
Academic Editor: Jiankun Hu

Received: 20 December 2024

Revised: 19 January 2025

Accepted: 30 January 2025

Published: 3 February 2025

Citation: Alboqmi, R.; Gamble, R.F.

Enhancing Microservice Security

Through Vulnerability-Driven Trust in

the Service Mesh Architecture. Sensors

2025, 25, 914. https://doi.org/

10.3390/s25030914

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Enhancing Microservice Security Through Vulnerability-Driven
Trust in the Service Mesh Architecture
Rami Alboqmi * and Rose F. Gamble

Department of Computer Science, Tandy School of Computer Science, University of Tulsa, Tulsa, OK 74104, USA;
gamble@utulsa.edu
* Correspondence: raa1896@utulsa.edu

Abstract: Cloud-native computing enhances the deployment of microservice architecture
(MSA) applications by improving scalability and resilience, particularly in Beyond 5G (B5G)
environments such as Sixth-Generation (6G) networks. This is achieved through the ability
to replace traditional hardware dependencies with software-defined solutions. While
service meshes enable secure communication for deployed MSAs, they struggle to identify
vulnerabilities inherent to microservices. The reliance on third-party libraries and modules,
essential for MSAs, introduces significant supply chain security risks. Implementing a
zero-trust approach for MSAs requires robust mechanisms to continuously verify and
monitor the software supply chain of deployed microservices. However, existing service
mesh solutions lack runtime trust evaluation capabilities for continuous vulnerability
assessment of third-party libraries and modules. This paper introduces a mechanism for
continuous runtime trust evaluation of microservices, integrating vulnerability assessments
within a service mesh to enhance the deployed MSA application. The proposed approach
dynamically assigns trust scores to deployed microservices, rewarding secure practices
such as timely vulnerability patching. It also enables the sharing of assessment results,
enhancing mitigation strategies across the deployed MSA application. The mechanism is
evaluated using the Train Ticket MSA, a complex open-source benchmark MSA application
deployed with Docker containers, orchestrated using Kubernetes, and integrated with the
Istio service mesh. Results demonstrate that the enhanced service mesh effectively supports
dynamic trust evaluation based on the vulnerability posture of deployed microservices,
significantly improving MSA security and paving the way for future self-adaptive solutions.

Keywords: telecommunication; B5G; 6G; zero trust; cloud-native; vulnerability scanning;
service mesh; trust management; container security; threat sharing; automation

1. Introduction
Cloud-native technologies revolutionize cloud computing, enabling scalable and

resilient microservice architecture (MSA) applications [1]. The rising adoption of MSAs [2]
is driven by sectors like telecommunications [3], finance [4], and healthcare [5], seeking
agile, robust architectures for evolving demands. Mordor Intelligence [6] forecasts the
MSA market to grow from USD 1.63 billion in 2024 to USD 4.57 billion by 2029. This
rapid growth highlights the pivotal role of MSAs in modern software development and
their increasing importance in driving digital transformation, especially in sectors such as
telecommunication. In the telecommunication industry, future networks, such as Fifth- and
Sixth-Generation (5G/6G) networks—collectively referred to as Beyond 5G (B5G)—rely
heavily on MSAs to create dynamic networks that adapt to evolving business needs. In these

Sensors 2025, 25, 914 https://doi.org/10.3390/s25030914

https://doi.org/10.3390/s25030914
https://doi.org/10.3390/s25030914
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s25030914
https://www.mdpi.com/article/10.3390/s25030914?type=check_update&version=1

Sensors 2025, 25, 914 2 of 23

networks, core hardware is built as software-defined, removing hardware dependencies
and enhancing flexibility.

The MSA’s transformative potential encounters significant challenges, notably the
necessity for ongoing monitoring of microservices [7]. MSA applications demand strong
mechanisms for securing sensitive data through identification, authentication, authoriza-
tion, and accounting security measures. A microservice breach can lead to widespread
compromise of the entire MSA application. Effective security measures, including access
control policies, are essential [8] given the synchronous and asynchronous communication
of microservices [9]. In cloud-native environments, within 6G networks, orchestration and
service mesh solutions are vital for addressing varied security needs, including findings
of microservice trustworthiness. Although Taleghani et al. [10] provide a comprehensive
survey of trust evaluation techniques in 6G networks, including four works focused on
cloud computing, these studies do not explicitly address evaluating the trustworthiness
of deployed microservices using service mesh-based approaches. According to [11], the
service mesh plays a crucial role in B5G networks, such as 6G by offering functionalities that
include microservice discovery, observability, load balancing, security, and management.

Introduced in 2017, the service mesh comprises a control plane for managing oper-
ations and a data plane for secure microservice communication via sidecar proxies [12].
While still in early adoption, it has gaps in dynamic microservice management, real-time
policy enforcement, and self-adaptive security solutions [13]. Current implementations
address basic needs but can evolve to include adaptive controls such as data labeling and
encryption based on a vulnerability assessment of each deployed microservice. Key advan-
tages of using a service mesh include intercepting all microservice communications [14]
and using sidecars as policy enforcement points [15]. The pivotal role of the service mesh
in post-B5G networks is highlighted as a critical solution for security and management
challenges [11,16].

Deploying MSA applications often relies on containerization, a lightweight virtual-
ization technique that packages a microservice and its dependencies in an isolated envi-
ronment. This approach enhances portability and scalability, allowing microservices to
replicate as needed to meet dynamic demands. However, increased scalability also expands
the attack surface as the number of deployed microservices grows. Orchestration solutions
like Kubernetes [17] efficiently manage large-scale container deployments but lack robust
mechanisms to detect malicious microservices during runtime. Integrating a service mesh
as an infrastructure layer within Kubernetes can improve security by enabling mutual
authentication and encrypted microservice-to-microservice communication. However, a
service mesh may fail to detect compromised microservices, especially those operating un-
der full implicit trust [18,19]. This implicit trust can allow attackers to exploit compromised
microservices to infiltrate and potentially breach the entire MSA application [20].

Compromised microservices can lead to significant threats, including the loss of
privileged access [21], address resolution protocol spoofing, distributed denial-of-service
attacks, sniffing, and tampering [22,23]. The Apache Log4j vulnerability in 2021, for
instance, enabled remote code execution [24], highlighting the potential consequences of
inadequate runtime protections for MSA applications. MSA applications are particularly
vulnerable, with an average of 180 vulnerabilities per MSA application compared to 39 in
a monolithic architecture application [25]. These vulnerabilities expose microservices to
various risks, including privilege escalation and unauthorized access [26]. High-profile
incidents, such as the exploitation of over 50,000 vulnerable containers for unauthorized
cryptocurrency mining, highlight the critical need for more robust security measures [24].

To address these vulnerabilities, advancements in runtime security mechanisms are
essential. Continuous trust evaluation and adaptive mitigation strategies can provide dy-

Sensors 2025, 25, 914 3 of 23

namic defenses, enhancing the protection of containerized microservices in ever-evolving
environments. However, the research on runtime security mechanisms for MSA applica-
tions remains limited. A study revealed that only around 12% of MSA research focuses on
security mechanisms, with most efforts concentrated on authentication, authorization, and
encryption [27]. Repetto et al. [28] emphasize that current service mesh implementations
often lack runtime trust evaluation capabilities, leaving vulnerabilities exploitable. For
instance, the reliance on static access control mechanisms fails to provide the runtime
adaptability needed to address emerging threats based on the changing trustworthiness of
microservices [29]. Addressing these research gaps is essential to fortify MSA applications,
emphasizing the need for dynamic runtime security mechanisms capable of proactively
mitigating vulnerabilities and adapting to evolving threats at runtime.

Current research highlights efforts to enhance the security of MSA applications
through automated vulnerability assessments, though many approaches still depend on
human involvement. For example, Singh et al. [30] propose a quantitative method for secu-
rity risk evaluation, while Bila et al. [31] suggest continuous vulnerability scanning with
limited mitigation options. Torkura et al. [32] devise an approach for security evaluations,
which requires human oversight, a critical factor in today’s cybersecurity practices [33].
Practitioners often overlook routine vulnerability checks [34] or lack the necessary exper-
tise [35]. Integrating vulnerability assessment tools into the development workflow can be
costly, as it requires skilled personnel and additional resources [35]. Tools, like Trivy [36],
can scan containers for vulnerabilities but primarily operate manually and are mainly used
in pre-deployment phases rather continuously during runtime [37]. This gap highlights
the need for continuous scanning and monitoring of running containers in microservices
at runtime. A runtime-focused approach could enable proactive vulnerability detection
and mitigation, reducing reliance on manual processes and addressing vulnerabilities as
they emerge.

To address these challenges in securing MSA applications, we extend our prior work,
called the Service Mesh Risk-Adaptive Access Control (SMAAC) model [19] in this work.
SMAAC enhances MSA security by dynamically adjusting access control policies of de-
ployed microservices through a runtime trust evaluator (RTE) [38]. The early RTE imple-
mentation had limitations, such as a statically assigned trust metric (TM) with a default
value of 100% for all microservices, which would only be decreased after unauthorized
access is detected. Additionally, the initial RTE lacked automated mechanisms for dynam-
ically updating TM values based on runtime vulnerability assessments, which identify
risks posed by third-party modules and libraries. Trust management principles emphasize
the need for dynamic adjustments based on behaviors and interactions [39], but current
industry practices for continuous vulnerability assessments remain largely manual [40,41],
reducing efficiency and leaving gaps in security. There is a need for enhancements to the
SMAAC model to integrate automated, continuous trust evaluation mechanisms based on
the vulnerability of deployed microservices, enabling more adaptive and resilient microser-
vice security.

The three key contributions of SMAAC as enhanced in this work are: (1) calculating
the initial TM for microservices based on vulnerability assessments to establish a baseline
for managing trust, (2) dynamically adjusting the trustworthiness of microservices by
increasing or decreasing their TM based on their vulnerability posture to enable holistic
trust management, and (3) sharing vulnerability assessment results across the service mesh
to support future self-adaptive mechanisms, such as adaptive encryption and dynamic
data labeling. To evaluate these contributions, we conducted experiments using the Train
Ticket MSA benchmark application [42], known for its complexity and suitability for assess-
ing diverse research approaches. Two rounds of Train Ticket deployments—representing

Sensors 2025, 25, 914 4 of 23

older and newer versions—were evaluated, with each microservice hosted as a Docker
container, reflecting its widespread use in both industry and academia [43]. The contain-
ers were orchestrated using Kubernetes [17], a leading platform for scalable container
management, while Istio, a widely used service mesh, securely managed microservice-to-
microservice communications.

2. Background
Cloud-native computing, a recent advancement in cloud computing, facilitates the

creation, deployment, and management of microservice architecture applications (MSAs) to
meet business requirements, such as high scalability and resiliency [1]. However, handling
microservice-to-microservice communications independently within each microservice can
be both inefficient and complex, particularly as the adoption of MSAs continues to grow [2].
It is essential to establish controls for identification, authentication, authorization, and
accounting in communications involving MSA applications, which operate in two main
forms of interactions: synchronous (request-response), offering immediate replies, and
asynchronous (event-driven), where responses are event-triggered [9]. It is essential to
consistently apply and enforce access control policies across all interactions, including
those involving services, users, and external systems [8]. To address these challenges, the
cloud-native community introduced the concept of a service mesh in 2017. A service mesh
consists of two primary components: the control plane and the data plane [12]. The control
plane manages microservices via attached sidecars located in the data plane [12].

The current service mesh access control implementations offer a mutual authentica-
tion control to enhance the security of microservices-to-microservices communications
to get encrypted and that all microservices are authenticated [44]. However, mutual au-
thentication alone cannot identify or detect compromised microservices [19]. Attackers
may exploit vulnerabilities in an authenticated microservice to launch attacks on other
microservices, potentially leading to severe consequences and unauthorized activities,
such as cryptocurrency mining [24], leaking sensitive encrypted data [45], and executing
denial-of-service attacks against targeted organizations. Furthermore, once an attacker
gains access through compromised microservices, this entry point can facilitate further
escalation, allowing lateral movement across other microservices. This risk is particularly
possible in environments where deployed microservices implicitly trust each other [32,46].

In the telecommunications industry, future networks, such as B5G, rely heavily on
MSA and cloud-native infrastructure and technologies, such as the service mesh to create
dynamic networks capable of meeting expanding business demands. In these advanced
networks, core network hardware is increasingly deployed as software-defined components,
eliminating traditional hardware dependencies. This shift allows for greater flexibility in
the telecommunication industry to address the evolving needs of businesses and customers.
Such software-defined components necessitate an infrastructure environment like cloud-
native computing, which provides high scalability, resilience, fault tolerance, and robust
security. The service mesh in B5G networks plays a critical role, offering essential features
such as microservices discovery, observability, load balancing, security, and enhanced
management capabilities [11].

However, challenges persist in these evolving B5G environments, particularly regard-
ing the continuous monitoring of deployed microservices, which remains a significant
concern [7]. Addressing such challenges is crucial to maintaining a secure B5G network
posture. Researchers have highlighted the transformative potential of the service mesh for
post-B5G networks, emphasizing its ability to address complex security and management
needs. As Lee et al. [11] point out, the service mesh is a promising technology and will play
a pivotal role in overcoming critical challenges in these next-generation networks, making

Sensors 2025, 25, 914 5 of 23

it an indispensable component of future telecommunications infrastructure. However,
the current implementation of the service mesh is relatively new and still maturing [47],
necessitating further enhancements. One area requiring improvement is the access control
capability in the service mesh. Current service mesh implementations rely heavily on role-
based access control (RBAC) [29], which is often deemed inadequate for risk management
because it uses static policies and does not consider the continuous finding of trustworthi-
ness of deployed microservices. This absence of dynamic security mechanisms prevents
a service mesh from adapting to evolving conditions, such as identifying and mitigating
compromised microservices. Consequently, static or predefined security configurations
leave deployed MSA applications vulnerable to threats, especially in advanced networks
like 6G.

The zero-trust principle—“always verify, never trust”—emphasizes the need for con-
tinual evaluation of the trustworthiness of subjects, such as microservices. This approach
mandates continuous validation of every access request, emphasizing strict identity ver-
ification, least privilege access, and consistent monitoring to mitigate risks from both
external and internal threats. The assessment of microservice trustworthiness is critical
for the effective adjustment of access control policies [48–50]. To mitigate these risks and
potential threats effectively, a more robust mechanism for microservice-to-microservice
communication is needed. One promising approach, as proposed by Sethuraman et al. [51],
is the continuous monitoring of deployed microservices at runtime. By gathering insights
from the application’s running environment, trust values can be dynamically adjusted [52],
enabling a more adaptive and resilient access control framework.

The concept of trust evaluation was initially introduced by the U.S. Department of
Defense under the term “Black Core” [53], which uses algorithms to evaluate trust by
considering various factors, including access type, usage history, resource consumption,
and existing policies. Currently, there is a significant research gap in runtime mechanisms
for MSA applications [54], with only around 12% of existing studies addressing MSA
security [27]. Most research has focused primarily on authentication, authorization, and
encryption [32], leaving the area of trust management for MSAs at runtime relatively
underexplored and at an early stage [48]. A recent survey by [55] found that there are
few contributions related to assessing the trustworthiness of services in both service-
oriented architecture (SOA) and MSA but none of these contributions were designed
through leveraging the service mesh. The current service mesh architecture cannot evaluate
service trustworthiness at runtime [28], indicating a pressing need for the development of
trust evaluation mechanisms. As highlighted by the national institute of standards and
technology (NIST), the trustworthiness of deployed microservices must be continuously
assessed [56], particularly for victim microservices that have blindly granted implicit trust
to compromised microservices [22,57].

To address research gaps in service mesh trustworthiness monitoring of microservices
at runtime, we proposed an initial approach called Service Mesh Risk-Adaptive Access
Control (SMAAC) [19] as shown in Figure 1. SMAAC presents a dynamic access control
policy model that adjusts microservice interaction policies based on deployed microservices’
trustworthiness at runtime. These policies are dynamically changed in response to detected
malicious behavior, especially when access attempts to unrelated microservices occur. This
strategy aims to reduce attack surfaces and limit harmful interactions, thereby allowing
only necessary and trusted communications. SMAAC includes a policy decision point
(PDP) with a runtime trust evaluator (RTE) [38], assigning an initial trust metric (TM) of
100% to microservices, which decreases upon identification of malicious behavior coming
from a microservice through a pricing mechanism. Moreover, SMAAC features an initial
threat intelligence sharing (TIS) [58] capability for threat data exchange within the service

Sensors 2025, 25, 914 6 of 23

mesh, existing as an additional component. SMAAC provides an access policy generation
(APG) [19] capability to dynamically formulate access control policies based on each
microservice’s TM, promoting both least privilege and adaptive policies. APG has been
further refined to automate compliance validation via a compliance-as-code language [59],
ensuring adherence to requirements defined by the owners of microservices.

Sensors 2025, 25, x 6 of 24

malicious behavior coming from a microservice through a pricing mechanism. Moreover,

SMAAC features an initial threat intelligence sharing (TIS) [58] capability for threat data

exchange within the service mesh, existing as an additional component. SMAAC provides

an access policy generation (APG) [19] capability to dynamically formulate access control

policies based on each microservice’s TM, promoting both least privilege and adaptive

policies. APG has been further refined to automate compliance validation via a compli-

ance-as-code language [59], ensuring adherence to requirements defined by the owners of

microservices.

SMAAC possesses inherent advantages, yet its early consideration faced constraints

in delivering holistic trust management. To enhance efficacy, it is imperative to establish

an initial TM based on a vulnerability assessment instead of assigning a default TM value

of 100%. Furthermore, trust should be dynamically modified—both increased and de-

creased—based on insights from the operational context of the MSA application [39]. Ad-

ditionally, SMAAC must improve TM values for microservices demonstrating positive

actions, such as addressing vulnerabilities in modules and libraries within the deployed

MSA application. The trustworthiness evaluation of microservices must encompass crite-

ria like the scanning of each container image used by each microservice [60], which can be

assimilated into vulnerability assessment processes to facilitate a more precise and adap-

tive trust management framework within the service mesh.

Figure 1. The service mesh risk-adaptive access control (SMAAC) model within a demo MSA appli-

cation, which consists of six microservices [19].

Figure 1. The service mesh risk-adaptive access control (SMAAC) model within a demo MSA
application, which consists of six microservices [19].

SMAAC possesses inherent advantages, yet its early consideration faced constraints
in delivering holistic trust management. To enhance efficacy, it is imperative to establish
an initial TM based on a vulnerability assessment instead of assigning a default TM
value of 100%. Furthermore, trust should be dynamically modified—both increased and
decreased—based on insights from the operational context of the MSA application [39].
Additionally, SMAAC must improve TM values for microservices demonstrating positive
actions, such as addressing vulnerabilities in modules and libraries within the deployed
MSA application. The trustworthiness evaluation of microservices must encompass criteria
like the scanning of each container image used by each microservice [60], which can be
assimilated into vulnerability assessment processes to facilitate a more precise and adaptive
trust management framework within the service mesh.

Overall, conducting a vulnerability security assessment is essential for deployed MSA
applications, particularly given that research indicates an average of 180 vulnerabilities
in MSA applications compared to just 39 in monolithic applications [25]. This increase in
vulnerabilities is primarily attributed to the potential use of unsecured container images for
microservices [61]. Deployed MSA applications, and containers are considered the default

Sensors 2025, 25, 914 7 of 23

method [35,62]. Compromised containers can be targeted through supply chain attacks,
which represent a significant threat, as noted in a recent publication by the National Institute
of Standards and Technology (NIST) [63]. Homogeneous MSA applications, characterized
by a high degree of code reuse, may exacerbate security risks [64]. Therefore, conducting
vulnerability assessments is crucial not only for securing the containers of microservices
but also for ensuring compliance with standard security guidelines [65]. However, one
significant issue is that current industry practices for vulnerability assessment, particularly
performed manually are often ineffective, especially for large numbers of containers [40,41].
Vulnerability assessment processes include searching for security issues in the deployed
environment and determining the severity of the issues, which then help to build controls
to safeguard the deployed application environment [66].

As demonstrated by Javed et al. [67], a manual container vulnerability assessment
consists of three main steps, as shown in Figure 2. The first step involves the scanning
tool examining the packages within a container image by analyzing their version numbers
and names. In the next step, the information collected from the previous process is cross-
referenced with a vulnerability database. Once a match is found, a vulnerability assessment
report is generated, which requires human interpretation. Human oversight presents a
significant challenge [33], as personnel often overlook regular vulnerability checks or may
lack the expertise needed for continuous assessments [34].

Sensors 2025, 25, x 7 of 24

Overall, conducting a vulnerability security assessment is essential for deployed

MSA applications, particularly given that research indicates an average of 180 vulnerabil-

ities in MSA applications compared to just 39 in monolithic applications [25]. This increase

in vulnerabilities is primarily attributed to the potential use of unsecured container images

for microservices [61]. Deployed MSA applications, and containers are considered the de-

fault method [35,62]. Compromised containers can be targeted through supply chain at-

tacks, which represent a significant threat, as noted in a recent publication by the National

Institute of Standards and Technology (NIST) [63]. Homogeneous MSA applications,

characterized by a high degree of code reuse, may exacerbate security risks [64]. There-

fore, conducting vulnerability assessments is crucial not only for securing the containers

of microservices but also for ensuring compliance with standard security guidelines [65].

However, one significant issue is that current industry practices for vulnerability assess-

ment, particularly performed manually are often ineffective, especially for large numbers

of containers [40,41]. Vulnerability assessment processes include searching for security

issues in the deployed environment and determining the severity of the issues, which then

help to build controls to safeguard the deployed application environment [66].

As demonstrated by Javed et al. [67], a manual container vulnerability assessment

consists of three main steps, as shown in Figure 2. The first step involves the scanning tool

examining the packages within a container image by analyzing their version numbers and

names. In the next step, the information collected from the previous process is cross-ref-

erenced with a vulnerability database. Once a match is found, a vulnerability assessment

report is generated, which requires human interpretation. Human oversight presents a

significant challenge [33], as personnel often overlook regular vulnerability checks or may

lack the expertise needed for continuous assessments [34].

Figure 2. The container vulnerability scanning tasks followed as current practices [67].

Integrating effective vulnerability assessment processes into an organization’s envi-

ronment can be costly, primarily due to the expenses involved in hiring skilled personnel

to operate and interpret the vulnerability assessment tools’ results [35]. These factors can

hinder the effectiveness of vulnerability management efforts, leaving organizations ex-

posed to security threats. Attackers can exploit well-known vulnerabilities, such as those

documented in the common vulnerabilities and exposures (CVE) database, in deployed

systems like containers [68] where attackers have identified vulnerabilities in over 50,000

containers, which they have subsequently exploited for cryptocurrency mining [24]. De-

layed vulnerability checks and patching could lead to the use of insecure containers,

Figure 2. The container vulnerability scanning tasks followed as current practices [67].

Integrating effective vulnerability assessment processes into an organization’s envi-
ronment can be costly, primarily due to the expenses involved in hiring skilled personnel
to operate and interpret the vulnerability assessment tools’ results [35]. These factors
can hinder the effectiveness of vulnerability management efforts, leaving organizations
exposed to security threats. Attackers can exploit well-known vulnerabilities, such as
those documented in the common vulnerabilities and exposures (CVE) database, in de-
ployed systems like containers [68] where attackers have identified vulnerabilities in over
50,000 containers, which they have subsequently exploited for cryptocurrency mining [24].
Delayed vulnerability checks and patching could lead to the use of insecure containers,
which can expose hosted services to unauthorized access and increase the risk of privilege
escalation attacks.

As MSA applications increasingly rely on containers, the risk of compromised con-
tainers is likely to increase with their growing adoption. Typically, MSA applications
are deployed in orchestrated environments that utilize solutions such as Kubernetes [17].

Sensors 2025, 25, 914 8 of 23

Kubernetes operators can leverage vulnerability scanning to inspect deployment con-
tainers before they are incorporated into a cluster. However, this process often occurs
manually [37]. Kaiser et al. [69] highlight several container vulnerability scanning tools,
including Snyk [70], Trivy [36], Clair [71], and Anchore [72]. Among these, Trivy is particu-
larly recognized for its effectiveness [37], demonstrating high coverage for image issues [73]
and consistently detecting vulnerabilities [74]. However, the manual execution of these
tools during runtime remains relatively immature, facing challenges in timely detection
and vulnerability patching.

Ongoing scanning is essential for maintaining security, rather than relying solely on a
one-time assessment before deployment. Automated solutions can address critical gaps in
vulnerability management, reducing risks associated with compromised containers. Contin-
uous and automated vulnerability scanning of running containers is urgently needed [75]
to enhance visibility and management [76] for deployed MSA applications, especially
for 6G networks. Automated vulnerability assessment and remediation can help detect
vulnerabilities early in microservices at runtime and determine appropriate mitigation
strategies, particularly in production environments, to prevent potential attacks [31].

Docker, introduced in 2013, simplifies the conceptualization, execution, and manage-
ment of applications [77]. While Docker simplifies environment sharing, it lacks sufficient
protection against known vulnerabilities in images, potentially compromising MSA ap-
plication environments. Compared to virtual machines (VMs), containers share a single
operating system, improving performance over VMs but introducing unique security chal-
lenges [77]. According to Open Worldwide Application Security Project (OWASP) [78],
a primary threat to MSA applications is the potential for attackers to exploit container
privileges to target other microservices. Studies indicate that 92% of container images
contain unpatched vulnerabilities [12], making them attractive targets for exploits like
cryptocurrency mining [24]. In a study conducted by Winkel et al. [79], a security architect
who works at Docker highlights the importance of conducting a risk analysis of contain-
ers, noting that they are vulnerable to malicious activities and cannot always be trusted.
Containers continue to pose security issues, with a significant proportion (one-fifth) of
container images containing vulnerabilities due to neglect in performing updates and
available patching [80].

To improve vulnerability assessment methods for deployed containers, existing re-
search highlights various approaches. Joshi et al. [30] suggest using Common Vulnerability
Scoring System (CVSS) metrics for quantitative risk evaluation [81]. CVSS allows orga-
nizations to prioritize their vulnerability management efforts based on risk. The CVSS
scoring system includes several metrics, each assigned a specific value. For example, the
attack vector metric within the CVSS scoring system, which measures the ease of remote
exploitation of a vulnerability, is assigned a score of 0.85. These individual metrics scores
are aggregated to produce a cumulative value representing the overall CVSS score for
each vulnerability found. While CVSS provides a standardized framework for assessing
vulnerabilities, its approach focuses on individual vulnerabilities rather than aggregating
risk scores across all vulnerabilities that could exist in each deployed microservice.

Another study by Bila et al. [31] proposes continuous scanning and mitigation strate-
gies, such as deleting or quarantining vulnerable pods by checking if a deployed container
continues a vulnerable package. The limitation of their work could lead to the loss of
valuable data or result in complete access denial, even in cases where the vulnerabilities
are not considered high risk. Also, it is not based on the service mesh architecture. In
2017, ref. [32] introduced a methodology for ongoing security evaluation in MSA applica-
tions, utilizing dynamic document stores for vulnerability identification. Their expanded
work in [82] proposed the Cloud Aware Vulnerability Assessment System (CAVAS) to

Sensors 2025, 25, 914 9 of 23

dynamically execute vulnerability assessments but did not leverage the service mesh for
efficiency. Further advancements [64] proposed a solution using the Anchore [72] as a
vulnerability scanning tool and introduced a security risk (SR) metric based on CVSS scores,
which sums vulnerability scores divided by the total number of vulnerabilities. They also
applied a shrinkage estimator for microservice dependencies. However, the study lacks a
comprehensive evaluation of the SR and does not assign severity weights to CVSS scores
or categorize severity effectively. Another study presented by [25] relies on Clair [71] to
propose a framework that aids in discovering and analyzing security flaws in container
images. However, the results of the analysis require human intervention for interpretation.
Similarly, Ibrahim et al. [68] introduced automated attack graph mechanisms, but these
also require human intervention for data interpretation.

The study in [45] addresses a notable gap in automated security detection mecha-
nisms within cloud-native environments. This gap prompted the development of KUBE-
HOUND [45], a tool designed to identify potential security issues in cloud-native services.
While KUBEHOUND contributes to security by analyzing deployed services, it has some
limitations. It requires access to the source code of each microservice, which may not always
be feasible or practical in production environments. Additionally, KUBEHOUND cannot
scan for known vulnerabilities, leaving a gap in comprehensive vulnerability management.
Majumder et al. [83] proposed a methodology to improve container security by performing
vulnerability scans on container images. Their approach leverages vulnerability scanning
tools such, as Clair [71] and Trivy [36], to generate a vulnerability score, called v-score,
that reflects the security risk associated with a given container image. The v-score is then
compared to a defined threshold risk score or t-score to determine if the container image
should be allowed or blocked from deployment. If the v-score is lower than the t-score, the
image upload is blocked, ensuring only those that meet a specific security standard proceed.
However, there are notable limitations in the methodology. The study lacks transparency
in how the proposed scores are calculated, raising questions about the scoring criteria
and their reliability. The approach is limited to pre-deployment stages, meaning it does
not account for vulnerabilities that might emerge at runtime, a critical gap in continuous
security monitoring.

The studies in [84,85] provide important advancements in container and microservices
security, revealing certain gaps regarding the integration of service mesh technology. Ab-
dulsatar et al. [84] introduced the CyberWise Predictor, a framework designed to detect
and assess vulnerabilities in deployed containers for MSA applications. This framework
follows a four-phase process that includes scanning applications with Trivy [36] to identify
vulnerabilities, matching those vulnerabilities with the national vulnerability database
(NVD) [86] to gather relevant metrics, perform data cleaning using deep learning to address
any missing information, and conduct a risk assessment to evaluate the overall security
risk. Kermabon et al. [85] proposed Phoenix to protect containers from zero-day vulner-
abilities by analyzing system calls. Despite its focus on zero-day threats, Phoenix does
not incorporate service mesh technology into its security framework. Both approaches
miss the opportunity to leverage a service mesh layer, which holds significant potential for
enhancing security especially as MSA gains traction. As noted by Berardi et al. [87], while
there are numerous studies focused on securing microservices and references to blockchain
technologies, there remains a notable lack of attention given to the service mesh. This
oversight is particularly concerning given the anticipated rise in service mesh adoption
alongside the growth of MSA.

Although service mesh technology is still evolving [88], it holds significant potential
for security advancements, particularly when enhanced with automated vulnerability
assessments. Automating vulnerability assessments within the service mesh substantially

Sensors 2025, 25, 914 10 of 23

reduce the risk of compromised microservices, as continuous monitoring helps detect
vulnerabilities as they arise, minimizing exposure time. Recent research underscores that
deploying a service mesh not only secures microservice-to-microservice communications
but also strengthens authentication and authorization measures for each interaction [89].
This enhanced security is essential in distributed applications, where every microservice
interaction could represent a potential entry point for attackers. Moreover, the service
mesh can play a crucial role in trust evaluation and dynamic access control, allowing for
adaptive security policies that respond to changing conditions due to many operational
reasons. One reason is the service mesh’s uniquely capability to intercept all microservice-
to-microservice traffic [14] provides deep visibility into communication patterns and data
flows within deployed MSA applications, forming a solid foundation for detecting unusual
behaviors or suspicious activities.

Furthermore, by leveraging sidecars in a deployed service mesh that functions as
policy enforcement point (PEP), a service mesh provides granular control over the policies
governing each microservice interaction [15]. Thus, policies can be enforced at every
endpoint, dynamic encryption methods can be applied and so on to ensure strict compliance
with security standards and reduce the risk of unauthorized access or data leaks. Also,
the service mesh enables observability through metrics, logs, and traces to show insights
needed to identify trends and detect threats early. Together, these features make a service
mesh a powerful addition to microservice security frameworks, effectively addressing the
inherent complexity and security challenges of deployed MSA applications.

In the current industry practice, automated continuous vulnerability scanning is
typically enforced through an admission controller within the deployed orchestration
solutions [17] that can be configured to scan new deployments before they go live in
production. While this approach is effective for pre-deployment security, such as when a
new application deployment is added, it does not address runtime operations of deployed
application and requires pre-built controllers. Additional best practices include container
image integrity checks to ensure that only trusted images are deployed, software bill of
materials (SBOM) analysis for documenting all components in a software product to assess
vulnerabilities, and continuous monitoring of CVEs along with vulnerability scanning
to regularly check for known vulnerabilities in active systems [78]. An SBOM assists in
identifying vulnerabilities during incident response, ensuring compliance and licensing
checks, and tracking dependencies effectively. Software composition analysis (SCA) tools
are used to evaluate third-party dependencies and are integrated into development and
deployment pipelines for vulnerability detection [73]. However, these tools often lack
comprehensive risk assessment capabilities and do not operate in real-time during runtime.

The absence of vulnerability detection and patching of microservices during runtime
can expand attack surfaces, making systems more vulnerable to exploits that target either
the container kernel or its internal modules. Research indicates there is a significant delay
in identifying and addressing vulnerabilities, with a mean time to identify (MTTI) of
seven days and a mean time to remediate (MTTR) of up to 26 days in some cases [68]. This
delay allows attackers to exploit known vulnerabilities—typically those listed in the CVE
database—within deployed microservices before patches are applied. It is clearly stated that
the current security tools often fail to fully identify asset-related security issues, as noted
by [35]. Therefore, effective security management and the prioritization of vulnerabilities
are crucial [73]. The Center for Internet Security (CIS) advocates for automated assessments
to detect and address vulnerabilities, particularly for deployed microservice containers [90].
The goal of implementing automated vulnerability assessments is to detect issues and
initiate self-protection measures to reduce the attack surface exposed by malicious services.

Sensors 2025, 25, 914 11 of 23

3. Approach
This study presents a trust evaluation mechanism for deployed MSA applications,

leveraging automated vulnerability risk assessments. It assigns an initial and continuous
trust metric (TM) to each microservice based on the vulnerability levels of its third-party
modules and libraries. Our approach operates within MSA applications without human
intervention, addressing limitations in related work. It automates vulnerability scans
of microservice images and dynamically adjusts a TM based on their security posture,
enabling real-time trust evaluation with minimal input. Security analysts must define
the risk tolerance of the MSA application’s owning organization and severity weights for
vulnerability categories. Once deployed with the service mesh, it requires no additional
configuration beyond the standard management of cloud-native technologies, such as the
service mesh and orchestration solutions.

In this work, the TM for each microservice is derived from vulnerabilities identified in
the microservice’s third-party modules and libraries, utilizing Trivy (version 0.57.0) [36]—a
widely used open-source vulnerability scanning tool recognized for its extensive CVE
database and accessibility [91]. Trivy enables the identification and classification of vulner-
abilities based on severity levels and provides vulnerability metrics using the Common
Vulnerability Scoring System (CVSS), a standard widely adopted by the security community
for assessing software vulnerability posture. However, Trivy, like other similar vulnerability
scanning tools, lacks automation capabilities for runtime vulnerability assessment of MSA
applications within a service mesh environment.

Unlike prior works, such as [84,85], which do not fully address emerging technologies
like the service mesh, our proposed mechanism integrates directly with the service mesh
to calculate the TM for each microservice based on varying CVSS scores and their impact
levels. Our mechanism also bridges a gap in existing research by performing runtime
vulnerability scanning, addressing limitations where vulnerability assessments are lim-
ited to the development and deployment phases [37,68]. Moreover, this study provides a
detailed methodology for calculating the TM from identified vulnerabilities, addressing
gaps noted in [83], where the scoring process and calculations were insufficiently explained.
Our approach tackles automation challenges prevalent in existing works, such as man-
ual image uploads for scanning [77] and manual review of vulnerability results [92]. By
automating the retrieval of deployed microservice images and the processing of vulnera-
bility reports, our approach streamlines the calculation of the TM for each microservice,
enhancing scalability and efficiency in MSA security management.

Our approach integrates enhances the SMAAC model (see Section 2) to address its
limitations through five key processes: (1) discovering microservices and their container
images at runtime, (2) scanning container images for vulnerabilities, (3) assessing vulnera-
bilities for each microservice, (4) evaluating microservice trustworthiness, and (5) sharing
vulnerability assessments to enable future dynamic mitigation strategies, such as adap-
tive encryption. The approach operates continuously, adhering to the zero-trust principle
“always verify, never trust”, which is critical for dynamic cloud-native environments, es-
pecially in 6G networks [93]. The first two processes form the foundation for automated
security assessments, ensuring precise identification of all active microservices within the
TIS of SMAAC (see Section 2). The third and fourth processes, within the RTE of SMAAC
(see Section 2), establish and maintain the TM based on vulnerability assessments. Process
five enhances collaborative security by enabling threat and vulnerability data sharing,
which is integrated into the TIS of SMAAC.

As illustrated in Figure 3, the first process, titled “Discover running MSA environ-
ment”, is initiated by the TIS in the start icon in orange. The first process focuses on
identifying active microservices using an orchestration solution, such as Kubernetes [17],

Sensors 2025, 25, 914 12 of 23

which provides built-in microservice discovery capabilities. This process is initiated by
the TIS using Kubernetes’ Python software development kit (version 31.0.0) [17], enabling
the detection of deployed and running microservices. In addition to identifying all de-
ployed microservices, this process generates a comprehensive list of each microservice’s
containers, including their image names and repository URLs. The result is a complete,
machine-readable record, referred to as the “Microservices & Image List”, which details all
microservices along with their associated image names and URLs.

Sensors 2025, 25, x 13 of 24

Figure 3. The proposed approach has five processes colored in two colors: orange and blue. The

orange color is for the TIS [58], including the start and end, three processes, and condition. The two

blue processes belong to the RTE [38].

 𝑉𝑢𝑙𝑠 = [∑ (𝐶𝑉𝑆𝑆𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 × 𝑊𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦)𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦](𝑠) (1)

Here CVSScategory represents the sum of CVSS scores within each severity category:

low, medium, high, and critical. Each total is then multiplied by the corresponding weight,

(Wcategory), for the same category. In this work, the weights are defined as follows: the

weight for low CVVS (Wlow) is set at 0.10, the weight for medium CVVS (Wmedium) is set at

0.20, the weight for high CVVS (Whigh) is set at 0.30, and the weight for critical CVSS (Wcritical)

is set at 0.40. The weights can be determined by the security analysts or obtained from an

open dataset, if available. However, this could increase performance overhead due to the

varying processing requirements of the dataset. Therefore, it is advisable to manage such

configurations independently or accept the potential performance impact if the business

requires dataset integration. This research relies on the use of a configuration file with

initial default settings that reflects the risk tolerance of the owner of the deployed MSA

application.

The next process, titled “Determine trustworthiness”, calculates the TM for each mi-

croservice using the scaled equation proposed in Equation (2), which incorporates the

computed Vul for all microservices. This process operates in a continuous loop to ensure

that the TM is dynamically recalculated at runtime. To normalize the TM across micro-

services, the calculated values are scaled to fall within a range of 0 to 100, providing a

clear and consistent measure of each microservice’s trustworthiness.

𝑇𝑀𝑠
= 100 −

(𝑉𝑢𝑙𝑠 − 𝑀𝑖𝑛𝑉𝑢𝑙)

(𝑀𝑎𝑥𝑉𝑢𝑙 −𝑀𝑖𝑛𝑉𝑢𝑙)
× 100 (2)

For each microservice s, MinVul represents the minimum Vuls identified by our pro-

posed mechanism at runtime among all deployed microservices, while MaxVul represents

the maximum Vuls identified among the same set of microservices. These values are used

to scale the calculated TM for each microservice within the range of 0 to 100, ensuring

consistency and comparability across different microservices. To demonstrate Equations

1 and 2, an example is provided in Table 1 using a DEMO MSA application consisting of

Figure 3. The proposed approach has five processes colored in two colors: orange and blue. The
orange color is for the TIS [58], including the start and end, three processes, and condition. The two
blue processes belong to the RTE [38].

The second process, titled “Scan images”, involves scanning the list of images and
packages identified in the previous step. During this process, each microservice’s modules
and libraries are scanned for vulnerabilities using the Trivy vulnerability scanning tool [36].
Trivy categorizes vulnerabilities into critical, high, medium, low, and unknown levels. For
this work, we focus on vulnerabilities classified as critical, high, medium, and low severity,
as unknown vulnerabilities cannot be evaluated. The outcome of this process is a machine-
readable vulnerability assessment report, detailing each microservice’s vulnerable modules
and libraries, along with their associated severity levels, represented by CVSS scores.

The third process, titled “Assess identified vulnerabilities”, involves a detailed analy-
sis of each microservice’s vulnerability assessment report to derive an accurate TM based
on runtime vulnerability risk. This derivation is achieved by leveraging the list of vul-
nerabilities identified in the previous process. This step is integrated into the RTE, which
we extended in this work to continuously calculate the vulnerability value (Vuls) for each
deployed microservice, s, based on the collected vulnerability assessment reports. As
shown in Equation (1), the Vuls is calculated by summing the CVSS scores of the vulnera-
bilities found in each microservice’s libraries and modules given severity categories. Each
CVSS score is then multiplied by a weight (W) assigned to the respective CVSS severity
category—low, medium, high, or critical. The W for each severity category is predeter-
mined by the risk team of the MSA application’s owning organization to align with the

Sensors 2025, 25, 914 13 of 23

organization’s risk tolerance, ensuring the weights accurately reflect the organization’s risk
management priorities.

Vuls =
[
∑category (CVSS category × Wcategory

)]
(s) (1)

Here CVSScategory represents the sum of CVSS scores within each severity category:
low, medium, high, and critical. Each total is then multiplied by the corresponding weight,
(Wcategory), for the same category. In this work, the weights are defined as follows: the
weight for low CVVS (Wlow) is set at 0.10, the weight for medium CVVS (Wmedium) is set
at 0.20, the weight for high CVVS (Whigh) is set at 0.30, and the weight for critical CVSS
(Wcritical) is set at 0.40. The weights can be determined by the security analysts or obtained
from an open dataset, if available. However, this could increase performance overhead
due to the varying processing requirements of the dataset. Therefore, it is advisable to
manage such configurations independently or accept the potential performance impact if
the business requires dataset integration. This research relies on the use of a configuration
file with initial default settings that reflects the risk tolerance of the owner of the deployed
MSA application.

The next process, titled “Determine trustworthiness”, calculates the TM for each
microservice using the scaled equation proposed in Equation (2), which incorporates
the computed Vul for all microservices. This process operates in a continuous loop to
ensure that the TM is dynamically recalculated at runtime. To normalize the TM across
microservices, the calculated values are scaled to fall within a range of 0 to 100, providing a
clear and consistent measure of each microservice’s trustworthiness.

TMs = 100 − (Vuls − MinVul)
(MaxVul − MinVul)

× 100 (2)

For each microservice s, MinVul represents the minimum Vuls identified by our pro-
posed mechanism at runtime among all deployed microservices, while MaxVul represents
the maximum Vuls identified among the same set of microservices. These values are
used to scale the calculated TM for each microservice within the range of 0 to 100, en-
suring consistency and comparability across different microservices. To demonstrate
Equations (1) and (2), an example is provided in Table 1 using a DEMO MSA application
consisting of four microservices. This illustration showcases the calculation and scaling
process of TM in a practical context.

Table 1. An Illustration of applying Vuls and TMs equations for a DEMO MSA application consists of
four microservices named as A, B, C and D.

Microservice
Total CVSS Scores Based on Their Categories

Vuls
The Initial

Value of TMsLow Medium High Critical

A 220 50 100 30 74 (MinVul) 100.00

B 1300 600 100 50 300 61.21

C 900 1500 222 500 656.6 (MaxVul) 0.0

D 109 99 15 400 195.2 79.20

The next process, titled “Share normalized TM values”, facilitates the distribution of
the TM values across all microservices within the service mesh components. This sharing
enables the implementation of future self-adaptive remediation strategies, such as adaptive
encryption, dynamic service and data labeling, traffic routing, and other potential solutions.
The process is executed through by enhancing TIS within the SMAAC model to share both

Sensors 2025, 25, 914 14 of 23

initial and continuously updated TM values along with vulnerability assessment reports
in a machine-readable format. The result of this process is to update the TIS repository,
which already has the capability to leverage two well-known frameworks for threat sharing:
structured threat information expression (STIX) [94] and trusted automated exchange of
intelligence information (TAXII) [95]. However, in this work, we focused on regularly
updating the TMs and Vuls for each microservice s.

The next condition of the proposed approach, titled “Are the Images Still in Use?”,
operates within the TIS in a continuous loop to ensure that each active microservice
container image is regularly scanned for vulnerabilities. This ongoing process is essential
for maintaining the security posture of deployed microservices by promptly identifying
and mitigating potential risks. Additionally, this condition dynamically adjusts TM values
to reflect positive behavior, such as the successful patching of a vulnerable third-party
module—a key focus of this study. By rewarding such actions, the system fosters continuous
security improvements. If the condition is met, the TIS triggers the RTE to re-calculate
the TM automatically, addressing the RTE’s previous inability to perform continuous TM
updates, as highlighted in the background section. Otherwise, the process is terminated
by the TIS, as indicated by the orange end icon, because the image is no longer in use.
However, when a new image is added to a microservice, the same process is repeated
automatically, and the TIS initiates such requests to perform dynamic trust evaluation, as
represented by the orange start icon.

4. Evaluation
To evaluate our proposed approach, we utilize the Train Ticket MSA [42] application,

a widely recognized MSA benchmark in cloud-native security studies due to its complexity.
The evaluation environment incorporates Kubernetes [17] for orchestration and Istio [44]
as the service mesh platform, ensuring the adoption of widely used cloud-native technolo-
gies. In addition, this setup simulates real-world MSA application deployment scenarios,
aligning with best practices in both the research community and academia. The Train
Ticket MSA consists of over 40 microservices that facilitate essential operations within
train ticketing and management systems. The evaluation environment incorporates Ku-
bernetes [17] for orchestration and Istio [44] as the service mesh platform, ensuring the
adoption of widely used cloud-native technologies. This setup simulates real-world MSA
application deployment scenarios and aligns with best practices recognized in both the
research community and academia.

Adapted from [96], a basic and practical architecture of the Train Ticket MSA as
illustrated in Figure 4, delivers a wide range of functionalities. As shown in the figure, the
Train Ticket MSA provides an excellent user experience for both customers and station
personnel through a gateway (one the left) and a database for storing changes and updates
(on the right). Customers can seamlessly sign in to search for available trains, reserve
tickets, modify bookings, process payments, and manage their travel plans. For station
personnel, the Train Ticket MSA monitors train schedules, handles payments, notifies
customers, and manages bookings.

We conducted a two-phase evaluation of our approach using different versions of
the Train Ticket MSA application. Phase one used an older version of Train Ticket (0.0.4)
as shown in Table 2 to establish a baseline, while phase two tested a newer version of
Train Ticket (1.0.0) as shown in Table 3 to demonstrate adaptation to changing MSA
applications environments. Both phases utilized five microservices with distinct base
images to ensure robustness. This evaluation highlights the approach’s effectiveness in
identifying vulnerabilities, calculating TMs, and enabling dynamic trust evaluation through
seamless data sharing across the service mesh. In this evaluation, the proposed approach

Sensors 2025, 25, 914 15 of 23

automates risk assessment for deployed microservices by evaluating their trustworthiness
through runtime vulnerability assessment. The process begins by identifying five selected
microservices and their associated container images. The five selected microservices
are: admin-order, avatar, news, ticket-office, and voucher. Once the identification happens,
each container image is then scanned for vulnerabilities. For example, the admin-order
microservice was found to have 65 low, 174 medium, 163 high, and 76 critical vulnerabilities.
A full analysis was conducted for the other microservices, as detailed in Table 2. Next, the
proposed approach calculates Vuls and TMs for each microservice s using CVSS scores and
the proposed two equations. Using Equation (1), the Vuls is determined by multiplying
each CVSS score by its designated weight. For instance, the Vuladmin-order for the admin-order
microservice is calculated as (65 × 0.1) + (174 × 0.20) + (163 × 0.30) + (76 × 0.4) = 120.60
as detailed in the approach section.

Sensors 2025, 25, x 15 of 24

world MSA application deployment scenarios and aligns with best practices recognized

in both the research community and academia.

Adapted from [96], a basic and practical architecture of the Train Ticket MSA as il-

lustrated in Figure 4, delivers a wide range of functionalities. As shown in the figure, the

Train Ticket MSA provides an excellent user experience for both customers and station

personnel through a gateway (one the left) and a database for storing changes and updates

(on the right). Customers can seamlessly sign in to search for available trains, reserve tick-

ets, modify bookings, process payments, and manage their travel plans. For station per-

sonnel, the Train Ticket MSA monitors train schedules, handles payments, notifies cus-

tomers, and manages bookings.

Figure 4. A basic and practical architecture of the Train Ticket [42] adopted from [96].

We conducted a two-phase evaluation of our approach using different versions of

the Train Ticket MSA application. Phase one used an older version of Train Ticket (0.0.4)

as shown in Table 2 to establish a baseline, while phase two tested a newer version of

Train Ticket (1.0.0) as shown in Table 3 to demonstrate adaptation to changing MSA ap-

plications environments. Both phases utilized five microservices with distinct base images

to ensure robustness. This evaluation highlights the approach’s effectiveness in identify-

ing vulnerabilities, calculating TMs, and enabling dynamic trust evaluation through seam-

less data sharing across the service mesh. In this evaluation, the proposed approach auto-

mates risk assessment for deployed microservices by evaluating their trustworthiness

through runtime vulnerability assessment. The process begins by identifying five selected

microservices and their associated container images. The five selected microservices are:

admin-order, avatar, news, ticket-office, and voucher. Once the identification happens, each

container image is then scanned for vulnerabilities. For example, the admin-order micro-

service was found to have 65 low, 174 medium, 163 high, and 76 critical vulnerabilities. A

full analysis was conducted for the other microservices, as detailed in Table 2. Next, the

proposed approach calculates Vuls and TMs for each microservice s using CVSS scores and

the proposed two equations. Using Equation 1, the Vuls is determined by multiplying each

CVSS score by its designated weight. For instance, the Vuladmin-order for the admin-order mi-

croservice is calculated as (65 × 0.1) + (174 × 0.20) + (163 × 0.30) + (76 × 0.4) =

 120.60 as detailed in the approach section.

Figure 4. A basic and practical architecture of the Train Ticket [42] adopted from [96].

Table 2. (Phase 1) A detailed list of five selected microservices, along with the total count of CVEs in
each category (low, medium, high, and critical), is provided. Additionally, the proposed approach
continuously calculates the initial Vuls and TMs for each microservice in this older version of the
Train Ticket (version 0.0.4).

Microservice
Total CVSS Scores Based on Their Categories

Vuls
The Initial

Value of TMsLow Medium High Critical

admin-order 65 174 163 76 120.60 94.27

avatar 1591 3701 1604 167 1447.30 12.47

news 1 31 42 22 27.70 (MinVul) 100.00

ticket-office 511 1354 1055 218 725.6 57.00

voucher 1599 4092 1971 200 1649.6
(MaxVul) 0.0

Sensors 2025, 25, 914 16 of 23

Table 3. (Phase 2) A detailed list of five selected microservices, along with the total count of CVEs in
each category (low, medium, high, and critical), is provided. Additionally, the proposed approach
continuously calculates the continuous Vuls and TMs for each microservice in this newer version of
the Train Ticket (version 1.0.0).

Microservice
Total CVSS Scores Based on Their Categories

Vuls
The Continuous

Value of TMsLow Medium High Critical

admin-order 65 174 163 76 120.60 91.66

avatar 969 3086 1270 117 1141.90
(MaxVul) 0.00

news 1 31 42 22 27.70 (MinVul) 100.00

ticket-office 906 2830 1203 113 1062.70 7.11

voucher 931 2842 1219 115 1073.20 6.17

Following this, the proposed approach applies Equation (2), as detailed in the
approach section, to calculate the TM for each microservice using their respective
Vuls. This process involves determining the minimum and maximum Vul values re-
fer as MinVul and MaxVul across all deployed microservices. For example, continu-
ing with the admin-order microservice in the older version, the MinVul is 27.70, and
the MaxVul is 1649.6. Using these parameters, the TMadmin-order is calculated as follows:
(100 − ((120.6 − 27.7) / (1649.6 − 27.7))× 100 which gives the value of 94.27. The same
process is repeated for the other microservices, with results summarized in the Table 2.

To demonstrate the effectiveness of our approach in a dynamic environment where
microservices are frequently updated, our proposed mechanism operates in a continuous
loop, automatically checking each microservice and their container images. When a patch
is applied, the process is re-executed to update Vul and TM values for all microservices
without human intervention, as shown in Table 3. In the process, the calculation of the
MinVul and MaxVul is repeated. In the updated version of the Train Ticket MSA, the news
microservice still holds the MinVul, but the MaxVul shifts from the voucher microservice
to the avatar microservice in this new version of the Train Ticket. In this evaluation,
the TM for all microservices is then recalculated. Among these, the TMvoucher for the
voucher microservice increases by 6.17 due to the reduction in vulnerabilities within the
microservice. Also, the TMticket-office decreases significantly from 57.00 to 7.11. The TM
for the other microservices, except the news microservice which remains unchanged, is
adjusted accordingly.

As shown in Figure 5, we evaluated our approach by measuring runtime processing
times for the evaluation of Phase 2 of the Train Ticket system without imposing any
security mechanisms (blue) and with our proposed mechanisms in Phase 2 (orange). We
included a performance evaluation for Phase 1 of the old Train Ticket system as the third
bar in light gray, but did not evaluate the Phase 1 original system. We conducted the
performance testing using a performance tool (version 1.0.0) [97] based on the modern
load testing framework called Locust (version 2.32.1) [98], simulating 100 users (peak
concurrency) with 10 users spawned per second. Processing times were measured for
each microservice, with the admin-order microservice exceeding 10,000 ms under normal
operation, while others stayed below 100 ms. Under our proposed security mechanisms
during Phase 2, results showed the voucher microservice had the highest processing time
and the news microservice the lowest. This trend persisted in Phase 1, though admin-order,
news, and ticket-office processing times slightly decreased, while avatar and voucher increased.
While these findings highlight the need for further optimization of our proposed security
mechanisms, the evaluation identifies that there is a similar performance associated with

Sensors 2025, 25, 914 17 of 23

each microservice when the security mechanism is put in place. This evaluation will inform
future work to identify how to align the security mechanism more closely with original
service performance.

Sensors 2025, 25, x 17 of 24

As shown in Figure 5, we evaluated our approach by measuring runtime processing

times for the evaluation of Phase 2 of the Train Ticket system without imposing any secu-

rity mechanisms (blue) and with our proposed mechanisms in Phase 2 (orange). We in-

cluded a performance evaluation for Phase 1 of the old Train Ticket system as the third

bar in light gray, but did not evaluate the Phase 1 original system. We conducted the per-

formance testing using a performance tool (version 1.0.0) [97] based on the modern load

testing framework called Locust (version 2.32.1) [98], simulating 100 users (peak concur-

rency) with 10 users spawned per second. Processing times were measured for each mi-

croservice, with the admin-order microservice exceeding 10,000 ms under normal opera-

tion, while others stayed below 100 ms. Under our proposed security mechanisms during

Phase 2, results showed the voucher microservice had the highest processing time and the

news microservice the lowest. This trend persisted in Phase 1, though admin-order, news,

and ticket-office processing times slightly decreased, while avatar and voucher increased.

While these findings highlight the need for further optimization of our proposed security

mechanisms, the evaluation identifies that there is a similar performance associated with

each microservice when the security mechanism is put in place. This evaluation will in-

form future work to identify how to align the security mechanism more closely with orig-

inal service performance.

Figure 5. Performance evaluation of processing times for five microservices during normal opera-

tion (blue), Phase 1 (light gray), and Phase 2 (orange).

5. Discussion and Result

The proposed approach empowers the service mesh to dynamically monitor and

evaluate the trustworthiness of microservices through a runtime vulnerability assessment.

The proposed mechanism continuously identifies and analyzes potential weaknesses in

deployed microservices, significantly enhancing the overall security of deployed MSA ap-

plications. Detecting vulnerabilities and adjusting trustworthiness scores, accordingly,

helps maintain a robust security posture throughout the lifecycle of the microservices. The

proposed mechanism continuously monitors and assesses microservices’ security is espe-

cially crucial for industries demanding high-security standards, such as B5G, and next-

generation environments such as 6G networks.

At its core, our proposed mechanism dynamically assigns a TM to each microservice,

continuously based on the results of runtime vulnerability assessments. When risks or

vulnerabilities are detected, the TM is lowered, signaling the need for prompt interven-

tion. This runtime and automated evaluation provide organizations with more insights

into the security posture of their microservices, enabling timely and informed decision-

Figure 5. Performance evaluation of processing times for five microservices during normal operation
(blue), Phase 1 (light gray), and Phase 2 (orange).

5. Discussion and Result
The proposed approach empowers the service mesh to dynamically monitor and

evaluate the trustworthiness of microservices through a runtime vulnerability assessment.
The proposed mechanism continuously identifies and analyzes potential weaknesses in
deployed microservices, significantly enhancing the overall security of deployed MSA
applications. Detecting vulnerabilities and adjusting trustworthiness scores, accordingly,
helps maintain a robust security posture throughout the lifecycle of the microservices.
The proposed mechanism continuously monitors and assesses microservices’ security is
especially crucial for industries demanding high-security standards, such as B5G, and
next-generation environments such as 6G networks.

At its core, our proposed mechanism dynamically assigns a TM to each microservice,
continuously based on the results of runtime vulnerability assessments. When risks or
vulnerabilities are detected, the TM is lowered, signaling the need for prompt interven-
tion. This runtime and automated evaluation provide organizations with more insights
into the security posture of their microservices, enabling timely and informed decision-
making where it paves the way for future proactive self-adaptive controls, ensuring secure
operations even in the most demanding environments.

In our evaluation, we demonstrate the effectiveness of the proposed approach in
dynamically adjusting the TM of deployed microservices within the Train Ticket MSA
application. As microservice container images are updated, vulnerabilities may increase
or decrease based on the nature of third-party modules and libraries embedded within
them. Consequently, the TM dynamically reflects these changes, increasing or decreasing
at runtime according to the evolving security posture of the microservice. This ensures that
the TM remains aligned with the actual security status of the microservices in production.

Compared to the five related works shown in Table 4, our approach also performs
vulnerability scanning by leveraging a vulnerability scanning tool namely Trivy. However,
our proposed approach stands out by uniquely adhering to the zero-trust principle of
‘always verify, never trust,’ enabling the dynamic trust evaluation of deployed microservice
container images. Our approach facilitates trust evaluation based on the vulnerability
levels of deployed microservices, which is seamlessly integrated into the service mesh.

Sensors 2025, 25, 914 18 of 23

Table 4. Comparison of our approach with related works in terms of vulnerability scanning, zero-trust
principles, trust evaluation, and service mesh integration. An empty circle denotes that the approach
does not support the feature, a half-filled circle indicates partial support, and a full circle signifies
full support.

Approach
Vulnerability

Scanning
Applied

Trust Evaluation
Mechanism

Applied

Zero-Trust
Applied

Service Mesh
Based

Kwon, S. and Lee, J.-H [77] # # #

Brady et al. [92] # # #

Javed, O. and Toor, S [67] # # #

Majumder et al. [83] H# # #

Abdulsatar et al. [84] # # #

Torkura et al. [32] H# # #

Shu et al. [25] # # #

Our approach

The advantages of our proposed approach address critical gaps in microservices se-
curity research by introducing an efficient runtime trust evaluation, paving the way for
advanced self-adaptive measures such as dynamic encryption. This enhances data confi-
dentiality and integrity when the trustworthiness of a microservice declines. Furthermore,
our approach could facilitate dynamic data classification based on vulnerability assess-
ments, which is crucial for complex and evolving systems that require high adaptability
and resiliency.

The approach is not without limitations. One disadvantage of our approach is the
performance overhead. As shown in the performance evaluation in Figure 5, it takes
less than 10,000 ms to complete the trust evaluation, which could introduce delays in
microservice-to-microservice communication, particularly in industries requiring real-time
operations with no tolerance for delays, such as emergency services. Future work will focus
on optimizing performance in such environments and incorporating additional features
to address these challenges. Another disadvantage of the proposed approach is its design
complexity. However, once integrated into the MSA application environment and deployed
as part of the service mesh, it will no longer require human involvement. It is specifically
designed to address this challenge, unlike related works that rely heavily on human
intervention to manually upload microservice container images, review vulnerability
reports, and decide whether to accept or reject malicious images.

Future work will investigate enhanced automation by enabling runtime correction of
malicious libraries in MSA applications, including updating and deploying secure versions
of deployed microservices libraries and modules. A machine learning model will be inte-
grated to predict unknown vulnerabilities that show previous high-risk libraries, preventing
their use in production. Additionally, we will investigate integrating our approach with
cybersecurity tools like risk management, to determine how incident management systems
can streamline handling vulnerable libraries and modules and provide real-time warnings
to organizations using the same libraries, fostering proactive security collaboration.

6. Conclusions
Cloud-native computing with the service mesh as a dedicated infrastructure layer

enhances microservice architecture applications (MSAs), providing significant advantages
like secure communication, high scalability, and efficiency. These advantages are crucial in
Beyond 5G (B5G) environments such as Sixth-Generation (6G) networks. Nonetheless, this

Sensors 2025, 25, 914 19 of 23

shift brings notable security issues, particularly concerning microservices utilizing third-
party components. Securing MSA applications necessitates adherence to zero-trust prin-
ciples, emphasizing continuous verification of third-party components used in deployed
microservices. This research addresses a gap in existing service mesh implementations
by proposing a runtime trust evaluation mechanism based on a continuous vulnerability
assessment to ensure the reliability of microservice operations. Validation of the approach
was conducted using the Train Ticket MSA application, the most complex MSA benchmark
involving technologies Docker, Kubernetes, and Istio. Experimental findings indicated
improvements in microservice trustworthiness findings, illustrating the enhanced service
mesh framework’s potential in advanced network settings.

Future work will address some of the current limitations, including evaluating the
proposed approach in real- or near-real-world complex 6G networks. Additionally, the
proposed approach will be extended to detect unknown threats. One mechanism that will
be studied is the use of a machine learning model to identify new attack scenarios. Another
area for future work is integrating the proposed solution with other security systems to
reduce the need for security analysts to set initial configuration parameters, such as the
weight of vulnerability categories. This could be achieved by automating the process
more effectively, with solutions like a risk management system from the MSA-owning
organization. One possible future work is using the generated microservice trust metric
(TM) to allow user input to choose the most secure services, such as selecting from multiple
6G network providers.

Author Contributions: Conceptualization, R.A. and R.F.G.; methodology, R.A. and R.F.G.; software,
R.A.; validation, R.A.; formal analysis, R.A. and R.F.G.; investigation, R.A. and R.F.G.; resources, R.A.;
data curation, R.A.; writing—original draft preparation, R.A.; writing—review and editing, R.A. and
R.F.G.; visualization, R.A.; supervision, R.F.G.; project administration, R.A. and R.F.G. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Amazon Web Services, Inc. What is Cloud Native?—Cloud Native Applications Explained. Amazon Web Services. 2024. Available

online: https://aws.amazon.com/what-is/cloud-native/ (accessed on 22 August 2024).
2. Haindl, P.; Kochberger, P.; Sveggen, M. A Systematic Literature Review of Inter-Service Security Threats and Mitigation Strategies

in Microservice Architectures. IEEE Access 2024, 12, 90252–90286. [CrossRef]
3. Cloud Native Explained: Unlock the Full Potential of 5G—Ericsson. Available online: https://www.ericsson.com/en/cloud-

native (accessed on 29 November 2024).
4. Ping, Y.; Ye, T.; Jie, Z.; Ying, J. Design and Implementation of a Cloud-Native Platform for Financial Big Data Processing Course.

In ICCSE 2022. Communications in Computer and Information Science; Computer Science and Education, Ed.; Springer: Singapore,
2022; Volume 1813.

5. Jiang, M.; Wu, L.; Lin, L.; Xu, Q.; Zhang, W.; Wu, Z. Cloud-Native-Based Flexible Value Generation Mechanism of Public Health
Platform Using Machine Learning. Neural Comput. Appl. 2023, 35, 2103–2117. [CrossRef]

6. Cloud Microservices Market Size|Mordor Intelligence. Available online: https://www.mordorintelligence.com/industry-
reports/cloud-microservices-market (accessed on 22 August 2024).

7. Settanni, F.; Zamponi, A.; Basile, C. Dynamic Security Provisioning for Cloud-Native Networks: An Intent-Based Approach. In
Proceedings of the 2024 IEEE International Conference on Cyber Security and Resilience (CSR), London, UK, 2–4 September 2024;
pp. 321–328.

https://aws.amazon.com/what-is/cloud-native/
https://doi.org/10.1109/ACCESS.2024.3406500
https://www.ericsson.com/en/cloud-native
https://www.ericsson.com/en/cloud-native
https://doi.org/10.1007/s00521-022-07221-5
https://www.mordorintelligence.com/industry-reports/cloud-microservices-market
https://www.mordorintelligence.com/industry-reports/cloud-microservices-market

Sensors 2025, 25, 914 20 of 23

8. Boi, B.; Esposito, C. Decentralized Authentication in Microservice Architectures with SSI and DID in Blockchain. In Proceedings
of the 2023 IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Naples, Italy, 4–6 December
2023; pp. 216–223. [CrossRef]

9. Castillo Rivas, D.A.; Guamán, D. Performance and Security Evaluation in Microservices Architecture Using Open Source
Containers. In Proceedings of the Second International Conference, ICAT 2020, Quito, Ecuador, 2–4 December 2020; Volume 1388,
pp. 484–498.

10. Saeedi Taleghani, E.; Maldonado Valencia, R.I.; Sandoval Orozco, A.L.; García Villalba, L.J. Trust Evaluation Techniques for 6G
Networks: A Comprehensive Survey with Fuzzy Algorithm Approach. Electronics 2024, 13, 3013. [CrossRef]

11. Lee, S.; Lee, D.; Park, J.; Ryan, B.; Kobylinski, M.; Hiremath, C. Toward 6G Core Architecture Using an Inline Service Mesh.
Available online: https://www.intel.com/content/www/us/en/content-details/814439/toward-6g-core-architecture-using-
an-inline-service-mesh.html (accessed on 5 December 2024).

12. Li, X.; Chen, Y.; Lin, Z.; Wang, X.; Chen, J.H. Automatic Policy Generation for Inter-Service Access Control of Microservices. In
Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Virtual Event, 11–13 August 2021; pp. 3971–3988.

13. Hu, Y.; Liu, M. Intelligent Adaptive Service Grid Architecture Design and Performance Optimization for Future Networks. Clust.
Comput. 2024; Preprint article. [CrossRef]

14. Chen, Y.; Fernandes, E.; Adams, B.; Hassan, A.E. On Practitioners’ Concerns When Adopting Service Mesh Frameworks. Empir.
Softw. Eng. 2023, 28, 113. [CrossRef]

15. Chandramouli, R.; Butcher, Z.; Chetal, A. Attribute-Based Access Control for Microservices-Based Applications Using a Service Mesh;
National Institute of Standards and Technology (U.S.): Gaithersburg, MD, USA, 2021; NIST SP 800-204B.

16. Blanco, L.; Zeydan, E.; Barrachina-Muñoz, S.; Rezazadeh, F.; Vettori, L.; Mangues-Bafalluy, J. A Novel Approach for Scalable and
Sustainable 6G Networks. IEEE Open J. Commun. Soc. 2024, 5, 1673–1692. [CrossRef]

17. Kubernetes Documentation. Available online: https://kubernetes.io (accessed on 22 August 2024).
18. Muresu, D. Investigating the Security of a Microservices Architecture: A Case Study on Microservice and Kubernetes Security.

Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, 2021. Available online: https://www.diva-portal.org/
smash/get/diva2:1597972/FULLTEXT01.pdf (accessed on 22 August 2024).

19. Alboqmi, R.; Jahan, S.; Gamble, R.F. A Risk Adaptive Access Control Model for the Service Mesh Architecture. In Proceedings of
the 2024 IEEE 3rd International Conference on Computing and Machine Intelligence (ICMI), Mt Pleasant, MI, USA, 13–14 April
2024; pp. 1–6. [CrossRef]

20. Monteiro, L.d.A.; Almeida, W.H.C.; Hazin, R.R.; de Lima, C. A Survey on Microservice Security–Trends in Architecture, Privacy
and Standardization on Cloud Computing Environments. Int. J. Adv. Secur. 2018, 11, 201–213.

21. Vegesna, V.V. A Comprehensive Investigation of Privacy Concerns in the Context of Cloud Computing Using Self-Service
Paradigms. Int. J. Manag. Technol. Eng. 2023, 173-187, 173–187.

22. Hannousse, A.; Yahiouche, S. Securing Microservices and Microservice Architectures: A Systematic Mapping Study. Comput. Sci.
Rev. 2021, 41, 100415. [CrossRef]

23. Lee, H.; Kwon, S.; Lee, J.-H. Experimental Analysis of Security Attacks for Docker Container Communications. Electronics 2023,
12, 940. [CrossRef]

24. Wong, A.Y.; Chekole, E.G.; Ochoa, M.; Zhou, J. On the Security of Containers: Threat Modeling, Attack Analysis, and Mitigation
Strategies. Comput. Secur. 2023, 128, 103140. [CrossRef]

25. Shu, R.; Gu, X.; Enck, W. A Study of Security Vulnerabilities on Docker Hub. In Proceedings of the Seventh ACM on Conference
on Data and Application Security and Privacy, Scottsdale, AZ, USA, 22–24 March 2017; Association for Computing Machinery:
New York, NY, USA, 2017; pp. 269–280.

26. MITRE. Implant Internal Image T1525. 2022. Available online: https://attack.mitre.org/techniques/T1525/ (accessed on
22 August 2024).

27. Vaniyawala, N.; Pandey, K.K. A Bird’s Eye View of Microservice Architecture from the Lens of Cloud Computing. In Advancements
in Smart Computing and Information Security; Rajagopal, S., Popat, K., Meva, D., Bajeja, S., Eds.; Communications in Computer and
Information Science; Springer: Cham, Switzerland, 2024; Volume 2040, pp. 65–97. [CrossRef]

28. Repetto, M.; Carrega, A.; Rapuzzi, R. An Architecture to Manage Security Operations for Digital Service Chains. Future Gener.
Comput. Syst. 2021, 115, 251–266. [CrossRef]

29. Huang, K.; Cai, G.; Zong, B.; Wang, M. A Service Mesh Authorization Control Model Based on User Behavior Credibility. In
Proceedings of the SPIE, Third International Conference on Computer Communication and Network Security (CCNS 2022),
Hohhot, China, 15–17 July 2022; p. 124531B. [CrossRef]

30. Singh, U.; Joshi, C. Quantitative Security Risk Evaluation Using CVSS Metrics by Estimation of Frequency and Maturity of Exploit.
In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 19–21 October 2016.

https://doi.org/10.1109/CloudCom59040.2023.00043
https://doi.org/10.3390/electronics13153013
https://www.intel.com/content/www/us/en/content-details/814439/toward-6g-core-architecture-using-an-inline-service-mesh.html
https://www.intel.com/content/www/us/en/content-details/814439/toward-6g-core-architecture-using-an-inline-service-mesh.html
https://doi.org/10.21203/rs.3.rs-5289129/v1
https://doi.org/10.1007/s10664-023-10348-1
https://doi.org/10.1109/OJCOMS.2024.3372426
https://kubernetes.io
https://www.diva-portal.org/smash/get/diva2:1597972/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1597972/FULLTEXT01.pdf
https://doi.org/10.1109/ICMI60790.2024.10585800
https://doi.org/10.1016/j.cosrev.2021.100415
https://doi.org/10.3390/electronics12040940
https://doi.org/10.1016/j.cose.2023.103140
https://attack.mitre.org/techniques/T1525/
https://doi.org/10.1007/978-3-031-59107-5_6
https://doi.org/10.1016/j.future.2020.08.044
https://doi.org/10.1117/12.2659282

Sensors 2025, 25, 914 21 of 23

31. Bila, N.; Dettori, P.; Kanso, A.; Watanabe, Y.; Youssef, A. Leveraging the Serverless Architecture for Securing Linux Containers. In
Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW), Atlanta,
GA, USA, 5–8 June 2017; pp. 401–404.

32. Torkura, K.A.; Sukmana, M.I.H.; Meinel, C. Integrating Continuous Security Assessments in Microservices and Cloud Native
Applications. In Proceedings of the 10th International Conference on Utility and Cloud Computing, Austin, TX, USA, 5–8
December 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 171–180.

33. Throner, S.; Abeck, S.; Petrovic, P.; Hütter, H. A DevOps Approach to the Mitigation of Security Vulnerabilities in Runtime
Environments. In Proceedings of the 2023 IEEE International Conference on Service-Oriented System Engineering (SOSE), Athens,
Greece, 17–20 July 2023; pp. 106–113.

34. Rajapakse, R.N.; Zahedi, M.; Babar, M.A.; Shen, H. Challenges and solutions when adopting DevSecOps: A systematic review.
Inf. Soft Technol. 2022, 141, 106700. [CrossRef]

35. Casola, V.; De Benedictis, A.; Mazzocca, C.; Orbinato, V. Secure Software Development and Testing: A Model-Based Methodology.
Comput. Secur. 2024, 137, 103639. [CrossRef]

36. Aqua Security. Trivy: Vulnerability Scanner for Containers. Available online: https://trivy.dev/latest/ (accessed on 10
November 2024).

37. Jaisinghani, G. Vulnerability Management in the Age of Containers—A Review. Int. J. Inf. Secur. 2022, 1, 1–5.
38. Alboqmi, R.; Jahan, S.; Gamble, R.F. A Runtime Trust Evaluation Mechanism in the Service Mesh Architecture. In Proceedings of

the 2023 10th International Conference on Future Internet of Things and Cloud (FiCloud), Marrakesh, Morocco, 14–16 August
2023; pp. 242–249. [CrossRef]

39. Ruan, Y.; Durresi, A. A trust management framework for clouds. Comput. Commun. 2019, 144, 124–131. [CrossRef]
40. Bagheri, S. A Cost-Effective Framework for Proactive and Non-Disruptive Attack Mitigation in Kubernetes Clusters. Master’s

Thesis, Concordia University, Montreal, QC, Canada, 2023.
41. Arzo, S.T.; Naiga, C.; Granelli, F.; Bassoli, R.; Devetsikiotis, M.; Fitzek, F.H. A theoretical discussion and survey of network

automation for IoT: Challenges and opportunity. IEEE Internet Things J. 2021, 8, 12021–12045. [CrossRef]
42. FudanSELab. TrainTicket: A Microservices-Based Online Ticket Booking System. 2019. Available online: https://github.com/

FudanSELab/train-ticket (accessed on 22 August 2024).
43. Ghavamnia, S.; Palit, T.; Benameur, A. Confine: Automated System Call Policy Generation for Container Attack Surface Reduction.

In Proceedings of the 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020), Virtual, 14–16
October 2020.

44. Istio Documentation. Available online: https://Istio.io (accessed on 22 August 2024).
45. Dell’Immagine, G.; Soldani, J.; Brogi, A. KubeHound: Detecting Microservices’ Security Smells in Kubernetes Deployments.

Future Internet 2023, 15, 228. [CrossRef]
46. Ramirez, T.; Wai Yan, E. A Framework to Build Secure Microservice Architecture; ETD Collection for University of Texas: El Paso, TX,

USA, 2023; p. AAI30522863.
47. Team, F.B.-U. Cloud-Native Application Architecture: Microservice Development Best Practice, 1st ed.; 2024 edition; Springer: Singapore,

2024; ISBN 978-981-19-9781-5.
48. Xiao, S.; Ye, Y.; Kanwal, N.; Newe, T.; Lee, B. SoK: Context and Risk Aware Access Control for Zero Trust Systems. Secur. Commun.

Netw. 2022, 2022, 7026779. [CrossRef]
49. Cao, Y.; Pokhrel, S.R.; Zhu, Y.; Doss, R.; Li, G. Automation and Orchestration of Zero Trust Architecture: Potential Solutions and

Challenges. Mach. Intell. Res. 2024, 21, 294–317. [CrossRef]
50. Kholidy, H.A.; Disen, K.; Karam, A.; Benkhelifa, E.; Rahman, M.A.; Rahman, A.U.; Almazyad, I.; Sayed, A.F.; Jaziri, R. Secure

the 5G and Beyond Networks with Zero Trust and Access Control Systems for Cloud Native Architectures. In Proceedings of
the IEEE Federated Architectures & Testbeds Workshop on 5G and Beyond (FATW5G 2023), Smart Village Giza, Egypt, 6–7
December 2023.

51. Sethuraman, S.C.; Jadapalli, T.G.; Sudhakaran, D.P.V.; Mohanty, S.P. Flow-Based Containerized Honeypot Approach for Network
Traffic Analysis: An Empirical Study. Comput. Sci. Rev. 2023, 50, 100600. [CrossRef]

52. Ardagna, C.A.; Damiani, E.; De Capitani di Vimercati, S.; Foresti, S.; Samarati, P. Trust Management. In Security, Privacy, and Trust
in Modern Data Management; Springer: Berlin/Heidelberg, Germany, 2007; pp. 103–117. [CrossRef]

53. Sarkar, S.; Choudhary, G.; Shandilya, S.K.; Hussain, A.; Kim, H. Security of zero trust networks in cloud computing: A comparative
review. Sustainability 2022, 14, 11213. [CrossRef]

54. Abdelfattah, A.S.; Cerny, T. Microservices Security Challenges and Approaches. In Proceedings of the International Conference
on Information Systems Development (ISD) 2022 Conference, Cluj-Napoca, Romania, 31 August–2 September 2022. Available
online: https://aisel.aisnet.org/isd2014/proceedings2022/currenttopics/7 (accessed on 22 August 2024).

55. Lu, Z.; Delaney, D.T.; Lillis, D. A Survey on Microservices Trust Models for Open Systems. IEEE Access 2023, 11, 28840–28855.
[CrossRef]

https://doi.org/10.1016/j.infsof.2021.106700
https://doi.org/10.1016/j.cose.2023.103639
https://trivy.dev/latest/
https://doi.org/10.1109/FiCloud58648.2023.00043
https://doi.org/10.1016/j.comcom.2019.05.018
https://doi.org/10.1109/JIOT.2021.3075901
https://github.com/FudanSELab/train-ticket
https://github.com/FudanSELab/train-ticket
https://Istio.io
https://doi.org/10.3390/fi15070228
https://doi.org/10.1155/2022/7026779
https://doi.org/10.1007/s11633-023-1456-2
https://doi.org/10.1016/j.cosrev.2023.100600
https://doi.org/10.1007/978-3-540-69861-6_8
https://doi.org/10.3390/su141811213
https://aisel.aisnet.org/isd2014/proceedings2022/currenttopics/7
https://doi.org/10.1109/ACCESS.2023.3260147

Sensors 2025, 25, 914 22 of 23

56. Ramaswamy, C. Implementation of DevSecOps for a Microservices-Based Application with Service Mesh. National Institute of
Standards and Technology (NIST). 2024; NIST SP 800-204C. Available online: https://csrc.nist.rip/external/nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-204C.pdf (accessed on 22 August 2024).

57. Ramezanpour, K.; Jagannath, J. Intelligent Zero Trust Architecture for 5G/6G Networks: Principles, Challenges, and the Role of
Machine Learning in the Context of O-RAN. Comput. Netw. 2022, 217, 109358. [CrossRef]

58. Alboqmi, R.; Jahan, S.; Gamble, R. Threat Intelligence Sharing Component in the Service Mesh Architecture. In Proceedings of the
2023 10th International Conference on Future Internet of Things and Cloud (FiCloud), Marrakesh, Morocco, 14–16 August 2023;
pp. 320–327. [CrossRef]

59. Alboqmi, R.; Gamble, R.F. Compliance Validation in the Service Mesh Architecture. In Proceedings of the 2024 IEEE Symposium
on Product Compliance Engineering (SPCE Bloomington), Bloomington, MN, USA, 8–9 October 2024; pp. 1–5. [CrossRef]

60. Carlinet, Y.; Perrot, N.; Valeyre, L.; Wary, J.-P.; Bocianiak, K.; Niewolski, W.; Podlasek, A. Latency-Sensitive Service Chaining with
Isolation Constraints. In Proceedings of the 1st International Workshop on MetaOS for the Cloud-Edge-IoT Continuum, Athens
Greece, 22 April 2024; Association for Computing Machinery: New York, NY, USA, 2024; pp. 8–13.

61. Pereira-Vale, A.; Fernandez, E.B.; Monge, R.; Astudillo, H.; Márquez, G. Security in microservice-based systems: A Multivocal
literature review. Comput. Secur. 2021, 103, 102200. [CrossRef]

62. Vaucher, S.; Pires, R.; Felber, P.; Pasin, M.; Schiavoni, V.; Fetzer, C. SGX-Aware Container Orchestration for Heterogeneous
Clusters. In Proceedings of the 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS), Vienna,
Austria, 2–5 July 2018; pp. 730–741.

63. Ramaswamy, C.; Butcher, Z.; Callaghan, J. Service Mesh Proxy Models for Cloud-Native Applications. NIST Special Publication
800-233, National Institute of Standards and Technology. 2024. Available online: https://www.nist.gov/publications/service-
mesh-proxy-models-cloud-native-applications (accessed on 1 October 2024).

64. Torkura, K.A.; Sukmana, M.I.H.; Kayem, A.V.D.M.; Cheng, F.; Meinel, C. A Cyber Risk Based Moving Target Defense Mechanism
for Microservice Architectures. In Proceedings of the 2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications,
Ubiquitous Computing & Communications, Big Data & Cloud Computing, Social Computing & Networking, Sustainable
Computing & Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom), Melbourne, Australia, 11–13 December 2018;
pp. 932–939.

65. Sultan, S.; Ahmad, I.; Dimitriou, T. Container Security: Issues, Challenges, and the Road Ahead. IEEE Access 2019, 7, 52976–52996.
[CrossRef]

66. Chernyshev, M.; Baig, Z.; Zeadally, S. Cloud-Native Application Security: Risks, Opportunities, and Challenges in Securing the
Evolving Attack Surface. Computer 2021, 54, 47–57. [CrossRef]

67. Javed, O.; Toor, S. Understanding the Quality of Container Security Vulnerability Detection Tools. arXiv 2021, arXiv:2101.03844.
68. Ibrahim, A.; Bozhinoski, S.; Pretschner, A. Attack Graph Generation for Microservice Architecture. In Proceedings of the 34th

ACM/SIGAPP Symposium on Applied Computing, Limassol, Cyprus, 8–12 April 2019; Association for Computing Machinery:
New York, NY, USA, 2019; pp. 1235–1242.

69. Kaiser, S.; Haq, M.S.; Tosun, A.S.; Korkmaz, T. Container technologies for ARM architecture: A comprehensive survey of the
state-of-the-art. IEEE Access 2022, 10, 84853–84881. [CrossRef]

70. Snyk. Available online: https://snyk.io/ (accessed on 1 October 2024).
71. Clair. Available online: https://github.com/quay/clair (accessed on 22 August 2024).
72. Anchor. Available online: https://anchore.com/container-vulnerability-scanning/ (accessed on 22 August 2024).
73. Cruz, D.B.; Almeida, J.R.; Oliveira, J.L. Open Source Solutions for Vulnerability Assessment: A Comparative Analysis. IEEE

Access 2023, 11, 100234–100255. [CrossRef]
74. Patil, S.R.K.; John, N.; Kunja, P.S.; Dwivedi, A.; Suganthi, S.; Honnnavali, P.B. Hardening Containers with Static and Dynamic

Analysis. In Proceedings of the International Conference on Cybersecurity, Situational Awareness and Social Media, Copenhagen, Denmark,
3–4 July 2023; Onwubiko, C., Ed.; Springer Proceedings in Complexity; Springer: Singapore, 2023.

75. Minna, F.; Massacci, F. SoK: Run-Time Security for Cloud Microservices. Are We There Yet? Comput. Secur. 2023, 127, 103119.
[CrossRef]

76. Theodoropoulos, T.; Rosa, L.; Benzaid, C.; Gray, P.; Marin, E.; Makris, A.; Cordeiro, L.; Diego, F.; Sorokin, P.; Girolamo, M.D.; et al.
Security in Cloud-Native Services: A Survey. J. Cybersecur. Priv. 2023, 3, 758–793. [CrossRef]

77. Kwon, S.; Lee, J.-H. DIVDS: Docker Image Vulnerability Diagnostic System. IEEE Access 2020, 8, 42666–42673. [CrossRef]
78. OWASP. Kubernetes Top Ten 2022. Available online: https://owasp.org/www-project-kubernetes-top-ten/2022/en/src/K10-

vulnerable-components (accessed on 22 August 2024).
79. Security Assurance of Docker Containers. SANS Institute. Available online: https://www.sans.org/white-papers/37432/

(accessed on 1 October 2024).

https://csrc.nist.rip/external/nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204C.pdf
https://csrc.nist.rip/external/nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204C.pdf
https://doi.org/10.1016/j.comnet.2022.109358
https://doi.org/10.1109/FiCloud58648.2023.00054
https://doi.org/10.1109/IEEECONF63668.2024.10739633
https://doi.org/10.1016/j.cose.2021.102200
https://www.nist.gov/publications/service-mesh-proxy-models-cloud-native-applications
https://www.nist.gov/publications/service-mesh-proxy-models-cloud-native-applications
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/MC.2021.3076537
https://doi.org/10.1109/ACCESS.2022.3197151
https://snyk.io/
https://github.com/quay/clair
https://anchore.com/container-vulnerability-scanning/
https://doi.org/10.1109/ACCESS.2023.3315595
https://doi.org/10.1016/j.cose.2023.103119
https://doi.org/10.3390/jcp3040034
https://doi.org/10.1109/ACCESS.2020.2976874
https://owasp.org/www-project-kubernetes-top-ten/2022/en/src/K10-vulnerable-components
https://owasp.org/www-project-kubernetes-top-ten/2022/en/src/K10-vulnerable-components
https://www.sans.org/white-papers/37432/

Sensors 2025, 25, 914 23 of 23

80. Zerouali, A.; Mens, T.; Robles, G.; Gonzalez-Barahona, J.M. On the Relation between Outdated Docker Containers, Severity
Vulnerabilities, and Bugs. In Proceedings of the 2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER), Hangzhou, China, 24–27 February 2019; pp. 491–501.

81. NVD—Vulnerability Metrics. Available online: https://nvd.nist.gov/vuln-metrics/cvss (accessed on 29 November 2024).
82. Kennedy, A.T.; Muhammad, I.H.S.; Feng, C.; Christoph, M. CAVAS: Neutralizing Application and Container Security Vulnerabilities in

the Cloud Native Era; Security and Privacy in Communication Networks, Ed.; Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering; SecureComm; Springer: Cham, Switzerland, 2018; Volume 254.

83. Majumder, S.H.; Jajodia, S.; Majumdar, S.; Hossain, M.S. Layered Security Analysis for Container Images: Expanding Lightweight
Pre-Deployment Scanning. In Proceedings of the 2023 20th Annual International Conference on Privacy, Security and Trust (PST),
Copenhagen, Denmark, 21–23 August 2023; pp. 1–10.

84. Abdulsatar, M.; Ahmad, H.; Goel, D.; Ullah, F. Towards Deep Learning Enabled Cybersecurity Risk Assessment for Microservice
Architectures. arXiv 2024, arXiv:2403.15169.

85. Kermabon-Bobinnec, H.; Jarraya, Y.; Wang, L.; Majumdar, S.; Pourzandi, M. Phoenix: Surviving Unpatched Vulnerabilities via
Accurate and Efficient Filtering of Syscall Sequences. In Proceedings of the 2024 Network and Distributed System Security
Symposium, San Diego, CA, USA, 26 February–1 March 2024; Internet Society: San Diego, CA, USA, 2024.

86. National Institute of Standards and Technology (NIST). National Vulnerability Database (NVD). Available online: https://nvd.
nist.gov (accessed on 22 August 2024).

87. Berardi, D.; Giallorenzo, S.; Mauro, J.; Melis, A.; Montesi, F.; Prandini, M. Microservice Security: A Systematic Literature Review.
PeerJ Comput. Sci. 2022, 8, e779. [CrossRef] [PubMed]

88. Carmen, C. Kubernetes as a Standard Container Orchestrator—A Bibliometric Analysis. J. Grid Comput. 2022, 20, 42.
89. You, M.; Nam, J.; Seo, M.; Shin, S. HELIOS: Hardware-Assisted High-Performance Security Extension for Cloud Networking. In

Proceedings of the 2023 ACM Symposium on Cloud Computing, Santa Cruz, CA, USA, 31 October–1 November 2023; Association
for Computing Machinery: New York, NY, USA, 2023; pp. 486–501.

90. CIS Critical Security Control 7: Continuous Vulnerability Management. Available online: https://www.cisecurity.org/controls/
continuous-vulnerability-management (accessed on 29 November 2024).

91. Sadhwani, V. Cloud Container Security’ Next Move. Available online: https://digitalcommons.harrisburgu.edu/csms_dandt/3
(accessed on 22 August 2024).

92. Brady, K.; Moon, S.; Nguyen, T.; Coffman, J. Docker Container Security in Cloud Computing. In Proceedings of the 2020 10th
Annual Computing and Communication Workshop and Conference (CCWC) 2020, Las Vegas, NV, USA, 6–8 January 2020;
pp. 975–980. [CrossRef]

93. Akinade, A.; Ige, A.; Adepoiu, P.; Afolabi, A. Cloud Security Challenges and Solutions: A Review of Current Best Practices. Int. J.
Multidiscip. Res. Growth Eval. 2024, 6, 26–35. [CrossRef]

94. OASIS. STIX Documentation. Available online: https://oasis-open.github.io/cti-documentation/stix/intro.html (accessed on
22 August 2024).

95. OASIS. TAXII Documentation. Available online: https://oasis-open.github.io/cti-documentation/taxii/intro.html (accessed on
22 August 2024).

96. Hossen, M.R. Resource Management and Optimization of Interactive Microservice and MPI-Based Ensemble Applications in the
Cloud. Ph.D. Thesis, The University of Texas at Arlington, Arlington, TX, USA, December 2024.

97. Avritzer, A.; Menasché, D.; Rufino, V.; Russo, B.; Janes, A.; Ferme, V.; van Hoorn, A.; Schulz, H. PPTAM: Production and
Performance Testing Based Application Monitoring. In Proceedings of the Companion of the 2019 ACM/SPEC International
Conference on Performance Engineering (ICPE ’19), Mumbai, India, 7–11 April 2019; Association for Computing Machinery:
New York, NY, USA, 2019; pp. 39–40. [CrossRef]

98. Locust.io. Available online: https://locust.io/ (accessed on 25 December 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov
https://nvd.nist.gov
https://doi.org/10.7717/peerj-cs.779
https://www.ncbi.nlm.nih.gov/pubmed/35111904
https://www.cisecurity.org/controls/continuous-vulnerability-management
https://www.cisecurity.org/controls/continuous-vulnerability-management
https://digitalcommons.harrisburgu.edu/csms_dandt/3
https://doi.org/10.1109/CCWC47524.2020.9031195
https://doi.org/10.54660/.IJMRGE.2025.6.1.26-35
https://oasis-open.github.io/cti-documentation/stix/intro.html
https://oasis-open.github.io/cti-documentation/taxii/intro.html
https://doi.org/10.1145/3302541.3311961
https://locust.io/

	Introduction
	Background
	Approach
	Evaluation
	Discussion and Result
	Conclusions
	References

