State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China
Abstract
:1. Introduction
2. Polymers and Methods Used for pH Measurements
2.1. Optical and Fluorescent pH sensors
2.2. Electrodes modified with pH-sensitive polymers
2.3. Potentimetric pH sensors
2.4. Miniaturized pH sensors
3. Conclusions
Acknowledgments
References
- Janata, J. Do optical sensors really measure pH? Analytical Chemistry 1987, 59, 1351–1356. [Google Scholar]
- Robinson, K. L.; Lawrence, N. S. Redox-sensitive copolymer: A single-component pH sensor. Analytical Chemistry 2006, 78, 2450–2455. [Google Scholar]
- Arshak, K.; Gill, E.; Arshak, A.; Korostynska, O. Investigation of tin oxides as sensing layers in conductimetric interdigitated pH sensors. Sensors and Actuators B: Chemical 2007, 127, 42–53. [Google Scholar]
- Adhikari, B.; Majumdar, S. Polymers in sensor applications. Progress in Polymer Science (Oxford) 2005, 29, 699–766. [Google Scholar]
- Yuqing, M.; Jianrong, C.; Keming, F. New technology for the detection of pH. Journal of Biochemical and Biophysical Methods 2005, 63, 1–9. [Google Scholar]
- Michalska, A.; Maksymiuk, K. Counter-ion influence on polypyrrole potentiometric pH sensitivity. Microchimica Acta 2001, 143, 163–175. [Google Scholar]
- Arshak, A.; Gill, E.; Arshak, K.; Korostynska, O.; Cunniffe, C. Drop-coated polyaniline composite conductimetric pH sensors. Proceedings of the 30th IEEE International Spring Seminar on Electronics Technology, Cluj-Napoca, Romania, May 9-13, 2007; pp. 213–218.
- Prissanaroon, W.; Brack, N.; Pigram, P.J.; Hale, P.; Kappen, P.; Liesegang, J. Fabrication of patterned polypyrrole on fluoropolymers for pH sensing applications. Synthetic Metals 2005, 154, 105–108. [Google Scholar]
- Santiago, K.S.; Bartolome, A.J.; John, V.B. Electrochemically synthesized polymer-based pH sensors. Philippine Journal of Science 1999, 128, 120–126. [Google Scholar]
- Herlem, G.; Lakard, B.; Herlem, M.; Fahys, B. pH sensing at Pt electrode surfaces coated with linear polyethylenimine from anodic polymerization of ethylenediamine. Journal of The Electrochemical Society 2001, 148, E435–E438. [Google Scholar]
- Fritzsche, M.; Barreiro, C.G.; Hitzmann, B.; Scheper, T. Optical pH sensing using spectral analysis. Sensors and Actuators, B: Chemical 2007, 128, 133–137. [Google Scholar]
- Wolfbeis, O. S. Fiber optic chemical sensors and biosensors. Analytical Chemistry 2002, 74, 2663–2678. [Google Scholar]
- Kang, E. H.; Ham, J. K.; Shim, J. M.; Lee, J. K.; Kim, M. R. Applications of pH sensor Using a Covalent Bond Indicator Based on Containing Functional Group Copolymer. Molecular Crystals and Liquid Crystals 2006, 445, 285–290. [Google Scholar]
- Wolthuis, R.; McCrae, D.; Saaski, E.; Hartl, J.; Mitchell, G. Development of a medical fiberoptic pH sensor based on optical absorption. IEEE Transactions on Biomedical Engineering 1992, 39, 531–537. [Google Scholar]
- Cooney, C. G.; Towe, B. C. Miniaturized pH and pCO2 intravascular catheter using optical monitoring and a dual concentric-flow microdialysis approach. Sensors and Actuators, B: Chemical 2000, 62, 177–181. [Google Scholar]
- Lehmann, H.; Schwotzer, G.; Czerney, P.; Mohr, G. J. Fiber-optic pH meter using NIR dye. Sensors and Actuators B: Chemical 1995, B29, 392–400. [Google Scholar]
- Peterson, J. I.; Goldstein, S. R.; Fitzgerald, R. V.; Buckhold, D. K. Fiber optic pH probe for physiological use. Analytical Chemistry 1980, 52, 864–869. [Google Scholar]
- Grant, S. A.; Glass, R. S. A sol-gel based fiber optic sensor for local blood pH measurements. Sensors and Actuators B: Chemical 1997, 45, 35–42. [Google Scholar]
- Grant, S. A.; Bettencourt, K.; Krulevitch, P.; Hamilton, J.; Glass, R. In vitro and in vivo measurements of fiber optic and electrochemical sensors to monitor brain tissue pH. Sensors and Actuators B: Chemical 2001, 72, 174–179. [Google Scholar]
- Zauner, A.; Bullock, R.; Di, X.; Young, H. F. Brain oxygen, CO2, pH, and temperature monitoring: evaluation in the feline brain. Neurosurgery 1995, 37, 1176–1177. [Google Scholar]
- Tsai, Y. T.; Wen, T. C.; Gopalan, A. Tuning the optical sensing of pH by poly(diphenylamine). Sensors and Actuators B: Chemical 2003, 96, 646–657. [Google Scholar]
- Lindfors, T.; Ivaska, A. Application of Raman spectroscopy and sequential injection analysis for pH measurements with water dispersion of polyaniline nanoparticles. Analytical Chemistry 2007, 79, 608–611. [Google Scholar]
- Lindfors, T.; Harju, L.; Ivaska, A. Optical pH measurements with water dispersion of polyaniline nanoparticles and their redox sensitivity. Analytical Chemistry 2006, 78, 3019–3026. [Google Scholar]
- Lindfors, T.; Ivaska, A. pH sensitivity of polyaniline and its substituted derivatives. Journal of Electroanalytical Chemistry 2002, 531, 43–52. [Google Scholar]
- Lindfors, T.; Ivaska, A. Raman based pH measurements with polyaniline. Journal of Electroanalytical Chemistry 2005, 580, 320–329. [Google Scholar]
- Lindfors, T.; Ervela, S.; Ivaska, A. Polyaniline as pH-sensitive component in plasticized PVC membranes. Journal of Electroanalytical Chemistry 2003, 560, 69–78. [Google Scholar]
- Bizzarri, R.; Arcangeli, C.; Arosio, D.; Ricci, F.; Faraci, P.; Cardarelli, F.; et al. Development of a Novel GFP-based Ratiometric Excitation and Emission pH Indicator for Intracellular Studies. Biophysics Journal 2006, 90, 3300–3314. [Google Scholar]
- Hai-Jui, L.; Herman, P.; Jakowicz, J. R. Fluorescence lifetime-resolved pH imaging of living cells. Cytometry Part A 2003, 52A, 77–89. [Google Scholar]
- Begu, S.; Mordon, S.; Desmettre, T.; Devoisselle, J. M. Fluorescence imaging method for in vivo pH monitoring during liposomes uptake in rat liver using a pH-sensitive fluorescent dye. Journal of Biomedical Optics 2005, 10, 024008–024014. [Google Scholar]
- Salerno, M.; Ajimo, J. J.; Dudley, J. A.; Binzel, K.; Urayama, P. Characterization of dual-wavelength seminaphthofluorescein and seminapthorhodafluor dyes for pH sensing under high hydrostatic pressures. Analytical Biochemistry 2007, 362, 258–267. [Google Scholar]
- Mordon, S.; Devoisselle, J. M.; Soulie, S. Fluorescence spectroscopy of pH in vivo using a dual-emission fluorophore (C-SNAFL-1). Journal of Photochemistry and Photobiology B: Biology 1995, 28, 19–25. [Google Scholar]
- Sanders, R.; Draaijer, A.; Gerritsen, H. C.; Houpt, P. M.; Levine, Y. K. Quantitative pH Imaging in Cells Using Confocal Fluorescence Lifetime Imaging Microscopy. Analytical Biochemistry 1995, 227, 302–308. [Google Scholar]
- Whitaker, J. E.; Haugland, R. P.; Prendergast, F. G. Spectral and photophysical studies of benzo[c]xanthene dyes: Dual emission pH sensors. Analytical Biochemistry 1991, 194, 330–344. [Google Scholar]
- Khramtsov, V. Biological Imaging and Spectroscopy of pH. Current Organic Chemistry 2005, 9, 909–923. [Google Scholar]
- Dai, X.; Eccleston, M. E.; Yue, Z.; Slater, N. K. H.; Kaminsk, C. F. A spectroscopic study of the self-association and inter-molecular aggregation behaviour of pH-responsive poly(l-lysine iso-phthalamide). Polymer 2006, 47, 2689–2698. [Google Scholar]
- Gao, F.; Tang, L.; Dai, L.; Wang, L. A fluorescence ratiometric nano-pH sensor based on dual-fluorophore-doped silica nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2007, 67, 517–521. [Google Scholar]
- Si, Z.; Shao, Y.; Ci, C.; Liu, Q. Synthesis and fluorescence study of sodium-2-(4′-dimethyl-aminocinnamicacyl)-3,3-(1′,3′-alkylenedithio) acrylate. Journal of Luminescence 2007, 124, 365–369. [Google Scholar]
- Ando, Y.; Iino, S.; Yamada, K.; Umezawa, K.; Iwasawa, N.; Citterio, D.; et al. A ratiometric fluorescent pH glass optode based on a boron-dipyrromethene derivative. Sensors and Actuators B: Chemical 2007, 121, 74–82. [Google Scholar]
- Kneen, M.; Farinas, J.; Li, Y.; Verkman, A. S. Green Fluorescent Protein as a Noninvasive Intracellular pH Indicator. Biophysics Journal 1998, 74, 1591–1599. [Google Scholar]
- McNaughton, B. H.; Anker, J. N.; Kopelman, R. Magnetic microdrill as a modulated fluorescent pH sensor. Journal of Magnetism and Magnetic Materials 2005, 293, 696–701. [Google Scholar]
- Bojinov, V. B.; Simeonov, D. B.; Georgiev, N. I. A novel blue fluorescent 4-(1,2,2,6,6-pentamethylpiperidin-4-yloxy)-1,8-naphthalimide pH chemosensor based on photoinduced electron transfer. Dyes and Pigments 2008, 76, 41–46. [Google Scholar]
- Talaie, A. Conducting polymer based pH detector: A new outlook to pH sensing technology. Polymer 1997, 38, 1145–1150. [Google Scholar]
- Deronzier, A.; Moutet, J. C. Polypyrrole films containing metal complexes: Syntheses and applications. Coordination Chemistry Reviews 1996, 147, 339–371. [Google Scholar]
- Komura, T.; Ishihara, M.; Yamaguchi, T.; Takahashi, K. Charge-transporting properties of electropolymerized phenosafranin in aqueous media. Journal of Electroanalytical Chemistry 2000, 493, 84–92. [Google Scholar]
- Davis, J.; Vaughan, D. H.; Cardosi, M. F. Modification of catechol polymer redox properties during electropolymerization in the presence of aliphatic amines. Electrochimica Acta 1998, 43, 291–300. [Google Scholar]
- Mathias, M. F.; Haas, O. Effect of counterion type on charge transport at redox polymer-modified electrodes. J. Phys. Chem. 1993, 97, 9217–9225. [Google Scholar]
- Bakker, E.; Pretsch, E. Modern potentiometry. Angewandte Chemie - International Edition 2007, 46, 5660–5668. [Google Scholar]
- Ngeontae, W.; Xu, C.; Ye, N.; Wygladacz, K.; Aeungmaitrepirom, W.; Tuntulani, T.; et al. Polymerized Nile Blue derivatives for plasticizer-free fluorescent ion optode microsphere sensors. Analytica Chimica Acta 2007, 599, 124–133. [Google Scholar]
- Wygladacz, K.; Bakker, E. Imaging fiber microarray fluorescent ion sensors based on bulk optode microspheres. Analytica Chimica Acta 2005, 532, 61–69. [Google Scholar]
- Wygladacz, K.; Radu, A.; Xu, C.; Qin, Y.; Bakker, E. Fiber-Optic Microsensor Array Based on Fluorescent Bulk Optode Microspheres for the Trace Analysis of Silver Ions. Analytical Chemistry 2005, 77, 4706–4712. [Google Scholar]
- Xu, C.; Wygladacz, K.; Qin, Y.; Retter, R.; Bell, M.; Bakker, E. Microsphere optical ion sensors based on doped silica gel templates. Analytica Chimica Acta 2005, 537, 135–143. [Google Scholar]
- Karyakin, A. A.; Bobrova, O. A.; Lukachova, L. V.; Karyakina, E. E. Potentiometric biosensors based on polyaniline semiconductor films. Sensors and Actuators B: Chemical 1996, 33, 34–38. [Google Scholar]
- Lakard, B.; Herlem, G.; De Labachelerie, M.; Daniau, W.; Martin, G.; et al. Miniaturized pH biosensors based on electrochemically modified electrodes with biocompatible polymers. Biosensors and Bioelectronics 2004, 19, 595–606. [Google Scholar]
- Lakard, B.; Herlem, G.; Lakard, S.; Guyetant, R.; Fahys, B. Potentiometric pH sensors based on electrodeposited polymers. Polymer 2005, 46, 12233–12239. [Google Scholar]
- Kang, T. F.; Xie, Z. Y.; Tang, H.; Shen, G. L.; Yu, R. Q. Potentiometric pH sensors based on chemically modified electrodes with electropolymerized metal-tetraaminophthalocyanine. Talanta 1997, 45, 291–296. [Google Scholar]
- Malkaj, P.; Dalas, E.; Viteratos, E.; Sakkopoulos, S. pH electrodes constructed from polyaniline/zeolite and polypyrrble/zeolite conductive blends. Journal of Applied Polymer Science 2006, 101, 1853–1856. [Google Scholar]
- Lakard, B.; Segut, O.; Lakard, S.; Herlem, G.; Gharbi, T. Potentiometric miniaturized pH sensors based on polypyrrole films. Sensors and Actuators B: Chemical 2007, 122, 101–108. [Google Scholar]
- Urban, G.; Jobst, G.; Keplinger, F.; Aschauer, E.; Tilado, O.; Fasching, R. Miniaturized multi-enzyme biosensors integrated with pH sensors on flexible polymer carriers for in vivo applications. Biosensors & Bioelectronics 1992, 7, 733–739. [Google Scholar]
- Ruan, C.; Ong, K. G.; Mungle, C.; Paulose, M.; Nickl, N. J.; Grimes, C. A. A wireless pH sensor based on the use of salt-independent micro-scale polymer spheres. Sensors and Actuators, B: Chemical 2003, 96, 61–69. [Google Scholar]
- Mathison, S.; Bakker, E. Renewable pH cross-sensitive potentiometric heparin sensors with incorporated electrically charged H+ ionophores. Analytical Chemistry 1999, 71, 4614–4621. [Google Scholar]
- Thong, T. Q.; Gerlach, G.; Sorber, J.; Arndt, K. F. Hydrogel-based piezoresistive pH sensors: Design, simulation and output characteristics. Sensors and Actuators B: Chemical 2006, 117, 17–26. [Google Scholar]
- Medlock, K.; Harmer, H.; Worsley, G.; Horgan, A.; Pritchard, J. PH-sensitive holograms for continuous monitoring in plasma. Analytical and Bioanalytical Chemistry 2007, 389, 1533–1539. [Google Scholar]
- Pistor, P.; Chu, V.; Prazeres, D. M. F.; Conde, J. P. pH sensitive photoconductor based on poly(para-phenylene-vinylene). Sensors and Actuators B: Chemical 2007, 123, 153–157. [Google Scholar]
© 2007 by MDPI ( http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Korostynska, O.; Arshak, K.; Gill, E.; Arshak, A. State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China. Sensors 2007, 7, 3027-3042. https://doi.org/10.3390/s7123027
Korostynska O, Arshak K, Gill E, Arshak A. State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China. Sensors. 2007; 7(12):3027-3042. https://doi.org/10.3390/s7123027
Chicago/Turabian StyleKorostynska, Olga, Khalil Arshak, Edric Gill, and Arousian Arshak. 2007. "State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China" Sensors 7, no. 12: 3027-3042. https://doi.org/10.3390/s7123027
APA StyleKorostynska, O., Arshak, K., Gill, E., & Arshak, A. (2007). State Key Laboratory of Nonlinear Mechanics (LNM), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China. Sensors, 7(12), 3027-3042. https://doi.org/10.3390/s7123027