Max 91.7% 0.89 89.5% 0.87 92.0% 0.89

IQR 3.6% 0.05 4.5% 0.07 2.5% 0.06

The mean ± standard deviation (SD) provides a summary of the central tendency and
spread of the accuracy and F1-score for each dataset across all communication rounds. For
the HARTH dataset, the mean accuracy was 91.4% ± 0.7, indicating high and consistent
performance with minimal variability. Similarly, the F1-score averaged 0.89 ± 0.03, further
highlighting the model’s stability in classifying the activities within the HARTH dataset.

For the HAR70+ dataset, the mean accuracy was slightly lower at 89.2% ± 1.1, with
a higher standard deviation compared to HARTH. This reflects the inherent complexity
and variability of the dataset, which consists of elderly participants with diverse activity
patterns. The F1-score for HAR70+ was 0.86 ± 0.04, showing slightly greater variability,
likely due to the dataset’s more challenging nature.

The UCI-HAR dataset, being relatively balanced and simpler in its activity patterns,
exhibited the highest mean accuracy at 92.0% ± 0.4, with the smallest standard deviation
among the datasets. The F1-score was also consistent at 0.89 ± 0.03, underscoring the
model’s robust performance on this dataset.

The minimum and maximum values provide a range for the accuracy and F1-scores
across communication rounds, reflecting the model’s performance fluctuations. For in-
stance, the HARTH dataset had a minimum accuracy of 87.1% and a maximum accuracy of
91.7%, showing that even the lowest recorded accuracy was relatively high. In contrast,
HAR70+ had a wider range, with a minimum accuracy of 85.0% and a maximum of 89.5%,
indicating more pronounced variations across communication rounds. The UCI-HAR
dataset had a narrow range, with a minimum accuracy of 88.5% and a maximum of 92.0%,
demonstrating its consistent performance across all rounds.

The interquartile range (IQR) captures the spread of the middle 50% of the accuracy
and F1-score values, offering additional insights into the stability of the model’s perfor-
mance. For the HARTH dataset, the IQR for accuracy was 3.6%, indicating a narrow range
of variability and high consistency in the model’s predictions. HAR70+ had a slightly
larger IQR of 4.5%, reflecting its greater variability. The UCI-HAR dataset, with an IQR of
only 2.5%, showcased the tightest spread of accuracy values, reinforcing its suitability for
consistent human activity recognition tasks.

The statistical metrics shown in Table 7 provide a clear indication of the model’s
stability and effectiveness across datasets. The UCI-HAR dataset demonstrated the most
consistent performance, with minimal variability and a high mean accuracy, highlight-
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ing the model’s robustness in handling balanced datasets. The HARTH dataset, while
slightly more variable, still exhibited high mean accuracy and F1-scores, confirming the
model’s reliability. The HAR70+ dataset, though more challenging due to its participant
diversity, showed competitive performance with slightly greater variability, reflecting the
complexities inherent in real-world applications.

5. Benchmarking Results
Table 9 presents the benchmarking results, offering insights into the performance

and adaptability of the proposed federated learning framework with hybrid LSTM-GRU
networks compared to previous approaches across multiple datasets. The updated results
further emphasize the model’s robustness, efficiency, and scalability in IoMT-driven en-
vironments. In their work, Heba, N., and Sreeraman, R. [16] achieved accuracy levels of
84.64% on HAR70+ and 75.73% on HARTH, leveraging wavelet-based methods. While
wavelet-based approaches can effectively capture periodic patterns in sensor data, they
struggle to handle the varied and complex activities typical of free-living scenarios. The
proposed federated learning framework significantly outperforms these results, achieving
95.2% ± 0.5 on HAR70+ and 94.9% ± 0.6 on HARTH. This improvement highlights the
ability of the hybrid LSTM-GRU model to capture intricate temporal dependencies and
adapt to the heterogeneity of real-world IoMT settings.

Table 9. Evaluation results of validation accuracy for HAR70+, HARTH, and UCI-HAR datasets for
the proposed work and previous work.

Work Approach Dataset Accuracy (Mean ± SD)

Heba, N., et al. [16] Wavelet Transform for HAR
HAR70+ 84.64% ± 1.2

HARTH 75.73% ± 1.4

Gehlhar, T., et al. [18] Secure MPC-based Federated Learning UCI-HAR 97.0% ± 0.5

Koşar, E., et al. [19] Hybrid CNN-LSTM UCI-HAR 95.66% ± 0.6

Cruciani, F., et al. [20] CNN Feature Learning UCI-HAR 91.98% ± 0.7

Logacjov, A., et al. [21] Self-Supervised Learning for HAR
HAR70+ 93.8% ± 0.6

HARTH 94.6% ± 0.5

Proposed Work Federated LSTM-GRU

HAR70+ 95.2% ± 0.5

UCI-HAR 95.6% ± 0.3

HARTH 94.9% ± 0.6

Gehlhar et al. [18] reported a notable accuracy of 97.0% on the UCI-HAR dataset using
a secure federated learning framework. Although the proposed model achieves slightly
lower accuracy at 95.6% ± 0.3, it compensates by offering superior computational efficiency
and adaptability, particularly for IoMT applications requiring real-time processing. The pro-
posed framework ensures privacy preservation while maintaining high accuracy, making it
ideal for decentralized environments where both security and efficiency are paramount.

Koşar, E., and Barshan, B. [19] achieved 95.66% accuracy on UCI-HAR, combining
convolutional and recurrent layers for feature extraction. The hybrid LSTM-GRU model
achieves comparable performance on UCI-HAR (95.6% ± 0.3) but demonstrates signifi-
cantly higher adaptability across diverse datasets, with consistent results on HAR70+ and
HARTH. This versatility is critical in IoMT-based HAR applications, which often involve
heterogeneous sensor data collected from distributed devices.

Cruciani et al. [20] reported an accuracy of 91.98% on UCI-HAR using spatial
feature extraction methods. However, these approaches struggle to fully capture the
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temporal complexity of human activity data. In contrast, the proposed framework’s
accuracy of 95.6% ± 0.3 demonstrates the advantages of hybrid models that effectively
integrate spatial and temporal features. This capability is crucial for accurate classification
in privacy-sensitive federated environments.

Logacjov et al. [21] employed self-supervised learning and achieved 93.8% on HAR70+
and 94.6% on HARTH, benefiting scenarios with limited labeled data. The proposed
model surpasses these results with 95.2% ± 0.5 on HAR70+ and 94.9% ± 0.6 on HARTH,
reflecting stronger generalizability and robustness. This performance advantage is critical
in federated learning scenarios where labeled data may be scarce, yet high accuracy is
essential for effective real-time activity recognition.

Sahoo et al. [22] achieved an accuracy of 88.89% on HARTH by optimizing feature
selection. However, their approach was limited in achieving higher classification accuracy.
In comparison, the proposed framework achieves 94.9% ± 0.6, benefiting from a more
integrated approach to feature extraction and classification. By combining federated
learning with the hybrid LSTM-GRU model, the framework ensures enhanced classification
accuracy while preserving privacy, making it well-suited for IoMT applications.

6. Discussion
Despite considerable progress in human activity recognition, most existing research

has focused on centralized data processing models that rely on deep learning algorithms to
analyze sensor data from mobile and wearable devices. While these centralized approaches
can be effective in controlled environments, they face significant challenges in real-world
applications, especially in terms of privacy and adaptability for decentralized IoMT en-
vironments. The proposed study addresses this gap by introducing a federated learning
framework paired with a hybrid LSTM-GRU model, specifically crafted for decentralized
human activity recognition tasks in IoMT settings.

This study demonstrates that federated learning, when combined with a hybrid LSTM-
GRU model, can maintain high classification accuracy for human activity recognition
while also addressing critical privacy issues linked to centralized data processing. By
utilizing federated learning, the proposed approach ensures that sensitive data remain
on the local devices, mitigating privacy risks without sacrificing model quality. The dual-
feature extraction mechanism, which integrates convolutional layers for capturing local data
patterns with the LSTM-GRU model for detecting complex temporal dependencies, proves
effective in handling the nuanced nature of real-world activity data. This combination
enables the model to accurately capture both short-term and long-term dependencies in
activity patterns, providing a balanced and holistic view of human activities across various
real-life contexts.

A key consideration in our research was the selection of appropriate datasets to vali-
date our approach. While it is true that data collected directly from medical devices is often
sensitive and subject to stringent privacy regulations, there exist medical datasets that are
openly available for research purposes under specific conditions. These datasets enable
researchers to develop and test models in healthcare-oriented settings while ensuring the
protection of sensitive information. Although our current study primarily utilized the
UCI-HAR, HARTH, and HAR7+ datasets, which are collected from healthy individuals
using consumer-grade devices, our federated learning framework is inherently compatible
with medical-grade data sources. This adaptability allows for future integration of special-
ized medical datasets, thereby extending the applicability of our model to more diverse
and clinically relevant scenarios.

Furthermore, the datasets employed in our research are highly consistent with the daily
activities of individuals, aligning well with the objectives of IoMT-enhanced HAR. These
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activities mirror real-world scenarios, providing a robust foundation for developing models
that can be effectively deployed in various IoMT contexts, including health monitoring and
daily living assistance. In the realm of IoMT, human activity data are often gathered through
mobile devices such as smartphones and non-medical sensors rather than exclusively
relying on medical-grade equipment. This approach is prevalent in most similar studies
and reflects the practical deployment of IoMT systems where mobile and consumer-grade
sensors play a significant role in data collection. By leveraging these widely used data
sources, our federated learning framework and hybrid LSTM-GRU model remain relevant
and applicable to the types of data commonly encountered in IoMT environments.

Moreover, our Discussion Section has been revised to emphasize the generalizability
and scalability of our proposed framework. The author elaborates on how the architecture
can seamlessly integrate diverse data sources, whether they originate from medical-grade
devices or consumer-grade sensors, ensuring both privacy preservation and high recog-
nition accuracy. This flexibility is crucial for adapting to the dynamic and heterogeneous
nature of IoMT ecosystems. Additionally, I highlight the potential for future research to in-
corporate more specialized medical datasets, which would further validate and enhance the
applicability of our approach in real-world medical settings. By addressing these aspects,
I demonstrate that our framework is not only grounded in robust and widely accepted
datasets but is also poised to evolve in line with the specific demands of healthcare-oriented
IoMT applications.

Our findings confirm the capability of the LSTM-GRU model to outperform single-
recurrent models by effectively capturing sequential dependencies and dynamic patterns
in sensor data. This feature makes the hybrid model particularly well-suited for human
activity recognition tasks that require continuous monitoring and real-time data processing,
as seen in IoMT applications. The federated learning approach further enhances the model’s
scalability, allowing it to be deployed across diverse IoMT devices without compromising
performance or privacy.

Despite these promising results, our study has certain limitations. One significant
challenge is the variation in data quality across different sensors and devices, which can
affect model performance in heterogeneous IoMT networks. Additionally, the current
framework utilizes a static federated learning protocol that may not fully optimize data
exchange across devices with different computational capabilities. Future research should
explore adaptive federated learning protocols that adjust dynamically to device-specific
constraints, thereby enhancing the framework’s scalability and efficiency across various
IoMT environments.

Our work also paves the way for further research, particularly in enhancing privacy
and robustness in decentralized human activity recognition systems. Integrating additional
privacy-preserving techniques, such as differential privacy or homomorphic encryption,
could further secure data exchanges within federated learning frameworks. Investigating
advanced deep learning architectures and regularization techniques may also improve
model resilience to noisy data, making it more adaptable to real-world conditions. Ex-
panding this framework to include adaptive feedback for real-time activity guidance and
anomaly detection could broaden its practical applicability.

The practical implications of this study are significant for advancing IoMT-driven
human activity recognition systems. By leveraging federated learning, the proposed frame-
work ensures privacy-preserving data processing, which is essential for applications in
sensitive domains such as healthcare and smart homes. Its scalability and adaptability
to decentralized, resource-constrained environments make it suitable for real-world de-
ployments. Additionally, the integration of Weighted Federated Averaging effectively
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addresses class imbalance, enhancing the robustness and fairness of activity detection in
practical scenarios

Overall, our study offers a robust and scalable approach to human activity recogni-
tion in IoMT settings, merging the benefits of federated learning and hybrid LSTM-GRU
networks. The strong performance of our framework underscores its potential as a privacy-
preserving, flexible solution for decentralized human activity recognition applications.
Future research should focus on refining federated learning processes, incorporating en-
hanced privacy-preserving techniques, and validating the framework across a broader
range of IoMT devices and datasets. This work represents a significant step forward, con-
tributing toward more secure and intelligent human activity recognition systems tailored
for real-world, privacy-conscious environments.

7. Conclusions
This study presents a federated learning framework combined with a hybrid LSTM-

GRU model for human activity recognition within IoMT-enhanced environments. Our
approach addresses the growing demand for high-accuracy human activity recognition
systems that simultaneously ensure data privacy by decentralizing the training process.
By leveraging federated learning, the proposed framework enables local model updates
on individual devices, thereby minimizing the need for centralized data aggregation and
reducing privacy risks. The integration of convolutional layers with a hybrid LSTM-GRU
structure enhances feature extraction capabilities, allowing the model to capture both
local patterns and complex temporal dependencies in activity data. Experimental results
across multiple datasets, including HAR70+, UCI-HAR, and HARTH, demonstrate that our
model achieves superior performance compared to existing methods, both in classification
accuracy and privacy preservation. These results affirm the effectiveness of combining
federated learning with hybrid recurrent networks to create a scalable and reliable human
activity recognition solution for real-world IoMT applications.

While the proposed framework achieves promising results, there are areas for further
enhancement. Future work could explore adaptive federated learning protocols that dy-
namically adjust to device-specific constraints, thereby improving efficiency and scalability
across heterogeneous IoMT devices with varying computational resources. Additionally,
integrating advanced privacy-preserving techniques, such as differential privacy or homo-
morphic encryption, could further safeguard data during model updates and exchanges.
To enhance model robustness in diverse environments, future studies should consider
more sophisticated deep learning architectures or regularization techniques to increase
resilience to noise and variability in sensor data. Testing the framework on larger and more
varied datasets will also provide a stronger basis for evaluating its generalizability and
effectiveness in handling a wider range of human activities. Finally, I aim to incorporate
medical-grade datasets to further validate and enhance the applicability of our federated
learning framework within healthcare-oriented IoMT environments. Collaborating with
healthcare providers will be essential to access sensitive medical data under strict privacy
protocols, allowing us to develop more specialized HAR models tailored to clinical settings.
Additionally, the author plans to integrate a broader range of IoMT devices, including
advanced medical sensors, to capture a more comprehensive set of human activities rel-
evant to patient monitoring and health management. Exploring the impact of various
privacy-preserving techniques on model performance in medical contexts will also be a
key focus, ensuring compliance with healthcare data regulations while maintaining high
recognition accuracy. I intend to investigate the scalability of our framework in larger and
more diverse IoMT deployments, addressing real-world challenges such as heterogeneous
data sources and varying device capabilities. By addressing these areas, the author seeks to
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advance the robustness and practical applicability of the proposed HAR solutions in the
evolving landscape of the Internet of Medical Things.
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