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Abstract: This paper describes CAREUP, a novel older adult healthy aging support plat-
form based on Intrinsic Capacity (IC) monitoring. Besides standard functionalities like
storing health measurement data or providing users with personalized recommendations,
the platform includes novel intrinsic capacity assessment and prediction algorithms. Older
adults’ performance is continuously monitored in all five IC domains—locomotion, psy-
chology, cognition, vitality, and sensory capacity—based on measurement results and
answers to questionnaires gathered using the platform’s mobile applications. The users are
also presented with a machine learning-based prediction of how their intrinsic capacity
might change over the following years. The platform’s operation was successfully tested
with the participation of older adults and their caregivers in three countries: Austria, Italy,
and Romania.

Keywords: older adult support; intrinsic capacity; machine learning; ICT platforms

1. Introduction
According to the World Health Organization (WHO) [1], by 2050, almost 22% of

the world’s population will be aged 60 years or older. This percentage might be even
higher in Western Europe due to the currently low birth rates. In this rapidly aging
society, it will be of prime importance to support older adults in maintaining their health
and prolonging their independent day-to-day functioning. The rapid advancement of
information and communications technologies (ICT), including personal electronics, opens
up an opportunity to use modern developments to enhance elderly care. Over several
years, there many ICT care platforms have been developed, mainly aiming to monitor
elderly users’ health parameters [2] and provide alerts in the case of dangerous events,
e.g., falls or low sugar levels [3]. The above functions reduce caregivers’ burden, which
brings about multiple social and economic benefits [4].
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In this paper, we describe an integrated care platform developed within the CAREUP
(An Integrated Care Platform Based on the Monitoring of Older Individual Intrinsic Ca-
pacity for Inclusive Health) Active and Assisted Living (AAL) project [5]. The CAREUP
platform distinguishes itself from other available solutions by offering continuous assess-
ment and prediction of elderly users’ intrinsic capacity (IC). Intrinsic capacity is a novel
concept introduced by the WHO that aims to assess older adults’ state based on their
individual capacities in physical and mental domains rather than the typically used health
parameters and prevalent comorbidities.

Intrinsic capacity is assessed in five domains: locomotion, psychological, vitality,
cognition, and sensory capacity. The CAREUP platform performs user assessments in each
of them. Additionally, it predicts how users’ performance may change in the following
years so that they can take preventive actions suggested by the platform in the form of a
personalized care plan.

The rest of the paper is structured as follows. In Section 2, we reference other care
platforms described in the literature. Sections 3–5 contain descriptions of the platform
concept, the adopted design principles, and the technical implementation of the platform.
The platform’s main novelty (IC evaluation and prediction) is described in Section 6.
The results of the pilot tests are presented in Section 7. Section 8 concludes the paper.

2. Healthy Aging Support Systems
Over the last decade, several care platforms intended for use by elderly adults have

been designed and implemented. The main goal of all such platforms is to improve users’
quality of life and mitigate or delay adverse health outcomes due to aging. The extent to
which these goals can be achieved depends on several platform traits, like the platform’s
architecture and functionalities.

2.1. Architectures

Elderly support platforms implement various architectures. The simplest one com-
prises a single sensor and a dedicated server processing measurement results. Such plat-
forms are usually used to supply users with services of a limited scope and target one
health domain, e.g., physical capacity. Examples include platforms processing data from
FitBit sensors [6] (ECG, acceleration, and GPS location) or custom sensors like an activ-
ity sensor in [7]. Instead of dedicated sensors, smartphone applications can sometimes
be used [8].

More advanced platforms aggregate results from multiple sensor types and applica-
tions. Such solutions adopt one of two approaches; they either use independent infrastruc-
ture or are a middleware platform integrating data from sensor vendors’ platforms.

In the first approach, the platforms have their own applications for data gathering and
download data from sensors [9]. Such an approach allows all of the elements of the solution
to be tailored to the elderly person’s needs. This is especially important if the platform
uses custom sensors or implements novel algorithms requiring raw measurement data,
which the applications of the device manufacturers might not supply. Keeping the data
inside one platform might also positively affect privacy and security [10]. The downside
of this architecture is the need to implement a direct connection between the sensors and
the platform, which may not be possible due to APIs being closed, which can result in the
platform’s incompatibility with some off-the-shelf devices.

The second approach is to implement a platform to act as a middleware service
aggregating data from other platforms and services [6,11,12]. In this solution, sensors send
data to the respective vendors’ platforms, and the middleware platform then accesses the
data through a secure protocol, e.g., OAuth [6]. The platform usually implements only the
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data processing algorithms and user interfaces. It may integrate data from several different
vendors [12] or spaces, e.g., home platforms and hospitals, as in [11]. This approach allows
for some flexibility when choosing the devices to be used by the user. If the vendor supplies
an API to access data stored in their cloud services, using a particular device should not be
a problem. However, as API accessibility may change, it might not always be the case.

Given the potential complexity of both approaches, some designers have decided to
implement platforms using cloud services offered by a single company. For example, in [13],
the authors presented a platform implemented using Google products, where devices send
data to Google Cloud, which is integrated with the Google Home System and Google
Assistant for communication with the user.

2.2. Functionalities

The suite of offered functionalities is the critical factor determining the platform’s
success. The most common functionality is monitoring of the user’s health using several
sensors or questionnaires [14] and storing the recorded data. The data may be either auto-
matically processed to profile the user and provide her/him with personalized recommen-
dations or be presented to the user’s caregivers or medical professionals [9]. The platforms
may also include a video-chat option, allowing users to contact doctors and get counsel
without going to a medical facility [15].

The platforms can also act as activity monitors [16], which track the user’s daily
activities to detect deviations that may occur due to a reduction in the user’s capabilities or
illness. Activities are sometimes paired with location data to provide additional context [17].
Information on the user’s location can also be used to supply caregivers with geofencing
services [18] or for simple navigation [19].

The other essential function of many platforms is patient coaching and education.
Coaching is performed in several aspects. The most popular is physical fitness, where
the user is presented with personalized exercise programs [20]. However, some platforms
also advise users on healthy lifestyle, nutrition, and their psychological and cognitive
spheres [14].

Besides educating the user, coaching may also benefit informal caregivers. For ex-
ample, the platform presented in [21] has a coaching module dedicated to caregivers.
Additionally, it includes a virtual caregiver module that provides the user with advice
when a real-life caregiver is not present. Such platforms may also reduce caregivers’ burden
by controlling drug delivery [22] so that they do not have to be present at all times to
administer drugs themselves.

Recent advancements in AI, especially in the domain of large language models, have
enabled implementing more sophisticated coaching services using AI chatbots. The authors
of [19] proposed the extension of the platform’s capabilities with an interactive ChatGPT-
based assistant to answer user questions. Although such an approach is interesting, it poses
some dangers, as the chatbot’s answers might be misleading and might put the user’s
health in danger, e.g., by suggesting incorrect medicine dosages.

Generally, studies performed to date show that adhering to the proposed guidelines
leads to visible improvement [14]. However, the sole presentation of the training plan
alongside possible gains does not guarantee active user participation [7]. Therefore, a more
complex approach is needed.

One way to motivate users to use the platform actively is to introduce a social net-
working component [19,23]. Active participation may also require the platform to be
accessible and intuitive for use use by elderly users [7], which requires the implementation
of dedicated interfaces
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2.3. User Interfaces

The most popular user interface is either a smartphone [24] or a tablet [9]. Mobile
applications usually enable the input and display of data using simple interfaces designed
with older adults in mind (large fonts and buttons).

The other typical interface implementation is via web applications [9,24]. These
applications are usually intended for medical professionals and caregivers, as they include
detailed graphs and information about the user’s health state. However, some solutions
exist where a web browser is used as a primary means to communicate with the user [23].

The above interfaces offer many capabilities. However, not all seniors may use them
fluently. Therefore, it may be a good idea to explore other possibilities. In [25], the authors
proposed a TV-based interface for the platform. Using a TV is a good idea, as it is the most
prevalent device in the homes of the elderly, and using TVs reduces the learning curve
needed to start using the platform.

Some platforms may introduce non-standard ways of communicating with the user.
For example, the platformed proposed in [23] uses ambient displays to communicate a new
message received in a social network (a curtain is illuminated and moved with a fan or a
bulb changes color). The proposed solution also enables users to tap a tangible device to
alert emergency contacts.

Interaction between the user and the platform may also be implemented using
robots [26]. Robots can be used to communicate with users and help them in daily tasks
like carrying objects [27]. Although such solutions may be useful, their price significantly
limits their applicability.

Some caregiver-oriented platforms may not require patient interaction at all. For ex-
ample, cameras can be used for activity and emotion recognition, as in [28]. Although such
systems may supply algorithms with interesting data that are difficult to obtain in other
ways, they might be treated as an invasion of privacy.

2.4. Assessment and Predictive Capabilities

Giving users personalized recommendations and providing them with health-state
estimates requires assessment of their health state and capabilities. Such assessment is
typically performed based on gathered data. Health state can be easily assessed based on
medical device measurements, e.g., blood pressure measurements to diagnose high blood
pressure [29]. Physical capacity can scored based on the user’s activity [12] or data from
dedicated sensors, enabling the performance of standardized tests like the Short Physical
Performance Battery (SPPB) [20]. The psychological aspects of a user’s life are usually
assessed based on standardized questionnaires [9,14].

Besides assessment, such platforms may use predictive modules to provide users with
information on possible risks and guide them to prevent, or at least delay, the occurrence
of illness [30]. Several machine learning-based models for the prediction of elderly users’
health states over a longer time horizon have been proposed in the literature. Such models
target all domains, from cognitive functions [31,32] and common comorbidities like dia-
betes [33] and balance problems [34] to specialized models aimed at specific diseases like
renal failure [35].

Given that most studies of predictive health models are relatively recent, few platforms
offer such functionalities. Examples of platforms where such risk assessment is performed
include those presented in [3,24], which introduced prediction methods for short-term
glucose dynamics and frailty risk, respectively.
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3. CAREUP Platform Concept and Functionalities
The CAREUP platform is an ICT-based monitoring solution aiming to mitigate the

decline of older individuals’ intrinsic capacity. The idea of the platform’s operation is
shown in Figure 1. The tablet installed at the user’s home performs two primary roles: it
provides access to the platform services (e.g., reviewing monitoring results, playing games
offered by the platform, and answering questionnaires) and is a gateway transferring
results from wearables, medical devices, and sensors used by the person to the core system.

Wearables & sensors

Personalized Care Plan
empowering the older adult's goals 

Monitoring through comparison 
with Elderly-Centred Goals

AI Engine for 
Predic�on of IC 

decline

Data 

Intrinsic Capacity 
(IC) parameters

extrac�on

Monitoring results:
Intrinsic Capacity measures

Caregivers, Real
human coaches,

ICT/e-literacy 
edicators Locomo�on

Cogni�on

Vitality

Psychological

Sensory capacity
----- - -- ---- ----

Standalone medical devices
(used at home)

Reference 
Guidelines for 

Compensa�on o 
Intrinsic Capacity

decline

Clustered and 
Granularized

Guidelines for 
Personalized Care

Plan Building

Personalized Care Plan

Monitoring 
results

Core System

Figure 1. The CAREUP platform concept.

Processing of the collected data consists of extracting IC parameters describing user
performance in particular IC domains, predicting IC degradation, and comparing the
results with goals defined by the user. IC evaluation results and goals are the basis
for the development of a personalized care plan. The care planning process is focused
on the needs, values, and preferences of older individuals. The “Reference Guidelines
for Compensation of Intrinsic Capacity decline” represent the gold-standard guidelines
established by authoritative bodies, e.g., the World Health Organization, to compensate for
the degradation in the intrinsic capacity that is programmed into a computer-interpretable
version. The “Clustered and Granularized Guidelines for Personalized Care Plan building”
were established by a working group of experts at the start of the project to cluster and
granularize the “Reference Guidelines” into more refined guidelines according to a cluster
of persons that share the same phenotypes for the degradation of their intrinsic capacities.
They issue individualized guidelines and recommendations according to the empowered
central goals of individuals. They allow the platform to build a personalized care plan to
be communicated to the primary user for implementation.

The plan defines activities to be performed and specifies tools to compensate for iden-
tified IC declines in particular domains. Caregivers and coaches have access to monitoring
data and the plan; their role is to monitor progress and support plan implementation.
IC evaluation is carried out periodically at weekly intervals based on the current sets of
collected data. The older adult has to redefine his centered goals periodically (e.g., every
six months) or when the IC parameters deteriorate.

4. CAREUP Platform Co-Design Methodology
The whole process of the CAREUP design follows the User-Centered Design (UCD) ap-

proach as defined by ISO 9241-210:2019 Ergonomics of human-system interaction—Part 210:
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Human-centered design for interactive systems [36]. The approach is divided into four funda-
mental activities:

1. User groups are specified, and the context of use is described;
2. A set of specific requirements is defined to create a degree of fit between the device

and the user;
3. The design prototypes are produced based on these specifications and are presented

to the user in the form of user testing;
4. Once feedback has been received, the last phase is to evaluate the system.

The process is repeated until all user requirements are met. The whole user-driven
approach was performed in three countries at the headquarters of end-user partner organi-
zations: EURAG Austria in Austria, INRCA (National Institute of Health and Science on
Aging—IRCCS) in Italy, and AAIF (Ana Aslan International Foundation) in Romania.

The first phase of the CAREUP platform definition is analysis of the needs of the
end user [37]. Based on the UCD approach, two questionnaires containing closed and
open-ended questions were prepared and used to collect data from 30 older adults and
32 informal caregivers. The questions concerned the context in which the CAREUP
platform would be used and the IC framework’s ability to clearly convey data on the
user’s health.

The results show that most seniors in each country consider the proposed technology
necessary. According to the users, the most valued benefits of the platform are being notified
of the recording of outlier health parameters, preventing negative outcomes of falling down,
real-time monitoring of health values, and evaluating and improving cognitive functions.
Besides the perceived benefits, the other factor influencing the willingness to use the
CAREUP platform is its ease of use.

User research is vital in comprehending users’ lifestyles, motivations, and challenges.
The incorporation of user feedback, prototyping, and testing are crucial steps in understand-
ing users’ needs and expectations and shaping the product accordingly. This user-driven
approach prioritizes users’ needs and desires throughout the design process. By under-
standing user behavior, preferences, and goals, developers can create intuitive, efficient,
inclusive, and accessible experiences for all. Moreover, monitoring whether the users
feel that the system respects their needs is essential for building trust and maintaining a
positive user experience during this process. For that reason, usability, user experience,
acceptance, privacy, intrusiveness, and stigma became the primary variables to measure
during pre-pilot and pilot testing after the different stages of development.

The users were consulted about the early version of the platform during the pre-pilot
stage. The pre-pilot tests assessed and validated the system components to find and solve
major usability weaknesses by enrolling 15 older adults and 15 informal caregivers. The pre-
pilot tests focused on users’ preferences and usability recommendations to evaluate each
component’s acceptability and usefulness/efficiency. In that way, conclusions and users’
proposals were transferred to the technical partners to release an advanced version of the
system to be evaluated in the final pilot. The outcomes of the final pilot study are presented
in Section 7.

The potential users were also asked about the costs associated with the platform’s use.
The expenses that the users would incur include the cost of the devices and a monthly fee to
use the platform. The cost of the starting set of devices needed by the platform (tablet and
health sensors) was set to EUR 325. If the user already owns some pieces required by the
platform e.g., a tablet, a blood pressure meter, etc., this cost would be lowered. The monthly
access fee for the platform was set at EUR 7.5, which was accepted as a reasonable amount
by the users and caregivers.
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Direct comparison of platform pricing might be problematic due to differences in
functionalities offered by various platforms. However, even when compared to other
elderly care solutions, the price of CAREUP is favorable. For example, the basic functional-
ities of an another platform for medical data processing and aggregation, MyChart [38],
which is used in the USA, are usually included in the user’s health insurance. However,
some of the services are additionally paid. One-time consultation concerning the recorded
results may cost between USD 7 and 50 [39], which is close to the yearly cost of using the
CAREUP platform.

The pricing of other, more limited platforms is also relatively high. A good example
is geofencing solutions for older users who have dementia. Single-purpose solutions,
e.g., Protection Pendant [40], that send direct alerts to the caregiver without offering any
platform benefits start as low as a one-time charge of USD 99 per sensor. More advanced
solutions are usually more expensive. For example, the cost of using the BoundaryCare [41]
application on a smartwatch owned by the user ranges from USD 25 to 35 per month,
depending on the commitment length. The platform allows users to expand the list of
monitored parameters, with a compliant oxygen saturation monitor priced at USD 200.

Similar costs are incurred by the users of medical alert systems sending notifications
in the case of emergencies such as falling down. The monthly cost of such platforms starts
at USD 25 [42].

Given the costs of the other solutions and the rising costs of medical consultations,
the CAREUP platform seems to be a cost-efficient solution, the adoption of which could
reduce medical expenses incurred both by the user and medical systems.

5. CAREUP Platform Implementation
5.1. System Architecture

The platform architecture (Figure 2) follows the ISO/IEC CD 30141 standard [43].
The view presents the main physical system components (e.g., sub-systems, devices, net-
works, and software modules) of the platform, their distribution, and the topology of their
interconnectivity. The devices are grouped into five domains. The user and sensing and
controlling domains include devices installed at the user’s home and worn by the user.
The other domains comprise software modules running on the core server located in the
cloud environment.

5.2. User Domain

The CAREUP platform offers two categories of services: local services and RESTFul-
based web services, which can be accessed with PCs, notebooks, tablets, and smartphones
through embedded Internet browsers. Local services are implemented in Android-based
devices (i.e., tablets and smartphones). Although local services are based on autonomous ap-
plications, the data collected during their use are sent to the resource and interchange domain.

The platform includes three tablet applications: Care Plan, the Positive Health (PH)
application, and cognitive games. Care Plan is the main application with which the end user
interacts. Its primary function is to present the user with individualized care-plan tasks,
enabling him to reach his healthcare goals. It is also an interface for manually uploading
the data from the medical sensors and accessing the PH and cognitive games applications.

The main purpose of the PH application is to collect data on the user’s current self-
rated health; mood; and other aspects of his life, such as social participation. The application
also implements basic physical tests. The cognitive games application offers the user several
games testing her/his logical thinking and reflexes. The game scores are sent to the cloud
for eventual evaluation.
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Figure 2. The CAREUP platform architecture (system view).

5.3. Sensing and Controlling Domain

The sensing and controlling domain comprises devices collecting measurement results
reflecting the user’s health status. The gateway is a core component of the sensing and
controlling domain. In the CAREUP platform, this role is fulfilled by a tablet equipped
with interfaces and software that allow for the exchange of data with other domains (using
cellular/Ethernet links), in addition to collecting monitoring results (over BLE links) from
sensors, wearables, and medical devices used by older individuals at home and during
their outdoor activities. The tablet is also used to access care plans, games, mobile apps,
computerized questionnaires, and monitoring results.

5.4. Application Service Domain

In the current platform implementation, the domain includes a module providing
basic platform services: portal access, data presentation, and care-plan preparation. This
module comprises a web portal application, a data visualization module, and a care-plan
composition module. All run in Docker containers on the core server.

To access most CAREUP services, the user must log into the CAREUP portal with a
browser. The service portfolio and user interface depend on the user category. Primary
users obtain access to the care plan and data presenting their performance in IC domains.
Platform management staff can configure the platform and exploit diagnostic data.

The CAREUP platform automatically collects large amounts of data through the IoT
network (sensing and controlling domain). However, for some analog devices, information
should be entered manually. The CAREUP platform relies on computer-based question-
naires designed by an expert group comprising members of project partner organizations.

CAREUP visualizes changes in health status and compares these with self-defined
health goals, generating awareness about the effects of intervention on the user’s health
status. The care plan composition module uses monitoring results and guidelines to
generate a personalized plan of activities covering IC domains.
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5.5. Resource and Interchange Domain

This domain comprises modules responsible for the storage, processing, and sharing
of data with other domains. The user database and data exchange are handled by Post-
greSQL, which is a relational database. The main reasons for that choice are the increased
relationship between data entities found during CAREUP platform design and the need for
more robust, fast, and secure technology. Although a noSQL database has the advantage
of being able to manage massive amounts of data and be easily scalable, at a particular
moment, a relational database like PostgreSQL becomes necessary to manage complex
relationships in a fast and reliable way while providing a great set of tools to the developers
and the maintainers of the system.

The security of data is ensured by implementing a data management plan, which
defines several procedures for maintaining data privacy. The data management plan
follows the GDPR obligations and imposes the following conditions on data collection
and processing:

• The data types collected by the platform are limited to those that are crucial for its
operation. The platform does not collect unnecessary data for possible future use.

• The redundancy and duplication of data across databases is avoided to improve security.
• The data sent to the platform is pseudonymized, which makes it more difficult to trace

them back to particular users. Each user is assigned a unique, randomly generated
identifier that is used in place of her/his personal information.

• The data links between the applications and the platform’s cloud services are encrypted.
• The user’s personal data are stored in a separate, secure database, ensuring they are

detached from their medical data.

The data access control module verifies the correctness and validity of users’ logins
and passwords (authorization) and provides access to the O&M platform functionalities
through login/password authentication. Both functionalities are implemented in the API
module, which provides JWT and OAuth 2 authentication mechanisms to secure access
and data exchange.

Data preprocessing prepares data that will be processed in the evaluation and pre-
diction module, which performs threemain functions: evaluation of the primary user’s
performance in IC domains, calculation of total IC measure, and prediction of IC changes.

5.6. Operations and Maintenance Domain

The operation and maintenance (O&M) module comprises access, remote software
installation and configuration, remote diagnostics, and system database services.

Remote software installation and configuration enable the deployment of basic func-
tionalities and modules to the core server and portable devices (a tablet) using an auto-
matically configured Git run in Docker containers. For software deployment and updates
of gateways, sensors, and other devices with Internet access enabled, a reverse proxy
mechanism is used if necessary. Red Hat Ansible is employed to automatize the procedure.

The design choice for the system database was to implement it in the same database as
the user database, i.e., the CAREUP core database implemented in PostgreSQL. The system
database stores the following data types related to platform operation and management:
credentials for all platform users, including O&M staff; pseudonyms of the users to enable
the anonymization of the data; and data describing system configuration (e.g., mapping
devices used to link particular locations to particular users, device identifiers and addresses,
and devices’ configuration parameters).
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5.7. Data Sources

Monitoring the user’s health state and providing her/him with personalized care plans
requires the collection of data concerning both his/her health parameters and emotions.
The data processed by the platform come from several sources:

• Medical devices: blood pressure meters, oximeters, digital scales, blood sugar meters,
grip strength meters, sleep trackers, step counters (smartwatch), etc.;

• Positive health questionnaires;
• Cognitive games.

The data from the devices are collected using the Care Plan application. Exemplary
screenshots of the application are presented in Figure 3.

(a) (b) (c)

Figure 3. Care Plan application data acquisition options: (a) manual input; (b) automatic download;
(c) saved values list presented to the user.

The data from the devices may be supplied to the platform in several ways. The first
option is addressed to users who use older devices incapable of wireless communication.
Such users need to input the results manually, using an intuitive interface. If users possess
newer devices equipped with Bluetooth, the data are transferred automatically to the
platform. The user can view the recorded values at any time.

The second data source is positive health questionnaires, which allow the platform
to assess the user’s state in non-measurable domains such as emotions and self-perceived
capabilities. They are implemented in the Positive Health application, exemplary screens
of which are presented in Figure 4.

The Positive Health application presents the users with short, three- to four-question
questionnaires asking about their current mood and health (Figure 4a). The questions
come from the questionnaires used for IC evaluation. Frequent asking of selected questions
allows the platform to efficiently update the user’s IC score and present him/her with an
actual prediction.

The PH application also implements a short locomotion assessment test based on the
Short Physical Performance Battery. The test implements two parts of the SPPB: a chair
stand (Figure 4b) and a balance test (Figure 4c). In both of the tests, the user is presented
with detailed instructions and is asked to perform a short physical exercise, the completion
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time of which is measured. The obtained data are used to update the locomotion IC score.
As the walking speed test requires the user to take walk of a few meters, it is not possible
to implement it using a tablet app. The ability to walk may be assessed based on the
smartwatch step-counter output.

(a) (b) (c)

Figure 4. The Positive Health application: (a) Positive Health questionnaire; (b) locomotion chair
stand screen; (c) locomotion balance test screen.

The last data source is the CAREUP cognitive games. The games have a dual pur-
pose. First, they are used for entertainment and to boost the user’s cognitive abilities [44].
Secondly, changes in achieved scores might be an indicator of a functional decline. The ap-
plication offers several games, with exemplary screens presented in Figure 5.

In the application, there are five cognitive games available:

• Match Game: The user’s task is to pair cards lying face down to match their face pictures.
• Reaction: The user’s goal is to click on a colored object as soon as it is displayed on

the screen;
• Moving objects: The user is asked to click on as many objects of a specified kind as

possible in a predefined time;
• Puzzle: The users solve a jig-saw puzzle without receiving indications of the cor-

rect/incorrect placement of the pieces;
• Computations: The user performs simple mathematical computations (addition and

subtraction) or complex operations (addition, subtraction, multiplication, and division)
in a predefined time.

The scores of the games, corresponding to the time needed to complete the puzzle
or pair the cards, the reaction time in which the object was clicked, and the number of
correctly solved computations or selected elements, are sent to the platform server, where
they are stored and may be processed to assess possible functional decline.
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(a) (b)

(c) (d) (e)

Figure 5. Screenshots cognitive games application: (a) match game; (b) reaction; (c) moving objects;
(d) puzzle; (e) computations.

6. Intrinsic Capacity Evaluation and Prediction
6.1. IC Definition

The concept of Intrinsic Capacity (IC) was introduced by the World Health Organiza-
tion (WHO) as a tool for understanding individuals’ capabilities and functional abilities
as they age. It is part of a broader framework called the “World Report on Ageing and
Health”, which aims to address the challenges and opportunities of an aging population.
Intrinsic capacity refers to the composite of all physical and mental capacities an individual
possesses, encompassing their ability to perform various activities and maintain well-being.

The concept of IC is crucial in the context of aging, as it highlights the importance of
viewing older adults holistically, recognizing their diverse capabilities, and understanding
that age-related changes are not solely determined by chronological age but are influenced
by multiple factors. By identifying and supporting intrinsic capacity, it becomes possible to
promote healthy aging, enhance functional abilities, and create environments that facilitate
active and productive aging.

The WHO recognizes five key IC domains that contribute to an individual’s overall
functional ability:

• Locomotion refers to an individual’s ability to move independently, including walking,
transferring, and maintaining balance.

• Cognition involves mental processes such as memory, attention, learning, and problem-
solving abilities.

• Vitality pertains to an individual’s energy levels, enthusiasm, and general well-being.
• The psychological domain focuses on an individual’s emotional resilience, coping

mechanisms, and psychological well-being.
• Sensory capacity encompasses the ability to perceive and interpret information

through the senses, such as vision and hearing.
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These capacities are influenced by a combination of personal factors, such as physio-
logical and psychological attributes, as well as external factors, like the environment and
lifestyle choices.

6.2. IC Evaluation

The evaluation of intrinsic capacity is a complex and evolving area of research. Cur-
rently, there is no universally recognized standard for evaluating intrinsic capacity, so
various assessment tools and methods are used to measure its different domains. These
approaches typically depend on widely used questionnaires For example, IC evaluation in
the psychological domain may be performed using the Geriatric Depression Scale (GDS-15)
or the Patient Health Questionnaire (PHQ-9). In the CAREUP platform, the IC components
are scored in the 0–1 range based on the results of the questionnaires filled out by the users
and performed measurements.

The locomotion IC is evaluated based on the results of the Short Physical Performance
Battery (SPPB) test [45]. The SPPB involves three physical exercises that test the user’s
balance, walking speed, and ability to change positions from sitting to standing. The IC in
the locomotion domain is computed in the following manner:

ICLocomotion =
SPPB

max(SPPB)
(1)

where SPPB is the score on the SPPB test.
The vitality IC is a composite value of reported energy levels and grip-strength mea-

surements:

ICVitality = min(0.13 · (6 − SF12[10]) + 0.09 · Grip_strength[kg], 1) (2)

where SF12[10] is the answer to the energy level-related question from the SF-12 question-
naire and Grip_strength is the measured grip strength. The coefficients in the equation are
based on the confirmatory factor analysis performed in [46].

The psychological IC is assessed using the Patient Health Questionnaire (PHQ-9) [47].
The score is computed based on the following widely adopted cut-offs:

ICPsychology =



1.00, if 0 ≤ PHQ ≤ 4

0.75, if 5 ≤ PHQ ≤ 9

0.50, if 10 ≤ PHQ ≤ 14

0.25, if 15 ≤ PHQ ≤ 19
27−PHQ

32 , if 19 < PHQ

(3)

where PHQ is the total score on the PHQ-9 questionnaire. For high PHQ-9 scores, indicating
severe depression, the IC value linearly falls to 0.

Cognitive performance is evaluated based on the Montreal Cognitive Assessment Test
(MOCA). The score is the MOCA score scaled to the 0–1 range.

ICCognition =
MOCA

max(MOCA)
(4)

The sensory IC is assessed based on self-rated hearing (left and right) and vision (far
and near). The IC is a composite of the answers to the above questions:

ICSensory =
Hleft + Hright + Vfar + Vnear

20
(5)
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where Hleft, Hright, Vfar, and Vnear are hearing and vision capabilities rated from 1 to 5
(higher scores are better).

The IC values are computed based on the answers to the questionnaires and measure-
ment results recorded with CAREUP. The initial evaluation in the IC domains performed
when the user starts using the platform (fills out the questionnaires and performs relevant
measurements for the first time).

The IC values are then updated on a daily basis when relevant new data become
available. The questionnaire answers essential for IC computation are collected using the
Positive Health application. The questions are asked in monthly cycles to not overburden
the user with repetitive questionnaires. The questions concerning more rapidly changing
aspects, e.g., sleep quality, are asked several times during that period, whereas those
related to slowly changing areas like sensory capacity are asked once every four weeks.
To assure that the results of measurements with medical devices are up to date, the platform
periodically reminds the user to perform them.

6.3. IC Prediction
6.3.1. IC Prediction Concept

One of the novelties of the CAREUP platform is its ability to supply the user with a
prediction of their future performance in the intrinsic capacity domains. IC prediction is
performed separately in five domains according to the cycle presented in Figure 6.

time

the user starts using the CAREUP platform
and fills the questionnaires for the first time

Initial IC
prediction

IC prediction
update

platform use platform use

IC prediction
update

Figure 6. The concept of IC prediction over the CAREUP platform use cycle

Users are supplied with an initial IC prediction alongside their current IC as soon
as they start to use the platform. This prediction is based solely on the user’s socio-
demographic data and the answers to the first round of questionnaires. The obtained
prediction is then updated periodically, considering new data gathered throughout the
platform’s use.

Predictions of the user’s performance in the IC domains are performed using machine
learning models. Figure 7 presents the general idea behind IC prediction.

Machine
Learning
Models

User Data 

Demographics
- Age
- Marital status
- Education
- Living area
- Technical literacy

Physiology
- BMI
- SPPB

Health
- SF-12v2
- IADL

Psychological
- LSNS-R
- EQ-5D-5L
- GDS-15
- SWBS

In domains:
- Locomotion
- Cognitive 
- Sensorial
- Psychological
- Vitality

IC in N years

Figure 7. The concept of the IC prediction model.

The prognosis of the user’s future IC is based on his/her socio-demographic informa-
tion, physiology, current health, and psychological status. The results are discrete—each
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feature is a single value, e.g., measured BMI or singular answers to selected questions from
the questionnaires. The data are passed to a machine learning model, which processes
them and outputs the proposed IC over a horizon of several (e.g., two) years. IC prognosis
is repeated every week based on the updated incoming data from the platform.

6.3.2. Input Data

At the moment, the amount of data collected with the CAREUP platform is not large
enough to effectively train machine learning models. Therefore, the models were trained
on publicly available datasets of the English Longitudinal Study of Ageing (ELSA UK) [48].
In the project, we used a harmonized version of the ELSA UK dataset, which contains data
gathered in the United Kingdom in nine waves from 2002 to 2019. It includes data from
almost twenty thousand individuals who took part in at least one study wave. The data
gathered in each wave comprise information about various aspects of the participant’s
life, including demographics; health; family; finances; employment; and performance
in several areas, such as cognition and physical capacity. The waves were conducted in
two-year periods.

The datasets used to train the IC prediction models were constructed by taking the
person’s answers from one wave and combining them with a and IC score label computed
based on answers from the next consecutive wave. As mentioned above, the ELSA UK
waves were separated by two years. However, the physiological measurements needed for
locomotion and vitality IC assessment performed made every four years due to that fact those
ICs can be predicted over a four-year horizon rather than over two years, as in the case of the
other domains. The list of the variables used by the models is presented in Table 1.

As the scope of ELSA UK does not cover all of the data gathered by the CAREUP
platform, the models use only selected CAREUP parameters, which have their counterparts
in the ELSA UK dataset. In the future, when more CAREUP-specific data become available,
the variable selection process will be repeated. As shown in [49], not all variables are
relevant to IC prognosis in each of the domains.

All models use a similar set of variables. The only exceptions are grip strength, which
is used solely by the vitality model, and SPPB results (balance, walking speed, and chair
stands), which are used by the locomotion model. The omission of these values in other
models results from the fact that for these variables, the number of available results in the
training dataset was low. This was caused by the fact that, in the ELSA UK study, both
SPPB and grip-strength measurements had to be performed by qualified personnel; thus,
those answers are missing for many participants. The number of examples in each dataset
varied due to the differing availability of the future IC scores (the labels were not imputed).
The IC scores were calculated using the rules described in Section 6.2.

Before being passed to the models, the variables are preprocessed. The answers
to questions are scaled to the 0–1 range, and the categorical questions, for which the
answers are not quantitative, are hot-encoded (in CAREUP, only concerning marital status).
The scores of MOCA and PHQ9 are additionally standardized to resolve the problem of
differing scales used for depression and cognitive capacity evaluation in CAREUP and
ELSA (custom cognitive questions and the Center for Epidemiologic Studies Depression
Scale (CESD), respectively). The means and standard deviations for ELSA UK tests were
calculated based on the available data. The corresponding values for MOCA and PHQ-9
were taken from the literature. For MOCA, based on [50], the mean score was 23.25, with
a standard deviation of 4.82. For PHQ-9, based on [47,51–53], the mean was 5.79, with a
standard deviation of 5.8.
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Table 1. The variables used by the specific models.

Data Source Variables Locomotion Sensory Psychology Cognition Vitality

Socio-demographics
Age, sex, marital status
(one-hot-encoded), and

education
x x x x x

ine Physiology BMI x x x x x

ine Sensorial
performance

Left/right hearing and
near/far vision x x x x x

ine Locomotion
parameters

SPPB results (balance,
walking, and
chair stands)

x

ine Cognitive
performance Result of MOCA x x x x x

ine Depression
evaluation result of PHQ-9 x x x x x

ine Health Status SF-12
questionnaire

Answers to questions 1,
2, 3, 4, 5, 6, 8, 10, and 11 x x x x x

ine Instrumental
Activities of Daily Life

questionnaire

Answers to questions 1,
2, 3, 4, 5, 7, and 8 x x x x x

ine UCLA Loneliness
Scale questionnaire

Answers to questions: 1,
2, 4, 11, and 14 x x x x x

ine Lubben Social
Network Scale
questionnaire

Answers to questions 6
and 12 x x x x x

ine Health
Questionnaire Eq-5D-5L

Answers to questions 1,
2, 4, and 5 x x x x x

ine Other measurements Grip strength x

ine DATASET SIZE 3890 14,312 14,204 14,245 7720

6.3.3. Prediction Models

During the project, we considered using different types of machine learning regression
methods for IC score prognosis. The tested methods include:

• Linear regression;
• Random forest regression, tested for different numbers of trees (10, 50, 100, 200, 300,

and 500);
• XgBoost, tested for different numbers of trees (10, 50, 100, 200, 300, and 500);
• Dense neural networks (DNNs) with different numbers of layers and neurons (Table 2).

The models were implemented using Python. Linear regression and random for-
est used their standard implementations from the scikit-learn [54] and DMLC XgBoost
libraries [55]. The neural networks were implemented in Pytorch and consisted of several
dense layers, including a varying number of neurons. Each dense layer was followed
by batch normalization to improve the models’ generalization capabilities. The output
layer always included one neuron with a linear activation function. We tested several
combinations of layers and numbers of neurons and selected the most accurate based on
MSE and MAE. The details of the architectures are presented in Table 2.
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Table 2. Architecture of the IC prediction neural networks models.

Domain Input Size Layers Output

Locomotion 48 Four layers with 32, 32, 32, 32 neurons Locomotion IC in 0–1 range
Sensory 43 Four layers with 16, 16, 16, 16 neurons Sensory IC in 0–1 range

Psychology 43 Four layers with 16, 16, 16, 16 neurons Psychology IC in 0–1 range
Cognition 43 Three layers with 16, 32, 16 neurons Cognition IC in 0–1 range

Vitality 44 Four layers with 8, 16, 16, 8 neurons Vitality IC in 0–1 range

The accuracies of the proposed methods were tested on the prepared ELSA UK
datasets. Each of the architectures was evaluated using k-fold cross-validation with k
equal to 10. In this validation scheme, the dataset is shuffled and partitioned into training
and test datasets. The partition is repeated ten times, taking a different portion of data as
a test dataset each time. The model is then trained and tested on the obtained data splits,
which ensures that the model’s performance was tested for all observations. The resulting
accuracy is the average of metrics computed for the ten splits. The methods’accuracies
were assessed based on four metrics:

• Mean Squared Error (MSE);
• Mean Absolute Error (MAE);
• Coefficient of determination (R2);
• Median Absolute Error (MedAE).

The data supplied to the above methods were preprocessed according to the same
scheme as described in Section 6.3.2. The obtained accuracy metrics are presented in Table 3.
The table includes the best results achieved for each of the methods. The MAE did not
exceed 0.14 for any of the domains, which is an acceptable result, given the complexity of
the problem.

Table 3. Performance metrics of the tested IC prediction models

Domain Method Test Data Train Data
MSE MAE R2 MedAE MSE MAE R2 MedAE

Locomotion

Linear Regression 0.0080 0.0675 0.3790 0.0520 0.0077 0.0664 0.4064 0.0515
Random Forest (trees = 200) 0.0083 0.0695 0.3603 0.0536 0.0011 0.0257 0.9127 0.0196

XgBoost (estimators = 10) 0.0085 0.0700 0.3404 0.0501 0.0050 0.0552 0.6158 0.0430
Neural Network 0.0085 0.0666 0.3878 0.0478 0.0058 0.0550 0.5555 0.0398

Vitality

Linear Regression 0.0088 0.0729 0.5817 0.0594 0.0087 0.0725 0.5877 0.0588
Random Forest (trees = 300) 0.0093 0.0751 0.5583 0.0616 0.0013 0.0276 0.9399 0.0226

XgBoost (estimators = 10) 0.0092 0.0747 0.5645 0.0616 0.007 0.0656 0.6691 0.0543
Neural Network 0.0085 0.0727 0.5818 0.0617 0.0085 0.0724 0.5962 0.0596

Psychology

Linear Regression 0.0320 0.1255 0.3373 0.0854 0.0317 0.1250 0.3429 0.0849
Random Forest (trees = 300) 0.0334 0.1310 0.3082 0.0903 0.0046 0.0483 0.9055 0.0330

XgBoost (estimators = 10) 0.0328 0.1277 0.3206 0.0827 0.0263 0.1162 0.4555 0.0787
Neural Network 0.0380 0.1342 0.2642 0.0838 0.0313 0.1246 0.3490 0.0822

Cognition

Linear Regression 0.0130 0.0887 0.4161 0.0723 0.0129 0.0884 0.4210 0.0720
Random Forest (trees = 300) 0.0136 0.0909 0.3919 0.0743 0.0019 0.0335 0.9169 0.0272

XgBoost (estimators = 10) 0.0132 0.0895 0.4068 0.0722 0.0114 0.0834 0.4913 0.0680
Neural Network 0.0127 0.0875 0.4179 0.0708 0.0127 0.0877 0.4303 0.0720

Sensory

Linear Regression 0.0136 0.0931 0.4277 0.0778 0.0135 0.0928 0.4318 0.0777
Random Forest (trees = 300) 0.0141 0.0948 0.4068 0.0795 0.0019 0.0350 0.9189 0.0292

XgBoost (estimators = 10) 0.0138 0.0940 0.4182 0.0795 0.0121 0.0880 0.4927 0.0746
Neural Network 0.0136 0.0938 0.3905 0.0814 0.0135 0.0921 0.4343 0.0779
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The best performance was achieved for the locomotion domain, in which the mean
absolute error was at a level of 0.0666. The prediction errors in this domain may result
from how the SPPB test components are scored. Even a small change in walking speed
may cause the measured time to fall between different thresholds, which would cause a
significant change in the total score.

A slightly lower accuracy was obtained for vitality and cognition prediction. The lower
quality of vitality prognosis might result from the relatively small number of available
grip-strength measurements. In the case of cognition, the accuracy might have been higher
if the dataset included additional typically used data as processed parameters of MRI scans.
However, such data cannot be obtained using everyday ICT platforms.

The MAE for sensory IC prediction was about 0.09. Predicting sensory performance
is especially hard, as the questions concern subjective ratings of sight and hearing (even
when using glasses or hearing aids) and not the actual health state of the person. It was
observed that for some patients, even after observing a falling trend in visual capacity over
several waves, there was a sudden increase due to, e.g., having cataracts removed.

The worst accuracy was achieved for the psychological domain. Predicting whether a
person is at risk of depression or lowered mood is a challenging task due to the presence of
random contributing factors independent of the person’s health state, e.g., the death of a
loved one or job loss.

For all IC domains, the results obtained using the tree-based methods and neural
networks had a similar accuracy. This suggests that for this prediction problem (variables
and the predicted values), the accuracies may be at their theoretical limits.

Given the minor differences in the methods’ accuracies, we decided to implement
the prediction algorithms as neural networks, as they have some advantages over the
other methods. First of all, in the future, when the system gathers enough time series
data from sensors and questionnaires, the models will be updated to accept more types
of data. When it comes to unstructured data such as time series, neural networks have a
significant advantage [56] over tree-based methods. They allow for efficient encoding of
different types of data, as they do not require hand engineering of the input features (the
feature extractor is trained on data). By implementing NN-based models now, NN-enabled
infrastructure will be already in place when a new batch of models is trained and ready to
be deployed.

Additionally, historically, NNs have shown promising performance improvement
when training datasets are enlarged. Moreover, NNs support online training on incoming
new data samples, which is welcomed, as the datasets used for IC prediction will gradually
grow with platform use.

7. Pilots and Exemplary Results
The fully developed platform was tested during the pilots, which were conducted

by the end-user partners (EURAG, INRCA, and AAIF) in their respective countries (Italy,
Austria, and Romania). The countries selected for pilots differed in terms of e-literacy of the
older population. According to a report by the European Union Agency for Fundamental
Rights [57], for those countries, the highest percentage of older people with basic digital
skills was observed in Austria. Both Italy and Romania are below the EU average, with
Romania ranking second to last in the whole EU.

During the pilot, 64 older adults used the CAREUP system in their living environ-
ments. The objectives of the final phase were to assess the primary outcomes (adherence,
usability, and acceptance) and the secondary outcomes (physical health, perceived loneli-
ness, social interaction, quality of life, and cognitive health). The platform was also tested
by 15 caregivers.
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The tested platform setup comprised the complete platform, including applications
and several sensors. A list of the devices that were supplied to the users is presented
in Table 4.

Table 4. List of devices used during the pilot studies.

Device Model Measured
Parameters

Weight scale iHealth HS2S FIT Weight and
body composition

Blood pressure meter iHealth Track KN-550BT Blood pressure

Oximeter iHealth PO3M Blood saturation
and pulse

Hand grip-strength meter GRIPX Digital Hand Dynamometer Hand
grip strength

Sleep tracker Withings Sleep Tracking Mat WSM02 Sleep duration
Thermometer Withings SCT01 Body temperature
Smartwatch Starmax S50 Step count

Tablet Lenovo Tab M10 or a tablet owned by the user Questionnaires

The presented list of devices covers only the models that were offered to the users
by the end-user partners. If the users already owned analogous devices and did not want
to use another, they used the manual measurement input of the Care Plan application to
save their health parameters to the platform. Exemplary results achieved for the users are
presented in Figures 8–10.

Figure 8. Presentation of medical measurement results (dashboard).

The medical measurement results (blood pressure, saturation, temperature, and
weight) are presented as time series on graphs organized in a single dashboard. The value
of the most recent result is also in a numerical form.
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Figure 9. Presentation of current intrinsic capacity values.

The current value of the intrinsic capacity is presented in the form of an intuitive radar
graph. The graph shows performance in all five domains. As there is no standardized
formula for overall amount of intrinsic capacity available, we decided not to present it
directly. The area surrounded by the curve on the radar graph might be treated as an
indicator of overall performance instead.

Figure 10. Presentation of intrinsic capacity changes over time.

The changes in intrinsic capacity in the domains are presented in time-series graphs.
The observed changes may provide caregivers or doctors with insight as to how the older
adult’s performance changes and how to take appropriate action to delay the decline.

In the pilots, we also analyzed the intensity of active use of the platformed by both the
primary users and their caregivers. The analysis was performed based on login history and
timestamps of questionnaire answers transmitted to the platform. A basic comparison of
platform use statistics for primary users is presented in Table 5.
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Table 5. Average time between active platform use in days.

Country Average Min 25th Perc. Median 75th Perc. Max

Austria 3.48 2.00 2.49 3.20 3.40 8.33
Italy 3.47 1.07 2.05 2.92 3.95 9.71
Romania 4.67 1.97 3.46 4.33 4.80 11.00

For Austria and Italy, the user participation was at a similar level despite significant
differences in the countries’ digital literacy rates. Moreover, in Italy, there were several
users who actively used the platform practically every day, whereas the most active user in
Austria logged in every second day. In Romania, the platform was used less frequently. In
all of the countries, 75% of the users used the platform more than one or two times per week.
This number conforms to ICT platform acceptance rates reported in other studies [58,59],
ranging from 70 to 90%. Despite the lower use intensity recorded for some users, the time
granularity of the results should still allow for effective IC change monitoring.

Compared to the other available studies, the intensity of the platform use was at a
satisfactory level. Findings for the InnoWell well-being platform [60] deployed in Australia
have shown that it is tough to maintain the user’s involvement. In the described study,
84% of participants completed the 90-day trial, out of which only half logged in more than
once. None of the users used the platform more than ten times. Better participation was
recorded in the training program described in [61]. In the program, the users were asked
to play serious games, aiming to improve their cognitive capabilities. Even though some
users were aware of potential gains, only half met the minimal adherence goal of 10 min of
daily game play.

Caregivers used the platform in a similar fashion in all of the piloting countries.
Caregivers usually accessed the CAREUP portal once or twice a week to monitor the
progress of the primary users they take care of.

8. Conclusions
This paper describes CAREUP, an integrated care platform supporting older adults

based on intrinsic capacity monitoring. The platform, besides typical functionalities of
storing medical measurements and providing personalized recommendations, provides
novel functionalities of intrinsic capacity evaluation and machine learning-based prediction.
Prediction is performed over a two-year horizon (four years in the case of locomotion and
vitality capacities). The obtained accuracy is acceptable, given the horizon and the lack of
specialized measurements (MRIs or genes).

The developed platform’s operation was positively tested during pilots performed
with the participation of older adults and their caregivers in three countries with differing
levels of digital fluency: Austria, Italy, and Romania. Besides standard support and
updates, the platform will be developed further. As more data from users arrive, the IC
prediction models will be updated to include more data that are not covered by openly
available datasets.
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