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Abstract: With the rapid advancement of communication technologies, wireless networks
have not only transformed people’s lifestyles but also spurred the development of numer-
ous emerging applications and services. Against this backdrop, research on Wi-Fi-based
human activity recognition (HAR) has become a hot topic in both academia and industry.
Channel State Information (CSI) contains rich spatiotemporal information. However, exist-
ing deep learning methods for human activity recognition (HAR) typically focus on either
temporal or spatial features. While some approaches do combine both types of features,
they often emphasize temporal sequences and underutilize spatial information. In contrast,
this paper proposes an enhanced approach by modifying residual networks (ResNet) in-
stead of using simple CNN. This modification allows for effective spatial feature extraction
while preserving temporal information. The extracted spatial features are then fed into a
modifying GRU model for temporal sequence learning. Our model achieves an accuracy
of 99.4% on the UT_HAR dataset and 99.24% on the NTU-FI HAR dataset. Compared to
other existing models, RGANet shows improvements of 1.21% on the UT_HAR dataset
and 0.38% on the NTU-FI HAR dataset.

Keywords: Human Activity Recognition (HAR); Channel State Information (CSI); Deep
Learning (DL)

1. Introduction
With the rise of concepts such as smart homes and smart cities, an increasing number

of devices are being connected to the Internet, forming a vast Internet of Things (IoT). In this
context, people have begun to explore how to use these interconnected devices to enhance
the quality of life and safety levels. Wi-Fi, as one of the most commonly used wireless
communication technologies, is ubiquitous in home and work environments, making it an
ideal platform for Human Activity Recognition (HAR).

HAR is a technology that analyzes information about human movements obtained
from various sensors using signal processing methods [1]. It is a practical technology
widely applied in areas such as password input detection [2], user authentication [3], fall
detection [4], human presence detection [5], human structure modeling [6], and smart
furniture [7].

However, traditional HAR methods typically rely on wearable sensors like accelerom-
eters and gyroscopes [8] or cameras [9]. These approaches have some drawbacks. For
instance, using wearable sensors for recognition requires users to wear additional devices,
and the analysis of the recorded information from these devices is necessary to identify
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actions [10]. Moreover, some of these devices can be expensive. Using high-resolution
cameras for recognition involves recording the motion information of the detection tar-
get through photos or videos and then processing features with image processing, deep
learning, and other techniques to complete action recognition [11]. Although this method
offers higher recognition accuracy, it requires suitable lighting conditions and may lead to
privacy issues such as the leakage of facial information.

HAR based on Wi-Fi sensing technology has attracted significant attention from re-
searchers. Compared to traditional HAR, Wi-Fi sensing can perform action recognition
without disturbing users, independent of lighting conditions, while preserving personal
privacy and reducing deployment costs. In recent years, the development of new tech-
nologies such as Multiple-Input Multiple-Output (MIMO) [12], millimeter-wave radar, and
Channel State Information (CSI) have enabled Wi-Fi signals to carry more information
about environmental changes. This provides a possibility for more accurately capturing
human motion characteristics. As technology advances and living standards improve,
Wi-Fi has become an integral part of daily life, almost to the point of being a necessity.

Wi-Fi sensing is an emerging technology that leverages Wi-Fi signals to perceive
and interpret the surrounding environment, offering a variety of applications such as
gesture recognition [13], human modeling [14], occupancy detection [15], fall detection [16],
human identification [17], and people counting [18]. Despite these advancements, the
interpretation of Wi-Fi signals and the extraction of meaningful insights from them continue
to pose a significant challenge. Our research on human activity recognition based on Wi-
Fi is indeed one of the applications within the realm of Wi-Fi sensing. Existing studies
on Wi-Fi-based human activity recognition primarily utilize two types of signals found
in Wi-Fi: RSSI (Received Signal Strength Indicator) and CSI. RSSI is a crucial metric of
signal strength in wireless communication systems and is widely utilized across various
wireless technologies, including Wi-Fi, Bluetooth, Zigbee, and others. It enables devices
to evaluate link quality, optimize communication parameters, and, in certain scenarios,
can be used for positioning and tracking [19]. RSSI’s simplicity, low cost, and minimal
power consumption [20] have made it a popular choice for many applications. However, as
wireless communication technologies have advanced, the limitations of RSSI have become
more apparent, especially in complex environments where factors such as multipath effects,
interference, and environmental changes can significantly impact its reliability.

To achieve a more precise characterization of the wireless channel, CSI has been intro-
duced. CSI provides a detailed snapshot of the wireless channel by capturing information
about the amplitude and phase of the received signal at each subcarrier within an Orthog-
onal Frequency-Division Multiplexing (OFDM) system. This granular data allows for a
deeper understanding of the channel conditions, enabling more precise activity recognition,
improved performance in adaptive transmission techniques, and enhanced accuracy in
localization and tracking applications [21].

As a result, in scenarios requiring high precision and robustness, such as human
activity recognition, indoor positioning, and smart environment monitoring, CSI has
demonstrated superior reliability and accuracy in these tasks compared to RSSI [22,23].

Machine Learning (ML) and Deep Learning (DL) are critical technologies for achieving
human recognition using CSI. However, ML alone is not sufficient to handle replicated
CSI information; it requires well-extracted features to be effective. Therefore, the current
predominant research approach is based on DL, which can automatically learn features from
raw data. Current DL studies primarily employ algorithms such as Convolutional Neural
Networks (CNN), Gated Recurrent Unit (GRU), Long Short-Term Memory network (LSTM),
and combinations like CNN+LSTM. CSI contains temporal features and spatial features.
Temporal features reflect how CSI signals change over time due to human activities and are
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useful for detecting activities that have characteristic time patterns. Spatial features reflect
how CSI signals differ across space (i.e., different antennas) and are useful for determining
the location and movement patterns of individuals.

Most of these studies focus on extracting either spatial features or temporal features
independently, with fewer approaches integrating both. The methods that combine spatial
and temporal feature extraction often use a simple CNN for spatial features alongside
various improved models for capturing temporal characteristics. Therefore, we propose
the RGANet model, which employs a modified ResNet for spatial feature extraction and an
enhanced GRU model for temporal feature extraction, to improve the model’s capability
in recognizing human actions. The main contributions of this paper are summarized
as follows:

• We introduce a deep learning-based model (RGANet) that can simultaneously lever-
age both temporal and spatial features, achieving high-precision recognition of
human actions.

• In the spatial feature extraction component of the RGANet model, we utilize depthwise
separable convolutions to reduce the computational cost of the ResNet architecture
while maintaining model accuracy. Furthermore, we introduce the scSE (spatial
and channel Squeeze-and-Excitation) module to further enhance the spatial feature
extraction capabilities of the model.

• For the temporal feature extraction part of the RGANet model, we employ a GRU
model, which has lower computational costs compared to LSTM. We also augment
it with a simplified attention mechanism to strengthen the model’s ability to capture
temporal information.

2. Related Work
The application of CSI in HAR is a method that leverages the physical layer informa-

tion of Wi-Fi signals to detect and classify human movements. This approach does not rely
on traditional wearable sensors or cameras but instead infers human activities by analyzing
the CSI data contained within the data packets transmitted between Wi-Fi devices. The
process is illustrated in Figure 1 below.

Figure 1. Overview of the CSI-based human activity recognition process.

2.1. Background of RSSI

RSSI is a metric used in wireless communication systems to indicate the strength of
received radio signals. It is typically measured in decibel-milliwatts (dBm), representing
the logarithmic ratio of the received signal power relative to 1 milliwatt. The closer the
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RSSI value is to 0 dBm, the stronger the signal; conversely, the more negative the value
(the larger its absolute value), the weaker the signal. In everyday use, common wireless
technologies such as Wi-Fi and Bluetooth utilize RSSI to determine signal strength. The
received signal strength can be calculated using the following formula:

x(dBm) = 10log10

(
P(mW)

1 mW

)
(1)

where x(dBm) represents the signal strength in decibel-milliwatts (dBm) and P(mW) de-
notes the received signal power in milliwatts (mW). The reference power is typically set to
1 mW.

In wireless communication systems, RSSI is a crucial signal strength metric widely
used in various wireless technologies, such as Wi-Fi, Bluetooth, Zigbee, and more. It assists
devices in evaluating link quality and optimizing communication parameters, and in some
scenarios, it is utilized for positioning and tracking. Despite its simplicity and the low
cost and energy consumption associated with RSSI, which have led to its widespread
application, the evolution of wireless communication technologies has begun to highlight
its limitations, especially in complex environments. To more accurately capture the charac-
teristics of wireless channels, CSI has emerged and is gradually replacing RSSI in certain
application scenarios.

2.2. Background of CSI

CSI is a critical parameter in wireless communication systems used to describe the
characteristics of the channel. Unlike RSSI, CSI provides richer channel information,
including the amplitude and phase of each subcarrier, frequency domain characteristics,
spatial correlation, and more [24]. Through CSI, the receiver can gain a more accurate
understanding of the channel state, thereby optimizing signal processing, improving
communication quality, and enabling advanced applications. Figure 2 shows the waveform
of a single-antenna carrier after processing the CSI information.

Figure 2. Denoised and normalized CSI carrier waveform for a single-antenna system.

From the perspective of application location, CSI can be categorized into transmitter
CSI and receiver CSI. CSI encompasses a wealth of channel characteristic information, such
as the effects of distance, scattering, fading, and other factors on the signal. In wireless
communication systems, CSI is typically represented by the channel state matrix H, which
is a collection of information for each subcarrier signal. Specifically, the mathematical
model of CSI can be expressed as follows:

Y = HX + N (2)

Here, Y is the received signal vector, X is the transmitted signal vector, N is the Addi-
tive White Gaussian Noise (AWGN), and H is the channel state matrix, which represents
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the CSI and contains the phase and amplitude information for each subcarrier [25]. The
channel matrix H can be further expanded as follows:

H = [H1, H2, H3, . . . HK] (3)

Here, K denotes the number of subcarriers, and each Hi represents the phase and
amplitude information for a single subcarrier. A key parameter for evaluating the quality
of CSI data is the number of subcarriers, which is determined by the bandwidth and
the tools used. Generally, the more subcarriers there are, the higher the resolution of
channel estimation, allowing for more precise capture of multipath effects and other
channel characteristics.

In Wi-Fi communication, CSI reflects the propagation characteristics of wireless sig-
nals after they undergo diffraction, reflection, and scattering in the physical environment,
describing the channel properties of the communication link. For modern wireless commu-
nication networks that adhere to the IEEE 802.11 standard, MIMO and OFDM technologies
at the physical layer help increase the data capacity and orthogonality of transmission
channels affected by multipath propagation [26]. As a result, modern Wi-Fi access points
are typically equipped with multiple antennas and use multiple OFDM subcarriers to
enhance transmission performance.

For each pair of transmit and receive antennas, CSI describes the multipath effects,
amplitude attenuation, and phase shift on each subcarrier. Compared to RSSI, CSI provides
higher sensing resolution, enabling a finer capture of channel characteristics. Specifically,
the Channel Impulse Response (CIR) of Wi-Fi signals is the superposition of all multipath
components in the wireless channel and can be expressed as follows:

h(t) =
L

∑
i=1

aiejϕi δ(t − ti) (4)

Here, ai denotes the amplitude of the ith multipath component, ϕi denotes the phase of
the ith multipath component, titi denotes the time delay of the ith multipath component, ith
represents the total number of paths, and j is the imaginary unit. δ(t − ti) is the idealized
impulse function, also known as the Dirac delta function, which indicates an instantaneous
pulse at the moment t = ti. The role of this function is to concentrate the multipath
components at the specific time point ti.

The Channel Frequency Response (CFR), H( f ), is typically obtained by performing a
Fourier Transform on the CIR in the time domain, that is

H( f ) =
∫ ∞

−∞
h(t)e−j2π f tdt (5)

where f is the frequency variable.
In MIMO and OFDM systems, CSI is typically represented as a complex matrix, where

each element hNT NRk denotes the channel response from one transmit antenna to one receive
antenna on a specific subcarrier. By decomposing each complex value into magnitude
and phase, this polar representation is widely used in MIMO and OFDM systems for
channel estimation, beamforming, adaptive modulation and coding, and other techniques,
significantly enhancing system performance. The decomposition formula for hNT NRk is
as follows:

hNT NRk =
∣∣hNT NRk

∣∣ej∠hNT NRk (6)

where hNT NRk represents the channel response from the NTth transmit antenna to the NRth
receive antenna on the kth subcarrier,

∣∣hNT NRk
∣∣ is the magnitude of hNT NRk, representing
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the amplitude of the channel response, and ∠hNT NRk is the phase of hNT NRk, representing
the phase shift introduced by the channel.

2.3. WiFi CSI-Based HAR

In recent years, deep learning techniques have achieved remarkable success in areas
such as computer vision and Natural Language Processing (NLP). This has also prompted
many researchers to apply these techniques to WiFi-based HAR. Among them, CNNs,
commonly used in the field of computer vision, were first applied to the processing of CSI
signals. In 2018, Wen et al. [27] treated the CSI data as images for processing and used
CNNs to encode and decode the CSI data. In addition, Wang et al. [28] proposed an indoor
positioning and HAR system, creating a dataset for six different types of human activities.
They introduced a multitask 1D CNN based on the ResNet architecture. Their proposed
model achieved an accuracy rate of 95.68%. Yang et al. [29] developed a HAR framework
using WiFi CSI signals. They first proposed an algorithm for automatically selecting
antennas based on their sensitivity to various activities and evaluated their approach using
three machine learning classifiers and a CNN model, achieving an average accuracy of
96.8%. Although CNNs have achieved some promising results in HAR tasks based on CSI,
CNNs are typically designed to process two-dimensional image data. CSI data, however,
are usually in the form of high-dimensional time series or matrices. Directly feeding CSI
data into a standard CNN architecture may lead to suboptimal outcomes because CNNs
might not effectively capture long-term dependencies within the time series. For data with
long time spans, CNNs may fail to adequately preserve temporal information.

Subsequently, researchers have also applied time series models to HAR tasks based on
CSI. Damodaran et al. [30] created a human activity dataset comprising only four classes
and utilized LSTM and SVM for classification tasks. Their results showed that LSTM
achieved higher accuracy than SVM. Ding et al. [31] collected a dataset that includes two
environments and six activities. They used an RNN architecture integrated with an LSTM
module for recognition tasks and achieved an accuracy of over 95% for each class of activity.
In their work, Chen et al. [32] introduced an innovative model known as Attention-based
Bidirectional Long Short-Term Memory (ABLSTM). This model achieved an accuracy of
97.3% on both a standard public dataset and a dataset collected in a meeting room environ-
ment. However, CSI data are typically high-dimensional because they contain amplitude
and phase information from multiple subcarriers. This high-dimensional characteristic
increases the complexity of the model and computational burden, and it can also lead
to overfitting issues. Moreover, the complex relationships within CSI, such as multipath
effects, make traditional linear time series models inadequate for effective modeling.

To overcome the aforementioned limitations, researchers have explored methods that
combine temporal and spatial approaches. Shang et al. [33] developed a deep learning
model that involves integrating WiFi CSI with an LSTM-CNN hybrid architecture for the
purpose of recognizing human activities. The proposed framework effectively leverages
the temporal sequence properties and spatial features of CSI data by employing LSTM to
capture temporal dependencies and CNN to extract local spatial features. This approach
addresses the challenges posed by the high-dimensionality, non-stationarity, and complex
relationships inherent in CSI data. The effectiveness of this method is demonstrated by
an average accuracy of 94.14% on public datasets, highlighting its potential for accurate
human activity recognition. Tang et al. [34] proposed a model named Hybrid CNN-GRU
(Hybrid Convolutional Neural Network–Gated Recurrent Unit), which significantly im-
proved the performance of human behavior recognition based on WiFi Channel State
Information (CSI), achieving an average accuracy of 95.7%. Sheng et al. [35] proposed a
deep learning framework that combines CNN and Bidirectional Long Short-Term Mem-
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ory (BiLSTM), achieving an accuracy of over 95% in cross-scene action recognition tasks.
Islam et al. [36] proposed a model named STC-NLSTMNet, which combines depthwise
separable convolution and an improved Long Short-Term Memory network (NLSTM) to
enhance the performance of human activity recognition. The model achieved an accuracy
of over 96% on all datasets.

In recent years, researchers have begun to explore models based on the Transformer
architecture, aiming to achieve better performance in various computer vision tasks such as
image recognition, object detection, and semantic segmentation. In 2020, Google Research
introduced the Vision Transformer (ViT) [37], a novel method that applies the Transformer
architecture to image processing. The success of ViT demonstrated that Transformers are
not only effective for NLP but can also excel in computer vision tasks. Following this
breakthrough, researchers have extended the application of ViT to WiFi-based HAR tasks,
leveraging the unique advantages of Transformer models to capture complex spatiotem-
poral patterns from WiFi CSI. The architecture proposed by Zhou et al. [38] transforms
the CSI from Wi-Fi signals into feature points that represent human pose. Subsequently,
it employs a self-attention mechanism to effectively parse the spatial information con-
tained within these feature points, accurately reflecting human posture. In this system,
the subtle variations in Wi-Fi signals are used to capture human movements, while the
self-attention mechanism assists the model in focusing on significant spatial relationships,
thereby enhancing the accuracy and reliability of pose estimation.

The research indicates that while some studies have integrated temporal and spatial
characteristics, the spatial feature extraction models employed tend to be relatively simple.
Therefore, the model we propose improves upon this aspect.

3. Dataset
Generally, CSI data consist of a complex vector that include both amplitude and phase

information. For our purposes, we use only the amplitude data as input. This is because
the raw phase from a single antenna tends to be randomly distributed due to random
phase offsets, making the amplitude more stable and more suitable for our recognition
tasks. During propagation, high-frequency environmental noise and multipath effects
can introduce noise into the raw amplitude of the CSI signal, thereby degrading the final
recognition results. Therefore, it is crucial to eliminate this high-frequency noise before
feeding the data into the model. Typically, filters or wavelet denoising techniques are
employed to process the noise, which constitutes the basic preprocessing of CSI data.

We employed two publicly available datasets: the UT-HAR [25] dataset and the
NTU-Fi HAR [37] dataset. Detailed descriptions of these datasets are provided as follows.

3.1. UT-HAR

The UT-HAR is the first CSI dataset for HAR. The CSI data were collected by the Intel
5300 CSI tool. [39] UT-HAR utilizes data collected via two Intel 5300 network interface cards,
with the transmitting and receiving ends of the device each equipped with three antennas,
each antenna pair recording 30 subcarriers. The setup involves a transmission antenna
and a receiving antenna placed 3 m apart, with a sampling frequency of 1 kHz. The data
collection duration for each action is 20 s, and the dataset includes data from six individuals.
After data processing and segmentation by Li et al. [40], the dataset includes seven actions:
Lie down, Fall, Walk, Pick up, Run, Sit down, and Stand up. It is an imbalanced dataset,
with the detailed counts of all actions listed in the following table (Table 1):
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Table 1. Summary of the UT-HAR dataset.

Activity Name Number of Samples Activity Name Number of Samples

Lie down 655 Run 1121
Fall 442 Sit down 400

Walk 1461 Stand up 304
Pick up 495

After extracting data from the denoised dataset, we perform normalization to scale
the data between 0 and 1. Finally, the processed data are converted into torch. FloatTensor
type, resulting in a shape of (len(data), 1, 250, 90), where len(data) represents the number
of data entries in the dataset, 1 is the number of channels, 250 denotes 250 data packets
in chronological order, and 90 represents the combination of 30 subcarriers across three
receiving antennas. The dataset is then divided into different batches, and the input data
fed to the model has a shape of (batch, 1, 250, 90).

3.2. NTU-Fi HAR

The NTU-Fi HAR is a small dataset, where the CSI data were collected using the
Atheros CSI Tool. [41] The setup involved two TP-Link N750 access points (APs), with one
functioning as the transmitter and the other as the receiver. Each AP is equipped with three
antennas, and each antenna collects data from 114 subcarriers. This dataset encompasses
six activities: running, walking, falling down, boxing, circling arms, and cleaning the floor,
each activity was recorded for 20 s. For each activity, there are 200 samples, and the dataset
includes data from 20 individuals, making it a balanced dataset.

After extracting data from the denoised dataset, we perform normalization on the
loaded data, scaling it to a mean of 42.3199 and a standard deviation of 4.9802. Next,
we sample the data by taking every fourth data point from a total of 2000 data points,
reshaping it into a form of (len(data), 3, 114, 500), where len(data) represents the number of
data entries in the dataset, 3 is the number of antennas, 500 denotes 500 data packets in
chronological order, and 114 represents the 114 subcarriers for one receiving antenna. The
processed data are then converted into torch.FloatTensor type. Finally, the dataset is divided
into different batches, and the input data fed to the model has a shape of (batch, 3, 114, 500).

4. Method
4.1. RGANet

Our model can be broadly divided into two parts: a modified ResNet network serves
as the feature extractor and a GRU is used for modeling in the temporal dimension. The
combination of residual networks with time series models can lead to significant computa-
tional costs, with FLOPs potentially reaching the G level. To mitigate these computational
expenses, we have opted to use ResNet18 and GRU as the foundation for our model.

Feature Extractor with Modified ResNet: The ResNet component of our model has
been customized to better suit the specific requirements of our task. It not only processes
the input data to extract high-level, abstract features that are crucial for understanding the
content but also takes into account the spatial characteristics of the input. This means that
the ResNet is designed to capture both local and global spatial dependencies within the
data. The modifications to the ResNet enhance its ability to train deep networks effectively,
leveraging residual connections to mitigate the vanishing gradient problem and ensure
that spatial information is preserved and utilized throughout the network.

Temporal Modeling with GRU: After the spatially aware features have been extracted
by the ResNet, they are passed on to the GRU. It takes the sequence of spatially enriched
features as input and models the dependencies over time, allowing the model to understand
the context and relationships between different elements in the sequence. By integrating
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spatial and temporal information, this part of the model can more accurately predict or
classify sequences based on the evolving patterns it detects.

By combining these two components, our model is able to effectively handle complex
tasks that require both robust feature extraction, with emphasis on spatial characteristics,
and accurate temporal modeling. Our system is as shown in Figure 3.

Figure 3. The system framework of RGANet, primarily comprising ResNet and GRU.

Table 2 summarizes some of the details of the proposed RGANet model. From the
table, it is clear that we have adapted the ResNet architecture to better meet our needs.
Our modifications allow the model to extract spatial features while preserving important
temporal information. Specifically, we apply convolution and pooling operations only to
the spatial dimensions. This enables the model to efficiently capture local spatial features
at each time point. This approach is especially beneficial for tasks like understanding
human posture or movement patterns. By focusing on spatial features at each time step,
the model can recognize and interpret complex movements more accurately. Additionally,
we introduced spatial downsampling in the early stages of the network. This reduces the
amount of data that later layers need to process, significantly lowering computational costs.
Importantly, this design choice ensures that the model retains high temporal resolution,
preserving critical time-series information for accurate analysis and prediction.
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Table 2. Summary of RGANet on the UT-HAR dataset.

Section Layer Type Output Shape Parameters

Spatial feature extraction

Conv2d (batch, 3, 28, 250) 24
ReLU (batch, 3, 28, 250) -

Conv2d (batch, 32, 28, 250) 1088
ReLU (batch, 32, 28, 250) -

Conv2d (batch, 32, 9, 250) 7168
MaxPool2d (batch, 32, 5, 250) -

Layer1 (batch, 32, 5, 250) 2816 + 2816
Layer2 (batch, 64, 3, 250) 9632 + 9728
Layer3 (batch, 128, 2, 250) 35,648 + 35,840
Layer4 (batch, 256, 1, 250) 136,832 + 137,216

Reshape (batch, 250, 256) -

Temporal feature extraction GRU (batch, 250, 64), (batch, 1, 64) 61,824
Attention (batch, 64) 65

Recognition FC (batch, 7) 455

4.2. ResNet_sd

We made modifications based on the standard ResNet18 model.

4.2.1. Modification of Convolutional Kernel Shapes

Convolution kernels (or filters) slide over the input data, performing dot product
operations with local regions of the data. This process can automatically identify important
patterns or features in the input data without the need for manually designed feature
extraction algorithms. For CSI data, convolution kernels can slide over signal matrices to
capture changes in signals over time and space. By applying multiple convolution kernels
of different sizes and parameters, features at various scales can be extracted. Deep con-
volutional neural networks are capable of constructing increasingly abstract and complex
feature representations. Lower layers typically learn simple features, such as edges or
corners; higher layers may learn more complex and discriminative features, such as the
overall shape or dynamic changes of specific activity patterns.

After the convolution operation, a non-linear activation function (such as ReLU) is
usually applied to increase the model’s expressive power, enabling the network to learn
more complex patterns.

Pooling layers reduce the dimensionality of the feature maps. This helps in focusing
on the most important features while discarding less relevant details.

Firstly, we modified the shape of the convolution kernels. By using kernels of shape
(7, 1) and (11, 1) and applying the convolution operation only along the height dimension,
we maintained the completeness of the time series. This approach is essential for capturing
the temporal characteristics of actions, ensuring that the temporal information is not lost
during feature extraction.

4.2.2. Enhanced Residual Blocks with scSE Module

Secondly, we enhanced the residual blocks by incorporating the scSE (Squeeze-and-
Excitation with spatial and channel attention) module [42]. As shown in Figure 4, this
module combines spatial attention mechanisms with channel attention mechanisms. The
scSE module helps the model focus on important feature regions and channels, thereby
improving its representational capacity and performance. This further strengthens the
model’s ability to extract spatial features effectively. Importantly, the scSE module operates
on the feature maps in a way that does not alter the spatial or temporal dimensions. It
applies attention weights to each channel and spatial location, which helps the model
emphasize relevant features without disrupting the temporal structure of the data.
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Figure 4. Structure of the Squeeze-and-Excitation with spatial and channel attention model.

Given an input tensor X of shape (B, C, H, W), where B is the batch size, C is the
number of channels, and H and W are the height and width, respectively.

The Spatial Squeeze and Excitation (sSE) calculation formula is as follows:

X′
sse = X ⊙ σ(Conv2d(X; C, 1, 1)) (7)

For the input tensor X, pass it through a 1 × 1 convolutional layer (Conv2d(X; C, 1, 1))
to obtain a tensor of shape (B, 1, H, W). Apply the Sigmoid function σ to generate the
spatial attention map. Finally, multiply (⊙) the attention map with the original input tensor
X element-wise to produce the output tensor X′

sse.
The Channel Squeeze and Excitation (cSE) calculation formula is as follows:

X′
cse = X ⊙ (ReLU(Interpolate(Conv2d(AvgPool2d(X; 1); C, 1, 1); (H, W)))) (8)

For the input tensor X, first perform global average pooling across the spatial dimen-
sions using AdaptiveAvgPool2d(X;1) to obtain a tensor of shape (B, C, 1, 1). Then, pass
this through a 1 × 1 convolutional layer (Conv2d; C, 1, 1) to reduce the channel dimension.
Apply the ReLU activation function and interpolate back to the original spatial dimen-
sions (H, W). Finally, multiply (⊙) the interpolated tensor with the original input tensor X
element-wise to produce the output tensor X′

cse.
Finally, we process the output results of sSE and cSE by applying each mechanism to

the input tensor X. We then combine the outputs by taking the element-wise maximum
between the sSE and cSE results, which serves as the final output of the scSE module.

X′ = max
(
X′

cse, X′
sse
)

(9)

4.2.3. Replacement of Standard Convolutions with Depthwise Separable Convolutions

To address the significant computational cost associated with combining ResNet
with GRU, we replaced the standard convolutions in the residual blocks with Depthwise
Separable Convolutions (DSC) [43]. These consist of a depthwise convolution followed
by a pointwise convolution, as shown in Figure 5. Depthwise convolution applies a
single convolutional filter to each input channel independently, effectively performing
convolution only in the spatial dimensions while keeping the temporal dimension intact.
Pointwise convolution: This step uses 1 × 1 convolutional filters to combine the outputs
from the depthwise convolution across different channels. While it changes the number
of channels, it does not affect the spatial or temporal dimensions. This ensures that the
temporal information is preserved. This structure significantly reduces the number of
parameters and computational load while maintaining good performance.
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Figure 5. Convolutional filter design of depthwise separable convolutions.

In the depthwise convolution, the operation is applied to each input channel indepen-
dently without mixing information across channels. For an input tensor X with dimensions
[H, W, Cin], where H and W are the height and width and Cin is the number of input chan-
nels, using a k × k filter size, the output after depthwise convolution will have dimensions
[H′, W′, Cin], with H′ and W′ depending on the kernel size, stride, and padding. The
formula for depthwise convolution is as follows:

Oi,j,c = Xi,j,c ∗ Kc (10)

where O is the output; i, j denote the spatial location; c is the channel index; and Kc is the
convolution kernel corresponding to the cth channel.

Following this, the pointwise convolution is used to mix information across the
channels. It uses a 1 × 1 filter to transform the number of channels from Cin to Cout. This
step does not change the spatial dimensions of the feature map, so the output dimensions
remain [H′, W′, Cout]. The formula for pointwise convolution is as follows:

O′
i,j,d = ∑Cin

c=1 Oi,j,c·Pc,d (11)

where O′ is the final output, d is the output channel index, and P is the weight matrix that
determines how to map from Cin input channels to Cout output channels.

The computational efficiency comparison between DSC and standard convolution for
the same k × k convolution is as follows:

E f f iciency Ratio =
Standard Convolution Cost

Depthwise Separable Convolution Cost
=

k2·Cin·Cout

k2·Cin + Cin·Cout
(12)

For large Cin and Cout, this ratio approaches k2.

4.2.4. Removal of Fully Connected Layers and Adaptation of Output Shape

Finally, we removed the fully connected layers and modified the output shape to
better suit the input requirements of GRU. This change ensures that the spatiotemporal
features extracted by the convolutional layers can be seamlessly fed into the recurrent
neural network, preserving the temporal dependencies and enhancing the overall efficiency
of the model.

4.3. Gated Recurrent Unit

Gated Recurrent Units (GRUs) are a type of recurrent neural network (RNN) architec-
ture designed to address the vanishing gradient problem that often occurs in traditional
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RNNs when dealing with long sequences. GRUs were introduced by Cho et al. in 2014 as
a simplified version of Long Short-Term Memory (LSTM) networks [44], which are other
popular RNN variants. GRUs aim to capture long-term dependencies in sequential data
while being computationally more efficient than LSTM networks.

GRUs simplify the LSTM architecture by merging the cell state and hidden state into a
single hidden state and reducing the number of gates from three (input, forget, and output
gates in LSTM) to two (reset and update gates). The architecture of the GRU model is
shown in Figure 6. Considering the computational capabilities of the device and time
efficiency, this paper chose GRU over LSTM as the model architecture.

Figure 6. The architecture of the Gated Recurrent Unit.

The internal computation formulas of GRUs are as follows:

rt = σ(Wr·[ht−1, xt]) (13)

zt = σ(Wz·[ht−1, xt]) (14)
∼
ht = tanh (Wh·[rt ⊙ ht−1, xt]) (15)

ht = (1 − zt)⊙ ht−1 + zt ⊙
∼
ht (16)

where rt is the reset gate, zt is the update gate, Wr is the weight matrix for the reset gate,
Wz is the weight matrix for the update gate, ht−1 is the hidden state from the previous time

step, xt is the input at the current time step, σ is the sigmoid activation function,
∼
ht is the

candidate hidden state, Wh is the weight matrix for the candidate hidden state, ⊙ denotes
element-wise multiplication, and ht is the final hidden state.

4.4. Attention

The attention mechanism is a key component in modern deep learning models, par-
ticularly in the fields of natural language processing (NLP), computer vision, and speech
recognition. It allows models to focus on specific parts of the input data when making
predictions or generating outputs, rather than treating all parts equally. This selective focus
helps the model capture long-range dependencies and improve performance on tasks like
machine translation, text summarization, and image captioning.

This paper employs a simple additive attention mechanism, similar to the Bahdanau
attention mechanism [45], which allows the model to focus on different parts of the input
sequence by computing attention weights and using them to create a weighted sum of the
input features. This mechanism enhances the model’s performance on tasks that require
understanding long-term dependencies or identifying key elements in the input.
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The computation formula for this attention mechanism is as follows:

ei = tanh (Xi · W + b) (17)

ai =
exp (ei)

∑j exp (ei)
(18)

output = ∑
i

ai·Xi (19)

where Xi is the hidden state vector at time step i, W is the weight matrix, b is the bias term,
ei is the attention score for time step i, and ai is the attention weight for time step i.

5. Experiments
To demonstrate the effectiveness of our proposed RGANet model, we conducted com-

prehensive experiments on two benchmark datasets: UT-HAR [25] and NTU-Fi HAR [37].
Additionally, we designed a series of ablation studies to systematically evaluate the contri-
butions of each module within the model.

5.1. Experimental Parameters and Conditions

The training parameters for our experiment are shown in Table 3. The specifications
of the computer used are listed in Table 4.

Table 3. Parameter settings.

Parameter Value

Loss function Cross-entropy
Optimizer Adam [46] (β1 = 0.9, β2 = 0.999, epsilon = 1 × 10−8)

Learning rate 0.01
Batch size 64

Epochs UT-HAR: 200 NTU-Fi HAR: 30

Table 4. Computer configurations.

Computer System Windows

CPU Intel i5-12500H CPU
Memory 16 GB

GPU NVIDIA GeForce GTX 3060 laptop
Python version 3.9.18
Torch version 2.0.1

5.2. Comparison with Other Models

To evaluate the performance of the RGANet model, we compare it with several other
models that are also based on CSI for HAR. From reference [47], we selected the best-
performing spatial feature model, ResNet18, and the best-performing temporal feature
model, GRU, as well as a Vision Transformer (ViT) with self-attention mechanisms. Addi-
tionally, we chose two models from references [34] and [35] that combine both spatial and
temporal feature extraction for comparison. These models are CNN + GRU and CNN +
BiLSTM, respectively. This comparative analysis allows us to assess the effectiveness of
RGANet against a range of architectures that have been shown to perform well in similar
tasks, providing a comprehensive evaluation of its capabilities in the context of CSI-based
action recognition.
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We adopt well-established performance evaluation metrics, namely accuracy, F1 score,
precision, and recall. To address the multi-class classification problem, we use Macro
Precision, Macro Recall, and Macro F1 score. The evaluation metrics are outlined as follows:

Accuracy =
TP + TN

TP + TN + FN + FP
(20)

Macro Precision =
1
N

N

∑
i=1

TPi
TPi + FPi

(21)

Macro Recall =
1
N

N

∑
i=1

TPi
TPi + FNi

(22)

Macro F1 Score =
2 ∗ Macro Precison ∗ Macro Recall

Macro Precision + Macro Recall
(23)

where TP represents the true positive, TN the true negative, FN the false negative, and
FP the false positive. N represents the number of classes and i represents the relevant
attributes of the ith class of action.

5.2.1. Validation of the UT-HAR Dataset

Table 5 shows the recognition results of RGANet and other models on the UT_HAR dataset.

Table 5. Classification results of different classification algorithms on UT-HAR.

Classification Algorithm Macro Precision (%) Macro Recall (%) Macro F1 Score (%) Accuracy (%)

ResNet18 97.22 97.15 97.18 98.19
GRU 93.51 91.83 92.60 93.67
ViT 94.73 94.44 94.58 95.38

CNN + GRU 94.50 95.22 94.83 96.39
CNN + BiLSTM 96.46 96.60 96.52 97.09

RGANet 99.01 98.93 98.91 99.40

Based on the provided table, we can conduct a detailed analysis of the performance of
each classification algorithm. RGANet is the best-performing model for this task, achieving
the highest scores across all evaluation metrics, demonstrating robust classification ability
and class balance. ResNet18 and CNN + BiLSTM are also excellent choices, closely follow-
ing RGANet in performance. They are suitable for applications requiring high precision and
high recall. CNN + GRU and ViT, while having slightly lower overall performance, excel in
specific metrics (e.g., the recall of CNN + GRU). They can be considered based on specific
needs. GRU, although not the top choice for multi-class classification, still provides a solid
baseline performance, especially in scenarios where computational resources are limited.

To better illustrate the performance of the RGANet model, we have plotted the confu-
sion matrices for RGANet and the other models as shown in Figure 7.

From the results, it is evident that all models perform relatively poorly in distinguish-
ing between “stand up” and “sit down” actions. This is primarily because these two actions
have very similar motion trajectories, differing only in the direction of movement, which
makes them prone to misclassification. Additionally, “sit down” is often misclassified as
“fall” likely due to the similarity in initial motion patterns.

ResNet18, which relies heavily on spatial features, struggles with actions that involve
complex temporal dynamics, such as “stand up” and “sit down”. While this model achieves
over 95% accuracy on other actions, it falls short on these two, highlighting the need for
temporal modeling.
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Figure 7. Confusion matrix for six models on the UT-HAR.

While the standalone GRU model also performs poorly in classifying “stand up” and
“sit down” actions, it misclassifies sitting down as standing up less frequently compared
to ResNet18. That said, it is more prone to incorrectly identify sitting down as either
falling or lying down. And as we can see, GRU excels in classifying long-term actions like
“walk”, but its performance is average for “run”, where it frequently misclassifies “run” as
“walk”. This suggests that GRU, while effective at capturing temporal sequences, may not
be sensitive enough to distinguish between actions with different speeds or stride lengths.
ViT performs better overall compared to GRU, except in the “walk” action.

When comparing CNN+GRU, CNN+BiLSTM, and our proposed RGANet, it becomes
clear that RGANet outperforms the other models across all actions. This is particularly true
for “sit down”, where RGANet demonstrates superior accuracy. This success underscores
the effectiveness of our model in combining both spatial and temporal feature extraction. It
can be observed that, despite similarly integrating spatial and temporal feature extraction,
our RGANet model comprehensively outperforms the other two models. This indicates that
the use of a simple CNN is not adequate for extracting spatial features, thereby validating
the effectiveness of our proposed model.

From Figure 8, it can be observed that the model we proposed converges at the fastest
rate. ResNet18 and CNN+BiLSTM follow, both stabilizing within 50 epochs. VIT and
GRU then stabilize at approximately 150 epochs. Lastly, CNN+GRU exhibits a notably
higher training loss compared to the other models, and even with attempts to optimize it by
increasing model complexity and adjusting the loss function, its loss value does not reach
the levels of the other models. Overall, our model demonstrates superior performance and
convergence speed, highlighting its advantage in handling HAR tasks based on CSI.
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Figure 8. Training curves for RGANet and other models on UT-HAR.

5.2.2. Validation of the NTU-Fi HAR Dataset

Table 6 shows the recognition results of RGANet and other models on the NTU-Fi
HAR dataset.

Table 6. Classification results of different classification algorithms on NTU-Fi HAR.

Classification Algorithm Macro Precision (%) Macro Recall (%) Macro F1 Score (%) Accuracy (%)

ResNet18 96.41 96.21 96.20 96.21
GRU 98.61 98.48 98.48 98.48
ViT 90.62 89.39 89.36 89.39

CNN + GRU 97.02 96.97 96.94 96.97
CNN + BiLSTM 98.90 98.86 98.86 98.86

RGANet 99.28 99.24 99.24 99.24

We can observe that our RGANet model continues to perform exceptionally well.
Interestingly, ResNet18 and ViT, which previously showed good performance on other
datasets, do not fare as well on this dataset. Conversely, the GRU, which had previously
demonstrated lower performance, performs quite well on this dataset. The three models
that integrate both spatial and temporal features—CNN + GRU, CNN + BiLSTM, and
RGANet—consistently show strong performance across both datasets. The results from
both datasets, to some extent, that models which integrate both temporal and spatial feature
extraction are effective in the field of CSI data recognition.

To verify the stability of the proposed model, we conducted a 5-fold cross-validation
by dividing the dataset into five subsets. The results of this evaluation are presented in
Table 7.

The models performed very well on both datasets, especially on the UT-HAR dataset,
which demonstrated extremely high stability and accuracy. In contrast, while the NTU-Fi
HAR dataset’s average performance was slightly lower than that of UT-HAR, it still reached
a high standard and achieved nearly perfect classification results in some folds. However,
NTU-Fi HAR exhibited greater performance variability. In summary, RGANet demon-
strates outstanding performance across all evaluation metrics, indicating high accuracy
and excellent classification performance. It also exhibits a certain level of stability and
adaptability to different data distributions. These results suggest that RGANet is likely to
be a highly effective classification algorithm suitable for applications requiring precision
and reliability. However, it is important to note that these results were obtained under
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specific datasets and conditions. Therefore, when applying it to other data or scenarios,
further validation of its performance may be necessary.

Table 7. Classification results of RGANet on UT-HAR and NTU-Fi HAR datasets.

Dataset Metrics
Fold

Average
1st 2nd 3rd 4th 5th

UT-HAR

Accuracy (%) 99.10 98.99 98.29 99.19 98.89 98.89
Macro Precision (%) 98.54 98.30 97.76 98.63 98.26 98.30

Macro Recall (%) 98.26 98.22 97.44 98.44 98.11 98.09
Macro F1 Score (%) 98.37 98.25 97.60 98.53 98.18 98.19

NTU-Fi
HAR

Accuracy (%) 96.21 97.35 98.48 99.62 98.11 97.95
Macro Precision (%) 96.61 97.57 98.61 99.63 98.30 98.14

Macro Recall (%) 96.21 97.35 98.48 99.62 98.11 97.95
Macro F1 Score (%) 96.20 97.34 98.48 99.62 98.10 97.95

5.3. Ablation Study

To demonstrate the role of each component module in RGANet, we have designed a
series of ablation studies to analyze the impact of each part on the model’s performance.

5.3.1. The Modified Sections of the ResNet_sd Module

Our modifications to the ResNet_sd module primarily involve adding scSE block
within the residual blocks and replacing the convolutional kernels with DSC. To demon-
strate the impact of these changes, we use the standard ResNet18 as a baseline for compari-
son on the UT-HAR dataset.

To validate the effect of the scSE block, we integrated it into the ResNet18, GRU, and
VIT models. Figure 9 presents a comparative analysis of the training performance between
the original models and their versions augmented with the scSE block.

Figure 9. Training curves for models with and without the scSE module on the UT-HAR dataset.

From Figure 9, it can be observed that the models with the added scSE block converge
faster than their original counterparts. This demonstrates that the scSE block enhances
the learning efficiency of the models, likely by improving the flow of information and
emphasizing important feature channels during training. And, as shown in Table 8, the
final recognition accuracy of the models with the added scSE block is also improved; since
ResNet18 already has a high recognition accuracy, the scSE module slightly improved the
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convergence speed of ResNet18 during training. However, this did not result in an increase
in the final test accuracy.

Table 8. Comparison results of the impact of the scSE block on UT-HAR.

Metrics
Classification Algorithm

ResNet18 ResNet18 + scSE GRU GRU + scSE ViT ViT + scSE

Accuracy (%) 98.19 98.19 93.67 93.78 95.38 95.58

We also compared the impact of DSC on ResNet18. The results are presented in Table 9.

Table 9. Comparison results of the impact of DSC and scSE block on ResNet18.

Classification Algorithm Accuracy (%) FLOps (M) Parameters (M)

ResNet18 98.19 49.905 11.182
ResNet18 + scSE 98.19 49.940 11.186
ResNet18 + DSC 98.39 9.907 1.448

ResNet18 + scSE + DSC 98.59 9.131 1.452

From the above, we can observe that by replacing the convolutional kernels with
DSC, we significantly reduced the computational cost while simultaneously improving the
model’s recognition accuracy. Furthermore, using DSC and scSE block together can further
enhance the accuracy, although this comes with a slight increase in computational cost.

The aforementioned results demonstrate that our modifications to ResNet are mean-
ingful. Building on these findings, we will use the modified ResNet network as a feature
extraction module and integrate it with GRU and attention mechanisms to form our pro-
posed RGANet.

5.3.2. Impact of RGANet Components and Additional Information About RGANet

We conducted ablation studies on RGANet based on the GRU model, and Table 10
lists the results of various modifications.

Table 10. Experimental results of ablation of attention and ResNet_sd modules.

Model Structure Attention ResNet_sd Accuracy (%)

GRU - - 93.67
GRU + Attention

√
- 93.88

ResNet_sd + GRU -
√

99.10
RGANet

√ √
99.40

‘
√

’ indicates that it has a modified network layer and ‘-’ indicates that it does not contain this network layer.

The ablation study confirms that the modified ResNet_sd module is the primary driver
of performance gains, while the attention mechanism provides additional benefits when
integrated into a well-optimized architecture. The full RGANet model, combining all
components, achieves the best overall performance, demonstrating the effectiveness of this
multi-component approach.

We also conducted a comparative analysis of the computational efficiency of the
RGANet model relative to other models, and Table 11 lists the results.
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Table 11. Computational efficiency of different classification algorithms on UT-HAR.

Classification Algorithm FLOps (M) Parameters (M)
Training Time (s) of

All Training Samples
Testing Time (ms) of
Each Testing Sample

ResNet18 49.91 11.18 5172.13 1.18
GRU 7.60 0.03 1916.92 0.58
ViT 273.10 10.58 21,342.63 9.8

CNN + GRU 39.97 1.43 8591.44 2.86
CNN + BiLSTM 639.48 3.49 27,870.95 10.54

RGANet 164.61 0.44 18,890.93 7.60

We can see that GRU is the most efficient model in terms of both training and inference
time, making it ideal for real-time applications where speed is critical. However, its
performance may be limited compared to more complex models like RGANet. The results
clearly show that combining GRU with ResNet indeed leads to a significant increase in
computational cost, the computational efficiency of our proposed model lies between that
of CNN + GRU and CNN + BiLSTM. Certainly, the recognition time for a single sample
using our model meets real-time requirements.

Figure 10 illustrates the performance differences among various models, particularly
in terms of the balance between accuracy and model complexity. It can be seen that our
model achieves the highest accuracy with a relatively small number of parameters, making
it well-suited for use on devices with limited computational resources.

Figure 10. Accuracy vs. parameters for six models on UT-HAR.

6. Conclusions
We propose a deep learning model, RGANet, for HAR using CSI signals. The model

is composed of two main components: a spatial feature extraction module based on the
modified ResNet and a temporal feature extraction module based on GRU. This architecture
enables RGANet to effectively capture both spatial and temporal features of CSI signals,
significantly enhancing its HAR capabilities. Our model achieves an accuracy of 99.4% on
the UT_HAR dataset and 99.24% on the NTU-FI HAR dataset. Compared to other existing
models, RGANet shows improvements of 1.21% on the UT_HAR dataset and 0.38% on the
NTU-FI HAR dataset. Additionally, we conducted ablation studies to explore the impact of
each module within the model on its overall performance.
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Furthermore, as mentioned in [48,49], it has been noted that some existing CSI datasets
suffer from data leakage issues, where the collected CSI information may inadvertently
contain characteristics of individuals. While the focus of this paper is on enhancing the
performance of HAR by better integrating spatial and temporal feature extraction, the
reliability of the dataset is equally crucial. A reliable dataset can substantiate the model’s
generalization ability and the robustness of the results. Therefore, collecting a compliant
dataset using WiFi signals is left for future work.
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