Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments
Abstract
:1. Introduction
2. Data and Methods
3. Results and Discussions
4. Summary
Acknowledgments
References and Notes
- Austin, R. W. Inherent spectral radiance signatures of the ocean surface Ocean Color Analysis SIO Ref.7410. 1974.
- Boss, E.; Pegau, W. S.; Lee, M.; Twardowski, M. J.; Shybanov, E.; Korotaev, G.; Baratange, F. Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution. J. Geophys. Res. 2004, 109(C01014). [Google Scholar] [CrossRef]
- Carder, K. L.; Steward, R. G. A remote-sensing reflectance model of a red tide dinoflagellate off West Florida. Limnol. Oceanogr. 1985, 30, 286–298. [Google Scholar]
- Carder, K. L.; Steward, R. G.; Harvey, G. R.; Ortner, P. B. Marine humic and fulvic acids: their effects on remote sensing of ocean chlorophyll. Limnol. Oceanogr. 1989, 34, 68–81. [Google Scholar]
- Dekker, A. G.; Malthus, T. J.; Wijnen, M. M.; Seyhan, E. The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters. Remote Sens. Environ. 1992, 41, 211–225. [Google Scholar]
- Gordon, H. R.; Clark, D. K.; Brown, J. W.; Brown, O. B.; Evans, R. H.; Broenkow, W. W. Phytoplankton pigment concentrations in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates. Applied Optics 1983, 22, 20–36. [Google Scholar]
- Gordon, H. R.; Morel, A. Remote assessment of ocean color for interpretation of satellite visible imagery: A review; Springer-Verlag: New York, 1983; p. 44 pp. [Google Scholar]
- Gordon, H. R.; Brown, O. B.; Evans, R. H.; Brown, J. W.; Smith, R. C.; Baker, K. S.; Clark, D. K. A semianalytic radiance model of ocean color. J. Geophys. Res. 1988, 93(10). [Google Scholar]
- Gordon, H. R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over oceans with SeaWiFS: A preliminary algorithm. Applied Optics 1994, 33, 443–452. [Google Scholar]
- Gower, J. F. R.; Doerffer, R.; Borstad, G. A. Interpretation of the 685 nm peak in water-leaving radiance spectra in terms of fluorescence, absorption and scattering, and its observation by MERIS. Int. J. Remote Sensing 1999, 20(9), 1771–1786. [Google Scholar]
- Hoepffner, N.; Sathyendranath, S. Effect of pigment composition on absorption properties of phytoplankton. Mar. Ecol. Prog. Ser. 1991, 73, 11–23. [Google Scholar]
- Holden, H.; LeDrew, E. Spectral discrimination of healthy and non-healthy corals based on cluster analysis, principal components analysis, and derivative spectroscopy. Remote Sens. Environ. 1998, 65, 217–224. [Google Scholar]
- IOCCG. Minimum requirements for an operational ocean-color sensor for the open ocean.; Morel, A., Ed.; Reports of the International Ocean-Color Coordinating Group, No. 1; p. p. 46. IOCCG: Halifax, Canada, 1998. [Google Scholar]
- IOCCG. Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications.; Reports of the International Ocean-Colour Coordinating Group, No. 5; Lee, Z.-P., Ed.; IOCCG, Dartmouth: Canada, 2006. [Google Scholar]
- Kahru, M.; Mitchell, B. G. Spectral reflectance and absorption of a massive red tide off southern California. J. Geophys. Res. 1998, 103(C10), 21,601–621,609. [Google Scholar]
- Kirk, J. T. O. Light & Photosynthesis in Aquatic Ecosystems; University Press: Cambridge, 1994. [Google Scholar]
- Lee, Z. P.; Carder, K. L.; Mobley, C. D.; Steward, R. G.; Patch, J. S. Hyperspectral remote sensing for shallow waters. 1. A semianalytical model. Applied Optics 1998, 37, 6329–6338. [Google Scholar]
- Lee, Z. P.; Carder, K. L. Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data. Applied Optics 2002, 41, 2191–2201. [Google Scholar]
- Lee, Z. P.; Carder, K. L.; Du, K. P. Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance. Applied Optics 2004, 43, 4957–4964. [Google Scholar]
- Loisel, H.; Morel, A. Light scattering and chlorophyll concentration in Case 1 waters: A reexamination. Limnol. Oceanogr. 1998, 43, 847–858. [Google Scholar]
- Maritorena, S.; Morel, A.; Gentili, B. Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo. Limnol. Oceanogr. 1994, 39, 1689–1703. [Google Scholar]
- Mobley, C. D. Light and Water: radiative transfer in natural waters; Academic Press: New York, 1994. [Google Scholar]
- Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters). J. Geophys. Res. 1988, 93, 10749–10768. [Google Scholar]
- Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. 2001, 106, 7163–7180. [Google Scholar]
- Mueller, J. L. Ocean color spectra measured off the Oregon coast: characteristic vectors. Applied Optics 1976, 15, 394–402. [Google Scholar]
- Mueller, J. L.; Davis, C.; Arnone, R.; Frouin, R.; Carder, K. L.; Lee, Z. P.; Steward, R. G.; Hooker, S.; Mobley, C. D. Above-water radiance and remote sensing reflectance measurement and analysis protocols; in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 3; NASA/TM-2002-210004; Mueller, J. L., Fargion, G. S., Eds.; 2002; pp. 171–182. [Google Scholar]
- Sathyendranath, S.; Hoge, F. E.; Platt, T.; Swift, R. N. Detection of phytoplankton pigments from ocean color: Improved algorithms. Applied Optics 1994, 33, 1081–1089. [Google Scholar]
- Smith, R. C.; Baker, K. S. The bio-optical state of ocean waters and remote sensing. Limnol. Oceanogr. 1978, 23(2), 247–259. [Google Scholar]
- Steward, R. G.; Carder, K. L.; Peacock, T. G. High resolution in water optical spectrometry using the Submersible Upwelling and Downwelling Spectrometer (SUDS). paper presented at EOS AGU-ASLO, San Diego, CA, February 21-25. 1994.
- Stramski, D.; Bricaud, A.; Morel, A. Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community. Applied Optics 2001, 40, 2929–2945. [Google Scholar]
- Tsai, F.; Philpot, W. Derivative analysis of hyperspectral data. Remote Sens. Environ. 1998, 66, 41–51. [Google Scholar]
- Twardowski, M. S.; Boss, E.; Macdonald, J. B.; Pegau, W. S.; Barnard, A. H.; Zaneveld, J. R. V. A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters. J. Geophys. Res. 2001, 106(C7), 14,129–114,142. [Google Scholar]
- Wernand, M. R.; Shimwell, S. J.; De Munck, J. C. A simple method of full spectrum reconstruction by a five-band approach for ocean colour applications. Int. J. Remote Sensing 1997, 18(9), 1977–1986. [Google Scholar]
- Zaneveld, J. R. V. A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties. J. Geophys. Res. 1995, 100, 13135–13142. [Google Scholar]
Area | Date | # of measurements | [Chl] range (mg/m3) |
---|---|---|---|
Gulf of Mexico | Apr. 1993 | 24 | 0.07 – 49.0 |
Florida Keys | July 1994 | 5 | 0.06 – 0.5 |
Arabian Sea | Dec. 1994 | 20 | 0.3 – 0.9 |
Chesapeake Bay | Sept. 1996 | 36 | 1.7 – 20.7 |
Hawaii | Feb. 1997 | 6 | 0.1 – 0.3 |
Florida Keys | May 1997 | 8 | N/A |
Bahamas | May 1998 | 39 | 0.05 – 1.4 |
East China Sea | July 1998 | 37 | 0.5 – 2.8 |
California Coast | Oct. 1999 | 37 | 0.2 – 9.4 |
North Atlantic | July 2001 | 17 | 4.5 – 13.9 |
Monterey Bay | Apr. 2003 | 56 | 0.1 – 9.7 |
Ft. Lauderdale | July 2005 | 52 | N/A |
Monterey Bay | Sept. 2006 | 47 | 0.5 – 500 |
Wavelength | Fromfσ(λ) | Fromfς(λ) | Proposed Bands | H&S Bands* | MODIS | MERIS |
---|---|---|---|---|---|---|
385 | x | 1 | 384 | |||
395 | x | 2 | ||||
400 | x | 413 | 412 | 412 | ||
425 | x | 3 | ||||
440 | x | 4 | 435 | 443 | 443 | |
445 | x | |||||
460 | x | 5 | 464 | |||
475 | x | 6 | ||||
490 | x | 7 | 490 | 488 | 490 | |
510 | x | 8 | 510 | |||
515 | x | |||||
520 | x | 532 | 531 | |||
545 | x | 9 | ||||
555 | x | 551 | ||||
565 | x | 10 | 560 | |||
580 | x | 11 | 583 | |||
615 | x | 12 | 623 | 620 | ||
635 | x | 13 | ||||
645 | x | 644 | ||||
655 | x | 655 | ||||
665 | x | 14 | 667 | 665 | ||
670 | x | 676 | ||||
685 | x | 15 | 678 | 681 | ||
710 | 16 | 709 | ||||
750 | For atmosphere correction or turbid river plume water | 17 | 748 | 754 | ||
760 | For O2 | 760 | ||||
780 | For atmosphere correction | 779 |
© 2007 by MDPI ( http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Lee, Z.; Carder, K.; Arnone, R.; He, M. Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments. Sensors 2007, 7, 3428-3441. https://doi.org/10.3390/s7123428
Lee Z, Carder K, Arnone R, He M. Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments. Sensors. 2007; 7(12):3428-3441. https://doi.org/10.3390/s7123428
Chicago/Turabian StyleLee, ZhongPing, Kendall Carder, Robert Arnone, and MingXia He. 2007. "Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments" Sensors 7, no. 12: 3428-3441. https://doi.org/10.3390/s7123428
APA StyleLee, Z., Carder, K., Arnone, R., & He, M. (2007). Determination of Primary Spectral Bands for Remote Sensing of Aquatic Environments. Sensors, 7(12), 3428-3441. https://doi.org/10.3390/s7123428