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Abstract: In three-dimensional (3D) measurement, the motion of objects inevitably
introduces errors, posing significant challenges to high-precision 3D reconstruction. Most
existing algorithms for compensating motion-induced phase errors are tailored for object
motion along the camera’s principal axis (Z direction), limiting their applicability in real-
world scenarios where objects often experience complex combined motions in the X/Y and
Z directions. To address these challenges, we propose a universal motion error
compensation algorithm that effectively corrects both pixel mismatch and phase-shift
errors, ensuring accurate 3D measurements under dynamic conditions. The method
involves two key steps: first, pixel mismatch errors in the camera subsystem are corrected
using adjacent coarse 3D point cloud data, aligning the captured data with the actual
spatial geometry. Subsequently, motion-induced phase errors, observed as sinusoidal
waveforms with a frequency twice that of the projection fringe pattern, are eliminated by
applying the Hilbert transform to shift the fringes by 7/2. Unlike conventional approaches
that address these errors separately, our method provides a systematic solution by
simultaneously compensating for camera-pixel mismatch and phase-shift errors within
the 3D coordinate space. This integrated approach enhances the reliability and precision
of 3D reconstruction, particularly in scenarios with dynamic and multidirectional object
motions. The algorithm has been experimentally validated, demonstrating its robustness
and broad applicability in fields such as industrial inspection, biomedical imaging, and
real-time robotics. By addressing longstanding challenges in dynamic 3D measurement,
our method represents a significant advancement in achieving high-accuracy
reconstructions under complex motion environments.

Keywords: 3D measurement; dynamic measurement; pixel mismatch correction; Hilbert
transform

1. Introduction

Non-contact 3D shape measurement is vital in fields like industrial inspection,
robotics, and virtual reality [1-5]. Among the many available techniques, phase-shifting
profilometry (PSP) has gained significant popularity due to its high accuracy, fine
resolution, speed, and robustness against noise. PSP works by capturing a series of fringe
patterns at different phase shifts and reconstructing the 3D geometry of objects. However,
a fundamental limitation of PSP lies in its assumption that both the object and the
measurement system remain stationary during fringe acquisition. Any motion during this
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process introduces errors, particularly motion-induced phase errors, which can severely
affect the accuracy of the 3D reconstruction [6,7].

To address these motion-induced errors, researchers have primarily explored two
main approaches: hardware-based methods and algorithm-based methods. Hardware-
based methods aim to minimize errors by using advanced, high-speed components to
accelerate fringe projection and acquisition. While these methods are effective, they come
with significant drawbacks, such as increased system costs and potential loss of spatial
resolution [8-15]. Additionally, hardware improvements are not a fundamental solution,
as errors can still occur if the motion exceeds the enhanced system speed.

Algorithm-based methods, on the other hand, focus on compensating for motion-
induced errors without relying on expensive hardware. For instance, Guo et al. introduced
Fourier-assisted methods utilizing dual-frequency gratings and Fourier fringe analysis to
mitigate errors [16]. Similarly, Wang et al. proposed an iterative motion error
compensation algorithm based on binary defocusing techniques. This approach estimates
phase shifts using additional fringe pattern samples, but it has limitations due to its
reliance on uniform motion assumptions and its neglect of camera-pixel mismatch caused
by object motion [17]. Lu and Duan et al. developed methods involving marker tracking
and reference planes to correct motion-induced errors. However, these methods are
restricted to 2D motion scenarios and fail in cases of 3D random motion [18,19].

Most existing motion error compensation algorithms operate under a conventional
assumption model, as shown in Figure 1a, which is only suitable for object motion along
the camera’s principal axis (Z direction). However, real-world applications often involve
combined motions in both the X/Y and Z directions, as depicted in Figure 1b. In such
scenarios, motion-induced errors are more complex, consisting of both camera-pixel
mismatch and phase-shift errors. Current compensation algorithms generally lack the
capability to address these two error types simultaneously, leaving a significant gap in
achieving accurate 3D reconstruction under complex dynamic conditions.

(a) conventional motion model (b) Our proposed motion model
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Figure 1. Different motion models. (a) Conventional model with nearly Z-direction motion

assumption; (b) proposed model with arbitrary moving direction.

Our analysis reveals a strong correlation between camera-pixel mismatch and phase-
shift errors, suggesting the potential for simultaneous compensation in 3D coordinate
space. Based on this insight, we propose a universal motion error compensation algorithm
that effectively addresses both types of errors, ensuring improved accuracy in 3D
measurements. The proposed method begins by correcting pixel mismatch errors in the
camera subsystem using adjacent coarse 3D point cloud data. This step ensures better
alignment of captured data with the object’s actual geometry. After pixel mismatches are
corrected, motion-induced phase errors, which manifest as ideal sinusoidal waveforms
with frequencies twice that of the projection fringe pattern, are addressed. To eliminate
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these periodic phase errors, the Hilbert transform is applied to shift the fringes by /2.
These steps are iteratively refined until convergence is achieved, further enhancing the
robustness of the compensation process.

Unlike conventional algorithms, our approach overcomes the strict motion
assumption model and offers a systematic solution that compensates for both camera-
pixel mismatch and phase-shift errors in 3D coordinate space. This method is particularly
advantageous in scenarios involving complex, multidirectional motion, such as dynamic
industrial inspection or real-time robotics applications. Experimental results validate the
efficacy of the proposed algorithm, demonstrating its capability to achieve high-accuracy
3D reconstructions, even under challenging motion conditions. This advancement
represents a significant step forward in the field of non-contact 3D shape measurement,
offering broader applicability and practical solutions to longstanding challenges.

2. Principle

The proposed general motion compensation strategy, as illustrated in Figure 2,
involves a systematic process consisting of several key steps aimed at addressing motion-
induced errors and ensuring high-accuracy 3D measurements. The major steps are as
follows:

1. Acquisition of Rough 3D Point Clouds: The process begins with the use of the
three-step phase-shifting method to acquire an initial set of rough 3D point clouds. This
step serves as the foundation for further calculations and provides the spatial data needed
to analyze motion-induced discrepancies.

2. Estimation of Motion Vectors: Next, motion vectors are estimated using a 3D
centroid algorithm. This algorithm calculates the relative motion of the object by
identifying and analyzing the changes in the spatial distribution of the 3D point clouds
over successive frames. The estimated motion vectors play a critical role in understanding
and correcting the displacement caused by object motion.

3. Correction of Camera-Pixel Mismatches: Using the motion vectors derived in the
previous step, the algorithm proceeds to correct camera-pixel mismatches. This correction
aligns the captured pixel data with the actual spatial position of the object, thereby
addressing one of the primary sources of motion-induced errors. This step ensures that
the data accurately reflect the object’s geometry, even under dynamic conditions.

4. Mitigation of Phase-Shift Errors Using the Hilbert Transform: After correcting
camera-pixel mismatches, the next step involves applying the Hilbert transform to
address phase-shift errors. The Hilbert transform shifts the fringes by m/2, effectively
eliminating periodic phase errors that can arise due to motion. This step is crucial for
refining the accuracy of the 3D reconstruction.
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Figure 2. Overall flowchart of our proposed method.

Overall, this strategy provides a comprehensive and integrated approach to motion
error compensation. By systematically addressing both camera-pixel mismatches and
phase-shift errors through iterative refinement, the proposed method enhances the
robustness and precision of 3D measurements, making it suitable for applications
involving complex dynamic conditions.

2.1. Rough 3D Reconstruction Using Phase-Shifting Algorithm

In the initial stage of the compensation algorithm process, we first need to use the
traditional phase-shift algorithm to obtain rough 3D points. This allows us to estimate the
motion vectors to the object’s centroid in the subsequent algorithm process. Assume that
k-th fringe images of a generic N-step phase-shifting algorithm can be described as
follows:

I'(x,y)=A4A(x,y)+ B°(x,y)cos(¢(x,y)+2zxn/N) (1)

Using the fringe patterns captured by the camera and applying phase-shifting and
unwrapping algorithms, the absolute phase of the object is obtained. Then, by combining
the camera and projector parameter matrices, the three-dimensional point cloud data can
be calculated. The specific calculations are as follows:

u,=¢xP/(2r)
SC [uC VL‘ 1] = ML‘ [XM/ KV ZW 1] (2)
slu, v, 1I=M,[X, Y, Z, 6 1]

P P

where P represents the fringe period, and ¢ represents the absolute phase obtained

through the phase-shifting algorithm. u,, v

, represent the horizontal and vertical

coordinates of the projector, and similarly, u#., Vv, represent the horizontal and vertical

coordinates of the camera. M. and M, are the projection matrices of the camera and the
projector.
The ¢ specific calculation process involves first using the phase-shifting method to

obtain the wrapped phase.
L e (x, ) sin2an / N)

n=0""
- 3
> VI (x, p)cos(2zn/ N) 3)

¢(x,y) =tan
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where the value of actan is within [-7,7), thus ¢(x,y) is not continuous. By

applying a phase unwrapping algorithm to calculate the fringe order, the continuous
phase @ can be obtained.

¢=¢(x,y)+k(x,y)x2m (4)

2.2. Motion Vector Estimation

The motion vectors rely on the 3D coordinate data obtained from a 3D measurement
system. Firstly, we need to calculate the mask of the motion target.

1 (Z(X,Y)>a)

0 (otherwise)

OX,Y,t)= { ®)
where a represents the threshold for extracting the region of the moving target; the value
of a is typically determined by averaging the fringe patterns and then selecting an
appropriate threshold. Z(X,Y) represents the point cloud depth matrix at this moment.
The corresponding mask can be extracted through an element-wise comparison with a
predefined threshold.

Then, the 3D coordinates of the moving object at time f can be obtained as
Z(X,Y,t)=Z(X,Y,t)-Q(X,Y,t) . Based on this, the centroid information of the
target (X(¢),Y(¢),Z(¢)) can be calculated as follows:

— — M,
Xo=1r TO=-r Z0=% ©)

0 0 0

The specific calculation of A7, M > M, isas follows:
M,=Y0(X.Y,) M =Y Z(X.Y1)
XY XY

M= 0X,Y,0)-X M,=)OX,Y,1)Y @)

From the above equations, the centroids of the 3D point at different times can be
estimated. Finally, the motion vectors (Vx,Vy,Vz) can be estimated through the

movement of the centroids at different times.

2.3. Camera-Pixel Mismatch Correction

In 3D reconstruction using phase shifting, camera-pixel displacement and phase-
shifting errors coexist in adjacent fringes. Correcting camera-pixel mismatches is crucial
before phase retrieval. In the three-step phase-shifting algorithm, mismatches occur every
three frames. The estimated motion vectors from step 2 can be used to correct these errors.

To solve the problem, it is necessary to find and adjust the pixel offsets for each fringe,
so that the same pixel in all three images corresponds to the same point:

u," =u’+V" W, v), v, =v+ V', (u,v) (8)

u,  =u + Vv, v = v+ VLt ,v0)
In Equation (8), using the three-frequency, three-step phase-shifting method as an
example, the three images shown represent the first three fringe images. In practice, pixel
mismatch correction needs to be applied to all nine fringe images. u, and V| represent

the horizontal and vertical coordinates of the first fringe image pixel, respectively.

V¥, ,v") and V', (u°,v") denote the horizontal and vertical displacements of the
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second fringe image relative to the first. Similarly, V" ;(#°,v") and V', (u°,v°)
represent the horizontal and vertical displacements of the third fringe image relative to
the first.

To determine the pixel offsets caused by object motion, we can start from the pinhole
camera model as follows [20]:

W W
U, » my  my, ms o my v
z _qcr pc e wo|_ w
s v, |=A[R°,T°] =My My My My, )
z, Zy,
1 | My My My My

This model represents the relationship between a given world coordinate point
(x,,v,,z,) and its corresponding camera-pixel (u‘,1°). Now, if a point moves from

(x,,¥,,2,) tO (x,+Vx,y, +Vy,z, +Vz), the corresponding pixel will shift from (4°,v) to
",v") - The camera-pixel shift can be modeled using the following mathematical

expressions:

=u + au(‘xw’yw’zw) Vx + au(xv¢>’y1¢>’z‘¢*) Vy + au(xw’yw’zw) VZ

‘ ox, », oz,
: + av(‘xw’ yw’ Zw) vx + av(‘xw’ yw’ Zw) Vy + av('xw’yw’zw) VZ
ax w ay w 62 w

ou(x,,,,2,) _ my (M x, +ms,p, +msz, +my,) —my, (my,x, +m,y, +msz, +m,)

2
Ox Cmyx, +my,y, +myz, +my,)

w

ou(x,,y,,2,) _ My (Mg, X,, + Mgy, + Mgz, +myy) = my, (my, X, +my,y,, +mysz, +my,)

ou(x,,y,,2,) _ myy(my X, + my,p, +myz, +my) —myy (myx, +mpy, +mz, +m,)

2
oy, (my X, +myy, +myz, +m,,)

(10)

2
oz, Cmy X, +my,y, +myz, +my,)

ov(X,,Y,2,) _ My, (M, X, + M3y Y, +Myy 2, + M) =My, (My X, + My, Y, + M2, +1y,)

2
ox,, (myx +my,y, +myuz, +my,)

w

V(X5 Vs Z,) _ My (my X, +myy Y, + Mgz, +my,) = My, (My, X, + My Y, + M2, +my,)

2
oy, (my X, +my,y,, +myz, +my,)

OV(Xys Vs 2,) _ Mys (Mg X, + My, + M55, + M) = (my X, + My, 9, + Mz, +my,)

2
oz, Cmy X, +my,p, +myz, +my,)

w

After completing steps 1 to 3, the camera-pixel mismatch error is successfully
eliminated, ensuring accurate alignment of the captured pixel data with the object’s actual
geometry. This correction is crucial for minimizing one of the primary sources of
distortion in dynamic 3D measurements. However, despite this improvement, residual
motion-induced phase-shifting errors remain in the system. These errors, often
manifested as periodic distortions in the reconstructed surface, are caused by
discrepancies introduced during the phase-shifting process due to object motion. Such
errors can significantly compromise the accuracy and reliability of the 3D reconstruction,
particularly in scenarios involving complex or multidirectional motion.

To address these residual errors, step 4 focuses on applying advanced error
compensation techniques. Specifically, the Hilbert transform is employed to shift the
phase of the fringe patterns by m/2, enabling the identification and elimination of periodic
phase errors. This step ensures that the reconstructed 3D surface is free from distortions
caused by phase inconsistencies. Furthermore, the process includes iterative evaluation
and refinement to ensure convergence and optimal correction. By systematically
addressing these residual phase errors, step 4 plays a critical role in achieving high-
accuracy 3D reconstructions, even under challenging dynamic conditions.
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2.4. Phase-Shift Error Compensation Using the Hilbert Transform

After completing the previous steps, the camera-pixel mismatch problem is
effectively alleviated, significantly improving the alignment between the captured pixel
data and the object’s actual spatial configuration. However, residual errors persist,
primarily originating from the projection subsystem. These errors are particularly critical
in the context of phase-shifting algorithms, where precise phase shifts are essential for
accurate 3D reconstruction. Object motion introduces deviations in the phase shift,
rendering it imprecise and resulting in periodic phase errors. These errors occur because
the relative motion between the object and the measurement system disrupts the
synchronized relationship between projected fringe patterns and their captured
counterparts. Such disruptions lead to inaccuracies in phase calculations, particularly in
dynamic scenarios involving rapid or multidirectional motion. The periodic nature of
these errors further complicates the reconstruction process, as they propagate across the
reconstructed surface, creating distortions that undermine the fidelity of the 3D model.

In the phase-shifting algorithm, the phase shift § is no longer precise, since object

motion will cause error & :
5’1' = 5’1 + g (10)
The phase-shifting error, if not well suppressed, will result in a phase error [21]:

Vé=4(x,y) —¢(x,)
—esin 2¢
3++3¢cos e2¢

—/35in2¢ (11)
—

~tan [

~tan'[¢
~ (—? £)sin2¢

#(x,y) is the phase error, and ¢(x,y) is the true phase.

It can be observed that the phase error is approximately a sinusoidal function with a
frequency twice that of the projected fringe. To eliminate these periodical phase error, we
utilize the Hilbert transform to generate the complementary phase map, as follows:

N
D 1l cos s,
¢" (x,y)=tan™ | H—— (12)
D> 1sing,
n=1

where 7 represents the fringes after the Hilbert transform I"=H[I].

By averaging the origin phase and the phase obtained through the Hilbert transform,
the phase error can be eliminated as follows:

¢ (x,9) =[$(x. ) +¢" (x. )]/ 2 (13)
At this point, the phase values ¢/ (x,y) obtained theoretically represent the phase

error-corrected values. By putting these into Equation (2), the 3D reconstruction result
corrected for motion error can be obtained.

Each iteration of steps 1 to 4 progressively refines the 3D reconstruction by
systematically addressing errors introduced at different stages of the process. Meanwhile,
the 3D centroids of the point clouds at different time points are calculated, and with each
iteration, the centroids should progressively move closer to each other until a predefined
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minimum threshold is reached, at which point the iteration loop can be terminated. In
each cycle, pixel alignment is improved, and phase-shifting errors are minimized,
bringing the reconstructed model closer to the true spatial geometry of the object. This
iterative approach ensures that residual errors are incrementally reduced, resulting in
enhanced accuracy of the 3D reconstruction.

To monitor the progress of the iterations, convergence criteria are established, such
as a predefined threshold for error reduction or stability in the reconstructed phase map
across successive iterations. By evaluating these criteria at each step, the algorithm
determines whether further iterations are necessary. This ensures computational
efficiency by preventing unnecessary processing once the reconstruction has achieved
optimal fidelity.

Additionally, this iterative refinement not only compensates for motion-induced
errors, but also enhances robustness against external factors, such as noise and minor
calibration inaccuracies. The process continues until the results stabilize, indicating that
the reconstruction has reached its best achievable accuracy. The combination of iterative
improvement and convergence monitoring provides a reliable framework for obtaining
precise 3D measurements, even under challenging dynamic conditions.

3. Experiments and Discussion

To validate the effectiveness of the proposed method, we designed and implemented
a phase-shifting profilometry (PSP) system equipped with a GVD PDCO03 projector (800 x
1200 pixels) and an IDS UI-124XSE-M camera (1600 x 1200 pixels), both operating at a
synchronized frame rate of 120 Hz. This high frame rate ensured that the system could
capture dynamic scenes with minimal motion blur, providing a robust platform for testing
the algorithm under various motion scenarios. The phase unwrapping process in the
system employed a three-frequency phase-shifting algorithm, which is widely recognized
for its ability to handle complex phase distributions and resolve ambiguity in phase
retrieval. This algorithm allowed the system to accurately reconstruct the surface profile
of objects by sequentially projecting three fringe patterns of varying frequencies onto the
object surface. The reflected patterns were captured by the camera and analyzed to extract
precise phase information. Additionally, to simulate realistic conditions and further
evaluate the robustness of the method, the system was configured to measure objects
undergoing controlled motion at different velocities and directions. This setup enabled us
to assess the performance of the algorithm not only in static conditions, but also under
dynamic environments, ensuring its applicability in real-world scenarios where motion-
induced errors are prevalent. By combining advanced hardware and algorithmic
techniques, the experimental setup provided a comprehensive framework for testing and
validating the proposed motion error compensation method.

Figure 3 shows our experimental setup. To demonstrate the effectiveness of our
algorithm when the measured object moves in different directions, we set up two motion
scenarios: motion along the X/Y (X and Y) directions, as shown in Figure 3a, and motion
along the X/Y-Z (X, Y, and Z) directions, as shown in Figure 3b.



Sensors 2025, 25, 924

9 of 16

ﬁa) Motion X\Y direction (b) Motion X\Y-Z direction \

Figure 3. Experimental setup.

3.1. Dynamic Reconstruction Accuracy

In the experiment, a standard ball was moved along the X/Y and Z axes.

Figure 4 presents a comparative analysis of the 3D reconstruction results under
different error compensation conditions, demonstrating the progressive improvements
achieved through the proposed method. Figure 4a illustrates the 3D reconstruction results
obtained using the traditional phase-shifting algorithm without any error compensation.
Significant edge distortions are evident in the reconstruction, particularly in areas with
rapid transitions, indicating the detrimental effects of motion-induced errors on the
accuracy of the measurement. Quantitatively, the mean error in this case is 0.142 mm, with
a root mean square error (RMSE) of 0.453 mm, highlighting the limitations of the
conventional algorithm in dynamic scenarios. Figure 4b presents the reconstruction
results after applying correction for camera-pixel mismatch alone. While this step reduces
edge distortions to some extent, it fails to fully address the motion-induced errors, as
periodic sinusoidal phase errors persist across the surface of the reconstructed object.
These residual errors underscore the need for a more comprehensive approach. The mean
error in this case increases to 0.673 mm, with an RMSE of 0.863 mm, indicating that
correcting only camera-pixel mismatches is insufficient for achieving high-accuracy
reconstructions. Figure 4c showcases the results after simultaneously compensating for
both camera-pixel mismatch and phase-shifting errors using the proposed method. The
reconstruction demonstrates a marked improvement in accuracy, with edge distortions
effectively eliminated and the sinusoidal phase errors significantly mitigated. This dual-
correction approach achieves a mean error of just 0.0296 mm and an RMSE of 0.252 mm,
representing a substantial enhancement compared to the previous cases. These results
validate the effectiveness and robustness of the proposed algorithm in addressing motion-
induced errors in dynamic 3D measurement scenarios. The comparison in Figure 4
highlights the progressive benefits of integrating camera-pixel mismatch correction with
phase-shift error mitigation, emphasizing the importance of a comprehensive error
compensation strategy for achieving precise and reliable 3D reconstructions in complex
motion conditions. In this study, we built a more general-purpose 3D structured light
imaging system, consisting of the GVD PDCO03 projector (800 x 1200 pixels) and the IDS
UI-124XSE-M camera (1600 x 1200 pixels), and compared the performance of our motion
compensation algorithm with other algorithms on the same system. This was carried out
to demonstrate that the compensation accuracy of our algorithm has a certain level of
generalizability. Of course, different structured light imaging systems inherently have
varying levels of precision. However, the 3D measurement system used in our
experiments achieves an accuracy of better than 0.03 mm when measuring static objects.
Additionally, with the application of our motion compensation algorithm, we are able to
achieve similar high-precision measurements (within 0.03 mm) in dynamic scenes.
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Therefore, the algorithm’s accuracy is also influenced by the inherent measurement
accuracy of the system, and it will improve as the original system’s accuracy improves.

Figure 4. Standard ball random motion experiment results: (a) Three-dimensional reconstruction
results of the standard ball’'s random motion without any correction. (b) Three-dimensional
reconstruction results of the standard ball’s random motion after correcting only the camera-pixel
mismatch. (c) Three-dimensional reconstruction results of the standard ball’s random motion after

simultaneously compensating for pixel mismatch and phase-shift errors.

3.2. Dynamic Reconstruction in Complex Scenarios

To evaluate the robustness of our proposed method under varying motion velocities,
we conducted a series of 3D reconstruction experiments. These experiments involved
scenarios where the mask moved at three distinct speeds, denoted as V1, V2, V3, along
two different motion directions. These speeds were chosen to represent a range of motion
dynamics, from relatively slow movements to faster, more challenging scenarios that test
the limits of motion compensation techniques. The experimental setup allowed us to
systematically analyze the performance of our method under diverse motion conditions
and assess its ability to maintain reconstruction accuracy across varying velocities.

Furthermore, to highlight the superior generalizability and effectiveness of our
proposed method compared to existing motion compensation approaches, we performed
a comprehensive comparative analysis. This analysis included reconstruction results
obtained using our algorithm, as well as those achieved through motion error
compensation with the Hilbert transform, a commonly employed technique in the field.
By comparing the outcomes, we aimed to demonstrate how our approach not only
addresses camera-pixel mismatches, but also effectively mitigates phase-shifting errors,
which are often inadequately handled by traditional methods.

The comparative analysis was conducted across various motion conditions,
encompassing both unidirectional and multidirectional motion patterns, as well as
scenarios with different velocity profiles. This allowed us to evaluate the adaptability of
our method for handling complex and dynamic motion environments. The experimental
results underscore the robustness of our approach, showing that it consistently
outperforms conventional methods in terms of reconstruction accuracy and error
mitigation, regardless of the motion conditions.

As illustrated in Figure 5a,e,i, motion along the X and Y directions (X/Y) introduces
significant errors in the initial 3D reconstructions. These errors are particularly
pronounced as the velocity increases, leading to the emergence of periodic distortions on
the reconstructed mask surface. These distortions disrupt the smoothness and continuity
of the reconstructed surface, affecting the overall accuracy and reliability of the
measurement. In addition to the periodic errors, the edge regions, as highlighted by the
red boxes, suffer from severe issues of missing data caused by pixel shifting. These issues
become increasingly problematic at higher velocities, as the rapid motion exacerbates the
misalignment between the captured data and the actual object geometry.
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Figure 5. Three-dimensional reconstruction of the mask moving along the X/Y-Z directions at
different velocities (V1, V2, V3). (a,e,i) depict the rough 3D reconstruction results of the mask’s point
clouds. (b,f,j) show the reconstruction results obtained by directly applying the Hilbert transform
for error correction. (¢,g k) present the reconstruction results after correcting only the camera-pixel
mismatch. (dh,1) demonstrate the reconstruction results after simultaneously compensating for

both camera-pixel mismatch and phase-shifting errors.

Applying the Hilbert transform alone, as shown in Figure 5b,fj, demonstrates its
limitations in resolving these issues. While it can partially reduce periodic distortions, it
proves inadequate for addressing the missing data problems in the edge regions,
particularly in areas where motion effects are more pronounced. This underscores the
necessity of addressing camera-pixel mismatches as a fundamental step in error
compensation. Without correcting this mismatch, the reconstruction remains prone to
inaccuracies, limiting its applicability in high-precision scenarios.

When the camera-pixel mismatch is corrected, as depicted in Figure 5¢,g k, significant
improvements in reconstruction accuracy can be observed. Pixel misalignment-induced
errors are effectively eliminated, and missing reconstruction details in the edge regions,
particularly within the red-boxed areas, are successfully restored. The corrected
reconstruction provides a more accurate representation of the object’s geometry, even
under motion conditions. However, despite these advancements, periodic phase errors
persist on the mask surface, indicating that addressing pixel mismatches alone is
insufficient for achieving high-accuracy results.

Finally, as demonstrated in Figure 5d,hl, our proposed method provides a
comprehensive solution by simultaneously addressing both camera-pixel mismatch and
phase-shifting errors. This dual-compensation approach resolves the missing data issues
in the edge regions, completely restoring the lost details, and significantly mitigates the
periodic distortions across all three velocities. The integration of these compensation steps
results in smoother and more accurate 3D reconstructions, free from the limitations
observed in previous approaches. These results highlight the robustness and effectiveness
of our method for achieving high-fidelity reconstructions, even under challenging
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dynamic conditions. This comprehensive correction process not only ensures accurate
measurements in complex motion scenarios, but also showcases the potential of our
method for broader applications in dynamic 3D measurement tasks.

We also tested a motion scenario with the object moving along the X/Y-Z (X, Y, and
Z) directions, and the results are illustrated in the following figure.

Figure 6a,e,i depict the initial 3D reconstruction results at different velocities, namely
V1, V2, V3, showcasing the effects of motion on reconstruction accuracy. For motion along
the X/Y-Z directions, the reconstructions reveal even more pronounced periodic errors
compared to those along the X/Y directions, particularly as velocity increases. These
periodic distortions are most evident on the mask surface, where the structured patterns
exhibit noticeable deviations. Additionally, in the edge regions, as highlighted by the red
boxes, the inaccuracies in the reconstruction become increasingly severe as velocity rises,
leading to substantial data loss and misalignment issues.

D-Hilbert Camera-pixel

(a) Rough 3D ®) Trap form © Correction (d) All Correction

(2)

Figure 6. Three-dimensional reconstruction of the mask moving along the X/Y-Z directions at
different velocities (V1, V2, V3). (a,e i) depict the rough 3D reconstruction results of the mask’s point
clouds. (b,f,j) show the reconstruction results obtained by directly applying the Hilbert transform
for error correction. (¢,g k) present the reconstruction results after correcting only the camera-pixel
mismatch. (d,h,1) demonstrate the reconstruction results after simultaneously compensating for

both camera-pixel mismatch and phase-shifting errors.

Applying the Hilbert transform alone, as shown in Figure 6b,f,j, demonstrates its
limited ability to address these errors. While this approach reduces some periodic
distortions, it fails to eliminate them completely, especially in the edge regions, where
pixel misalignment causes significant data loss. This highlights the critical need to address
camera-pixel mismatches as a fundamental step in the error correction process.

When the camera-pixel mismatch is corrected, as shown in Figure 6¢,g k, there is a
noticeable improvement in the reconstruction. Errors caused by pixel misalignment are
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effectively eliminated, and missing reconstruction details in the edge regions, particularly
within the red-boxed areas, are successfully restored. Despite these advancements,
periodic errors on the mask surface remain unresolved, indicating the limitations of
addressing pixel mismatches alone.

Ultimately, our proposed method, as depicted in Figure 6dh,l, provides a
comprehensive correction that simultaneously compensates for camera-pixel mismatch
and phase-shift errors. This dual-correction approach fully resolves inaccuracies in the
edge regions, completely restoring the lost data, while significantly suppressing periodic
errors across all velocities. The results clearly demonstrate the robustness and efficacy of
the proposed method for handling complex motion scenarios, achieving precise and high-
quality 3D reconstructions even under challenging conditions. These findings validate the
capability of the proposed algorithm to enhance reconstruction accuracy, making it a
valuable solution for dynamic 3D measurement tasks.

To further verify that our motion compensation method is not only effective for
simple geometric shapes, but also applicable to complex objects, we selected a new
reconstruction target for experimentation:

Figure 7 illustrates the reconstruction results for a moving hand under different
correction strategies, highlighting the effectiveness of the proposed method. In Figure 7a,
the reconstruction results using the conventional phase-shifting algorithm without any
corrections exhibit significant distortions and inaccuracies, due to the presence of both
camera-pixel mismatch and phase-shifting errors, particularly in regions of rapid motion.
Figure 7b shows the results after correcting only the camera-pixel mismatch, where the
pixel misalignment-induced errors are eliminated, leading to a clearer reconstruction.
However, periodic phase errors remain visible, particularly on the surface of the hand,
causing noticeable distortions. Finally, Figure 7c presents the reconstruction results after
simultaneously compensating for both pixel mismatch and phase-shifting errors,
demonstrating a significant improvement in accuracy. The hand’s surface is reconstructed
with minimal distortions, and the previously prominent errors are effectively mitigated,
showcasing the robustness and precision of the proposed method for handling dynamic
scenes.

Al o

Figure 7. Moving hand reconstruction results: (a) Conventional phase-shifting algorithm
reconstruction results without any correction. (b) Reconstruction results after correcting only the
camera-pixel mismatch. (c¢) Reconstruction results after simultaneously compensating for pixel

mismatch and phase-shift errors.

4. Conclusions

This paper presents a motion error compensation method for dynamic 3D
measurement, with experimental results showing a reconstruction accuracy of 0.03 mm.
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This method effectively addresses motion-induced errors, which are common in high-
precision applications. Achieving this level of accuracy is important for the precise
measurement and modeling of dynamic objects, particularly in fields such as robotics,
medical imaging, and industrial inspection. Unlike traditional algorithms that often rely
on strict assumptions about object motion and are limited to specific scenarios, this
approach offers a flexible and adaptable solution. By simultaneously addressing camera-
pixel mismatches and phase-shifting errors in 3D space, it enables reliable 3D
reconstructions, even under complex and dynamic motion conditions. A key advantage
of this method is its ability to compensate for motion-induced errors without requiring
high-speed camera systems. Traditional approaches typically address motion errors by
increasing the acquisition speed of fringe images, which often results in higher hardware
costs. In contrast, this method uses mismatches in adjacent fringe images to correct errors,
even with slower camera setups. This makes the method more cost-effective and suitable
for a wider range of applications, especially in scenarios where hardware upgrades may
not be possible. The core of the algorithm lies in its dual-error compensation strategy. It
first addresses camera-pixel mismatches, a significant source of reconstruction
inaccuracies in dynamic scenes. Additionally, the method compensates for phase-shifting
errors, which are particularly problematic in complex or multidirectional motion
scenarios. Using advanced mathematical tools such as the Hilbert transform, the
algorithm reduces periodic phase errors, helping to restore the smoothness and integrity
of the reconstructed surface. Experimental validation demonstrates the effectiveness of
this approach in a range of motion directions and velocities. The results show notable
improvements in reconstruction accuracy compared to conventional methods,
particularly in situations where traditional approaches face challenges. For instance, when
compared to traditional phase-shifting methods or those that only correct phase errors,
the proposed method shows reductions in point cloud gaps, order errors, and edge
distortions. These improvements are important because they enhance the fidelity of the
reconstructed model, ensuring that the object’s geometry is represented more accurately,
and addressing issues like incomplete point clouds or distortion that can negatively affect
measurement accuracy. The ability of the algorithm to handle both low-speed and high-
speed motions with consistent precision highlights its robustness and adaptability. Low-
speed motion, in this context, is defined as pixel-level errors caused by object movement
within a range of one pixel, where reconstruction accuracy remains high. High-speed
motion, however, refers to scenarios where the pixel mismatches exceed one pixel, leading
to significant distortion in the reconstructed model if not corrected. Therefore, we defined
three different speeds, V1-V3 (0.03 mm/s, 0.7 mm/s, and 0.1 mm/s), which correspond to
the low and high speeds discussed in the paper. This method compensates for such errors,
ensuring reliable reconstructions even in high-speed dynamic scenarios. By aligning pixel
data with the actual geometry of the object, the method ensures that the captured data
reflect the spatial configuration of the object more accurately. Additionally, the iterative
optimization process helps the algorithm converge to an optimal solution, stopping once
the difference between successive iterations is below a predefined threshold, ensuring
stability and accuracy in the results. Future work could involve integrating more
advanced motion vector analysis techniques to handle even more complex motion
scenarios, such as rotational and translational movements of the target object. These
enhancements would further extend the method’s applicability, making it more suitable
for highly dynamic environments where objects undergo unpredictable or multi-axis
motion. Such improvements could expand the potential of the method in motion error
compensation technologies.

In summary, this motion error compensation method offers a promising approach
for dynamic 3D measurement, addressing many limitations of traditional algorithms. It
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combines broad applicability with a cost-effective design, making it suitable for fields
such as robotics, industrial inspection, medical imaging, and virtual reality. However, it
is important to note that this method has certain limitations. It assumes that the object
moves at a constant speed along a straight line, and the use of centroids in motion
compensation limits its applicability to rigid body motion. As a result, the method may
not be effective for dynamic 3D measurements of non-rigid body movements.
Additionally, when the object at the edge of the field of view (FOV) moves too quickly, it
may exceed the measurement range, causing certain points to become unmeasurable at
different time instances. In such cases, our method assumes that the object remains within
the FOV, and we have not addressed a scenario where the object moves too quickly to be
captured. Indeed, in these situations, the motion compensation algorithm would fail.
Despite these constraints, this method provides valuable insights and support for
advancing the accuracy and efficiency of dynamic 3D measurement systems.
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