Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors
Abstract
:1. Introduction
2. Comparison of Normal MIP Materials with MIP Nanomaterials
2.1. Limitations of Traditional Imprinted Polymer Materials
2.2. Various Ongoing Explorations on Novel Imprinting Strategies
2.3. Advantages of Molecularly Imprinted Nanomaterials
3. Imprinting of Molecular Recognition Sites at Nanostructures
3.1. Nanospheres
3.2. Core-Shell Imprinted Nanoparticles and Imprinted Nanocapsules
3.3. Molecularly Imprinted Nanowires, Nanotubes and Nanofibers
3.4. Molecularly Imprinted Nanofilms
4. MIP-Based Chemosensors
4.1. Electrochemical Sensors
4.2. Optical Sensors
4.3. Mass Sensitive Devices
5. Conclusions and Future Perspectives
Acknowledgments
References and Notes
- Dorman, F.L.; Overton, E.B.; Whiting, J.J.; Cochran, J.W.; Gaedea-Torresdey, J. Gas chromatography. Anal. Chem. 2008, 80, 4487–4497. [Google Scholar]
- Xu, L.; Tang, L.J.; Cai, C.B.; Wu, H.L.; Shen, G.L.; Yu, R.Q.; Jiang, J.H. Chemometric methods for evaluation of chromatographic separation quality from two-way date-A review. Anal. Chem. Acta 2008, 613, 121–134. [Google Scholar]
- Cooks, R.G.; Ouyang, Z.; Wiseman, J.M. Ambient mass spectrometry. Science 2006, 311, 1566–1570. [Google Scholar]
- Baumbach, J.L. Process analysis using ion mobility spectrometry. Anal. Bioanal. Chem. 2006, 384, 1059–1070. [Google Scholar]
- Takaoka, A.; Taniguchi, T. Cytosolic DNA recognition for triggering innate immune responses. Adv. Drug. Deliv. Rev. 2008, 60, 847–857. [Google Scholar]
- Orellana, G.; Moreno-Bondi, M.C. Frontiers in chemical sensors: novel principles and techniques.; Springer-Verlag: Berlin Heidelberg, New York, NY, 2005. [Google Scholar]
- Updike, S.J.; Hicks, G.P. The enzyme electrode. Nature 1967, 214, 986–988. [Google Scholar]
- Eggins, B.R. Chemical sensors and biosensors.; John Wiley: Chichester, UK, 2002. [Google Scholar]
- Thurer, R.; Vigassy, T.; Hirayama, M.; Wang, J.; Bakker, E.; Pretsch, E. Potentiometric immunoassay with quantum dot labels. Anal. Chem. 2007, 79, 5107–5110. [Google Scholar]
- Jiang, H.; Ju, H.X. Enzyme-quantum dots architecture for highly sensitive electrochemiluminescenece biosensing of oxidase substrates. Chem. Commun. 2007, 4, 404–406. [Google Scholar]
- Bunka, D.H.J.; Stockley, P.G. Aptamers come of age-at last. Nat. Rev. Microbiol. 2006, 4, 588–596. [Google Scholar]
- Chen, J.R.; Miao, Y.Q.; He, N.Y.; Wu, X.H.; Li, S.J. Nanotechnology and biosensors. Biotechnol. Adv. 2004, 22, 505–518. [Google Scholar]
- Banholzer, M.J.; Millstone, J.E.; Qin, L.D.; Mirkin, C.A. Rationally designed nanostructures for surface-enhanced raman spectroscopy. Chem. Soc. Rev. 2008, 37, 885–897. [Google Scholar]
- Xie, C.; Zhang, Z.; Wang, D.; Guan, G.; Gao, D.; Liu, J. Surface molecular self-assembly strategy for TNT imprinting of polymer nanowire/nanotube arrays. Anal. Chem. 2006, 78, 8339–8346. [Google Scholar]
- Xie, C.; Liu, B.; Wang, Z.; Gao, D.; Guan, G.; Zhang, Z. Molecular imprinting at walls of silica nanotubes for TNT recognition. Anal. Chem. 2008, 80, 437–443. [Google Scholar]
- Gao, D.; Zhang, Z.; Wu, M.; Xie, C.; Guan, G.; Wang, D. A surface functional monomer-directing strategy for highly dense imprinting of TNT at surface of silica nanoparticles. J. Am. Chem. Soc. 2007, 129, 7859–7866. [Google Scholar]
- Zhuo, Y.; Yuan, P.X.; Yuan, R.; Chai, Y.Q.; Hong, C.L. Nanostructured conductive material containing ferroceny for reagentless amperometric immunosensors. Biomaterials 2008, 29, 1501–1508. [Google Scholar]
- Tu, R.Y.; Liu, B.H.; Wang, Z.Y.; Gao, D.M.; Wang, F.; Fang, Q.L.; Zhang, Z.P. Amine-capped Zn-Mn2+ nanocrystals for fluorescence detection of trace TNT. Anal. Chem. 2008, 80, 3458–3465. [Google Scholar]
- Suzuki, M.; Husimi, Y.; Komatsu, H.; Suzuki, K.; Douglas, K.L. Quantum dot FRET biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination. J. Am. Chem. Soc. 2008, 130, 5720–5725. [Google Scholar]
- Huang, F.; Peng, Y.Y.; Jin, G.Y.; Zhang, S.; Kong, J.L. Sensitive detection of haloperidol and hydroxyzine at multi-walled carbon nanotubes-modified glassy carbon electrodes. Sensors 2008, 8, 1879–1889. [Google Scholar]
- Kim, S.N.; Rusling, J.F.; Papadimitrakopoulos, F. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv. Mater. 2007, 19, 3214–3228. [Google Scholar]
- Whitcombe, M.J.; Alexander, C.; Vulfson, E.N. Imprinted polymers: Versatile new tools in synthesis. Synlett 2000, 911–923. [Google Scholar]
- Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 2002, 102, 1–27. [Google Scholar]
- Haupt, K.; Mosbach, K. Molecularly imprinted polymers and their use in biomimetic sensors. Chem. Rev. 2000, 100, 2495–2504. [Google Scholar]
- Ye, L.; Haupt, K. Molecularly imprinted polymers as antibody and receptor mimics for assays, sensors and drug discovery. Anal. Bioanal. Chem. 2004, 378, 1887–1897. [Google Scholar]
- Mosbach, K. The promise of molecular imprinting. Sci. Am. 2006, 295, 86–91. [Google Scholar]
- Urraca, J.L.; Marazuela, M.D.; Merino, E.R.; Orellana, G.; Moreno-Bondi, M.C. Molecularly imprinted polymers with a streamlined mimic for zearalenone analysis. J. Chromatogr. A 2006, 1116, 127–134. [Google Scholar]
- Tao, Z.Y.; Tehan, E.C.; Bukowski, R.M.; Yang, Y.; Shughart, E.L.; Holthoff, W.G.; Cartwright, A.N.; Titus, A.H.; Bright, F.V. Templated xerogels as platforms for biomolecule-less biomolecule sensors. Anal. Chim. Acta 2006, 564, 59–65. [Google Scholar]
- Sun, R.F.; Yu, H.M.; Luo, H.; Shen, Z.Y. Construction and application of a stoichiometric displacement model for retention in chiral recognition of molecular imprinting. J. Chromatogr. A 2004, 1055, 1–9. [Google Scholar]
- Piletskaya, E.V.; Romero-Guerra, M.; Guerreiro, A.R.; Karim, K.; Turner, A.P.F.; Piletsky, S.A. Adaptation of the molecular imprinted polymers towards polar environment. Anal. Chim. Acta 2005, 542, 47–51. [Google Scholar]
- Huang, Y.C.; Lin, C.C.; Liu, C.Y. Preparation and evaluation of molecularly imprinted polymers based on 9-ethyladenine for the recognition of nucleotide bases in capillary electrochromatography. Electrophoresis 2004, 25, 554–561. [Google Scholar]
- Hall, A.J.; Quaglia, M.; Manesiotis, P.; De Lorenzi, E.; Sellergren, B. Polymeric receptors for the recognition of folic acid and related compounds via substructure imprinting. Anal. Chem. 2006, 78, 8362–8367. [Google Scholar]
- Graham, A.L.; Carlson, C.A.; Edmiston, P.L. Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT. Anal. Chem. 2002, 74, 458–467. [Google Scholar]
- Zhang, H.Q.; Ye, L.; Mosbach, K. Non-covalent molecular imprinting with emphasis on its application in separation and drug development. J. Mol. Recognit. 2006, 19, 248–259. [Google Scholar]
- Andersson, L.I.; Mosbach, K. Enantiomeric resolution on molecularly imprinted polymers prepared with only non-covalent and non-ionic interactions. J. Chromatogr. A 1990, 516, 313–322. [Google Scholar]
- Andersson, L.I.; Miyabayashi, A.; O´Shannessy, D.J.; Mosbach, K. Enantiomeric resolution of amino acid derivatives on molecularly imprinted polymers as monitored by potentiometric measurements. J. Chromatogr. A 1990, 516, 323–331. [Google Scholar]
- Ramstrom, O.; Ye, L.; Mosbach, K. Artificial antibodies to corticosteroids prepared by molecular imprinting. Chem. Biol. 1996, 3, 471–477. [Google Scholar]
- Spivak, D.A. Optimization, evaluation, and characterization of molecularly imprinted polymers. Adv. Drug. Deliv. Rev. 2005, 57, 1779–1794. [Google Scholar]
- Jiang, X.; Jiang, N.; Zhang, H.; Liu, M. Small organic molecular imprinted materials: their preparation and application. Anal. Bioanal. Chem. 2007, 389, 355–368. [Google Scholar]
- Riskin, M.; Tel-Vered, R.; Willner, I. The imprint of electropolymerized polyphenol films on electrodes by donor-acceptor interactions: selective electrochemical sensing of N, N′-dimethyl-4, 4′-bipyridinium (methyl viologen). Adv. Funct. Mater. 2007, 17, 3858–3863. [Google Scholar]
- Ye, L.; Mosbach, K. Molecularly imprinted microspheres as antibody binding mimics. React. Funct. Polym. 2001, 48, 149–157. [Google Scholar]
- Piletsky, S.A.; Turner, A.P.F. Electrochemical sensors based on molecularly imprinted polymers. Electroanalysis 2002, 14, 317–323. [Google Scholar]
- Holthoff, E.L.; Bright, F.V. Molecularly templated materials in chemical sensing. Anal. Chim. Acta 2007, 594, 147–161. [Google Scholar]
- Holthoff, E.L.; Bright, F.V. Molecularly imprinted xerogels as platforms for sensing. Acc. Chem. Res. 2007, 40, 756–767. [Google Scholar]
- Hillberg, A.L.; Brain, K.R.; Allender, C.J. Molecular imprinted polymer sensors: implications for therapeutics. Adv. Drug. Deliv. Rev. 2005, 57, 1875–1889. [Google Scholar]
- Stephenson, C.J.; Shimizu, K.D. Colorimetric and fluorometric molecularly imprinted polymer sensors and binding assays. Polym. Int. 2007, 56, 482–488. [Google Scholar]
- Ye, L.; Mosbach, K. Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors. Chem. Mater. 2008, 20, 859–868. [Google Scholar]
- Janiak, D.S.; Kofinas, P. Molecular imprinting of peptides and proteins in aqueous media. Anal. Bioanal. Chem. 2007, 389, 399–404. [Google Scholar]
- Bossi, A.; Bonini, F.; Turner, A.P.F.; Piletsky, S.A. Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens. Bioelectron. 2007, 22, 1131–1137. [Google Scholar]
- Alexander, C.; Andersson, H.S.; Andersson, L.I.; Ansell, R.J.; Kirsch, N.; Nicholls, I.A.; O'Mahony, J.; Whitcombe, M.J. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J. Mol. Recognit. 2006, 19, 106–180. [Google Scholar]
- Haginaka, J. Monodispersed, molecularly imprinted polymers as affinity-based chromatography media. J. Chromatogr. B 2008, 866, 3–13. [Google Scholar]
- Guan, G.; Zhang, Z.; Wang, Z.; Liu, B.; Gao, D.; Xie, C. Single-hole hollow polymer microspheres toward specific high-capacity uptake of target species. Adv. Mater. 2007, 19, 2370–2374. [Google Scholar]
- Ki, C.D.; Oh, C.; Oh, S-G.; Chang, J.Y. The use of a thermally reversible bond for molecular imprinting of silica spheres. J. Am. Chem. Soc. 2002, 124, 14838–14839. [Google Scholar]
- Markowitz, M.A.; Kust, P.R.; Deng, G.; Schoen, P.E.; Dordick, J.S.; Clerk, D.S.; Gaber, B.P. Catalytic silica particles via template-directed molecular imprinting. Langmuir 2000, 16, 1759–1765. [Google Scholar]
- Rao, M.S.; Dave, B.C. Selective intake and release of proteins by organically-modified silica sol-gels. J. Am. Chem. Soc. 1998, 120, 13270–13271. [Google Scholar]
- Carter, S.R.; Rimmer, S. Surface molecularly imprinted polymer core-shell particles. Adv. Funct. Mater. 2004, 14, 553–561. [Google Scholar]
- Carter, S.R.; Rimmer, S. Molecular recognition of caffeine by shell molecular imprinted core-shell polymer particles in aqueous media. Adv. Mater. 2002, 14, 667–670. [Google Scholar]
- Espinosa-García, B.M.; Argüelles-Monal, W.M.; Hernández, J.; Félix-Valenzuela, L.; Acosta, N.; Goycoolea, F.M. Molecularly imprinted chitosan-genipin hydrogels with recognition capacity toward o-xylene. Biomacromolecules 2007, 8, 3355–3364. [Google Scholar]
- Aburto, J.; Borgne, S.L. Selective adsorption of dibenzothiophene sulfone by an imprinted and stimuli-responsive chitosan hydrogel. Macromolecules 2004, 37, 2938–2943. [Google Scholar]
- Katz, A.; Davis, M.E. Molecular imprinting of bulk, microporous silica. Nature 2000, 403, 286–289. [Google Scholar]
- Dass, J.D.; Katz, A. Thermolytic synthesis of imprinted amines in bulk silica. Chem. Mater. 2003, 15, 2757–2763. [Google Scholar]
- Yilmaz, E.; Haupt, K.; Mosbach, K. The use of immobilized templates-A new approach in molecular imprinting. Angew. Chem. Int. Ed. 2000, 39, 2115–2118. [Google Scholar]
- Shi, H.Q.; Tsai, W.B.; Garrison, M.D.; Ferrari, S.; Ratner, B.D. Template-imprinted nanostructured surfaces of protein recognition. Nature 1999, 398, 593–597. [Google Scholar]
- Bossi, A.; Piletsky, S.A.; Piletska, E.V.; Righetti, P.G.; Turner, A.P.F. Surface-grafted molecularly imprinted polymers for protein recognition. Anal. Chem. 2001, 73, 5281–5286. [Google Scholar]
- Li, Y.; Yang, H.H.; You, Q.H.; Zhuang, Z.X.; Wang, X.R. Protein recognition via surface molecularly imprinted polymer nanowires. Anal. Chem. 2006, 78, 317–320. [Google Scholar]
- Hayden, O.; Mann, K.J.; Krassnig, S.; Dickert, F.L. Biomimetic ABO blood-group typing. Angew. Chem. Int. Ed. 2006, 45, 2626–2629. [Google Scholar]
- Hayden, O.; Dickert, F.L. Selective microorganism detection with cell surface imprinted polymers. Adv. Mater. 2001, 13, 1480–1483. [Google Scholar]
- Hayden, O.; Lieberzeit, P.A.; Blaas, D.; Dickert, F.L. Artificial antibody for bioanalyte detection-sensing viruses and proteins. Adv. Funct. Mater. 2006, 16, 1269–1278. [Google Scholar]
- Yang, H.H.; Zhang, S.Q.; Tan, F.; Zhuang, Z.X.; Wang, X.R. Surface molecularly imprintd nanowires for biorecognition. J. Am. Chem. Soc. 2005, 127, 1378–1379. [Google Scholar]
- Tatemichi, M.; Sakamoto, M.; Mizuhata, M.; Deki, S.; Takeuchi, T. Protein-templated organic/inorganic hybrid materials prepared by liquid-phase deposition. J. Am. Chem. Soc. 2007, 129, 10906–10910. [Google Scholar]
- Schmidt, R.H.; Mosbach, K.; Haupt, K. A simple method for spin-coating molecularly imprinted polymer films of controlled thickness and porosity. Adv. Mater. 2004, 16, 719–722. [Google Scholar]
- Sellergren, B.; Ruˇckert, B.; Hall, A.J. Layer-by-layer grafting of molecularly imprinted polymers via iniferter modified supports. Adv. Mater. 2002, 14, 1204–1208. [Google Scholar]
- Sulitzky, C.; Ruˇckert, B.; Hall, A.J.; Lanza, F.; Unger, K.; Sellergren, B. Grafting of molecularly imprinted polymer films on silica supports containing surface-bound free radical initiators. Macromolecules 2002, 35, 79–91. [Google Scholar]
- Titirici, M.M.; Sellergren, B. Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization. Chem. Mater. 2006, 18, 1773–1779. [Google Scholar]
- Zimmerman, S.C.; Wendland, M.S.; Rakow, N.A.; Zharov, I.; Suslick, K.S. Synthetic hosts by monomolecular imprinting inside dendrimers. Nature 2002, 418, 399–403. [Google Scholar]
- Mertz, E.; Zimmerman, S.C. Crosslinked dendrimer hosts containing reporter groups for amine guests. J. Am. Chem. Soc. 2003, 125, 3424–3425. [Google Scholar]
- Tan, C.J.; Tong, Y.W. Molecularly imprinted beads by surface imprinting. Anal. Bioanal. Chem. 2007, 389, 369–376. [Google Scholar]
- Lu, C.; Zhou, W.; Han, B.; Yang, H.; Chen, X.; Wang, X. Surface-imprinted core-shell nanoparticles for sorbent assays. Anal. Chem. 2007, 79, 5457–5461. [Google Scholar]
- Vandevelde, F.; Belmont, A-S.; Pantigny, J.; Haupt, K. Hierarchically nanostructured polymer films based on molecularly imprinted surface-bound nanofilaments. Adv. Mater. 2007, 19, 3717–3720. [Google Scholar]
- O´Connor, N.A.; Paisner, D.A.; Huryn, D.; Shea, K.J. Screening of 5-HT1A receptor antagonists using molecularly imprinted polymers. J. Am. Chem. Soc. 2008, 130, 1680–1689. [Google Scholar]
- Shi, F.; Liu, Z.; Wu, G.; Zhang, M.; Chen, H.; Wang, Z.; Zhang, X.; Willner, I. Surface imprinting in layer-by-layer nanostructured films. Adv. Funct. Mater. 2007, 17, 1821–1827. [Google Scholar]
- Li, Z.; Ding, J.; Day, M.; Tao, Y. Molecularly imprinted polymeric nanospheres by diblock copolymer self-assembly. Macromolecules 2006, 39, 2629–2636. [Google Scholar]
- Kempe, H.; Kempe, M. Development and evaluation of spherical molecularly imprinted polymer beads. Anal. Chem. 2006, 78, 3659–3666. [Google Scholar]
- Ye, L.; Weiss, R.; Mosbach, K. Synthesis and characterization of molecularly imprinted microspheres. Macromolecules 2000, 33, 8239–8245. [Google Scholar]
- Ciardelli, G.; Borrelli, C.; Silvestri, D.; Cristallini, C.; Barbani, N.; Giusti, P. Supported imprinted nanospheres for the selective recognition of cholesterol. Biosens. Bioelectron. 2006, 21, 2329–2338. [Google Scholar]
- He, C.; Long, Y.; Pan, J.; Li, K.; Liu, F. A method for coating colloidal particles with molecularly imprinted silica films. J. Mater. Chem. 2008, 18, 2849–2854. [Google Scholar]
- Fu, G.; Zhao, J.; Yu, H.; Liu, L.; He, B. Bovine serum albumin-imprinted polymer gels prepared by graft polymerization of acrylamide on chitosan. React. Funct. Polym. 2007, 67, 442–450. [Google Scholar]
- Tan, C.J.; Chua, H.G.; Ker, K.H.; Tong, Y.W. Preparation of bovine serum albumin surface-imprinted submicrometer particles with magnetic susceptibility through core-shell miniemulsion polymerization. Anal. Chem. 2008, 80, 683–692. [Google Scholar]
- Tan, C.J.; Tong, Y.W. Preparation of superparamagnetic ribonuclease A surface-imprinted submicrometer particles for protein recognition in aqueous media. Anal. Chem. 2007, 79, 299–306. [Google Scholar]
- Yang, H-H.; Zhang, S-Q.; Chen, X-L.; Zhuang, Z-X.; Xu, J-G.; Wang, X-R. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Anal. Chem. 2004, 76, 1316–1321. [Google Scholar]
- Ki, C.D.; Chang, J.Y. Preparation of molecularly imprinted polymeric nanocapsule with potential use in delivery applications. Macromolecules 2006, 39, 3415–3419. [Google Scholar]
- Lee, W.; Scholz, R.; Nielsch, K.; Cösele, U. A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew. Chem. Int. Ed. 2005, 44, 6050–6054. [Google Scholar]
- Lee, S.B.; Mitchell, D.T.; Trofin, L.; Nevanen, T.K.; Soderlund, H.; Martin, C.R. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science 2002, 296, 2198–2200. [Google Scholar]
- Hurst, S.J.; Payne, E.K.; Qin, L.; Mirkin, C.A. Multisegmented one-dimensional nanorods prepared by hard-template synthetic methods. Angew. Chem. Int. Ed. 2006, 45, 2672–2692. [Google Scholar]
- Shi, W.S.; Peng, H.Y.; Zheng, Y.F.; Wang, N.; Shang, N.G.; Pan, Z.W.; Lee, C.S.; Lee, S.T. Synthesis of large areas of highly oriented, very long silicon nanowires. Adv. Mater. 2000, 12, 1343–1345. [Google Scholar]
- Caswell, K.K.; Bender, C.M.; Murphy, C.J. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett. 2003, 3, 667–669. [Google Scholar]
- Yan, M. Soft Lithography for the Fabrication of Molecularly Imprinted Polymer Microstructures and Thin Films. In Molecularly Imprinted Materials-Sensors and Other Devices.; Shea, K.J., Yan, M., Roberts, M.J., Eds.; Materials Research Society: Warrendale, PA, 2002; pp. 35–39. [Google Scholar]
- Brazier, J.J.; Yan, M.; Prahl, S.; Chen, Y.C. Molecularly Imprinted Polymers Used as Optical Waveguides for the Detection of Fluorescent Analytes. In Molecularly Imprinted Materials-Sensors and Other Devices.; Shea, K.J., Yan, M., Roberts, M.J., Eds.; Materials Research Society: Warrendale, PA, 2002; pp. 115–120. [Google Scholar]
- Chronakis, I.S.; Milosevie, B.; Frenot, A.; Ye, L. Generation of molecular recognition sites in electrospun polymer nanofibers via molecular imprinting. Macromolecules 2006, 39, 357–361. [Google Scholar]
- Chronakis, I.S.; Jakob, A.; Hagström, B.; Ye, L. Encapsulation and selective recognition of molecularly imprinted theophylline and 17 ss-estradiol nanoparticles within electrospun polymer nanofibers. Langmuir 2006, 22, 8960–8965. [Google Scholar]
- Lieberzeit, P.A.; Gazda-Miarecka, S.; Halikias, K.; Schirk, C.; Kauling, J.; Dickert, F. L. Imprinting as a versatile platform for sensitive materials-nanopatterning of the polymer bulk and surfaces. Sensor. Actuat. B 2005, 111-112, 259–263. [Google Scholar]
- Piacham, T.; Josell, A.; Arwin, H.; Prachayasittikul, V.; Ye, L. Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator. Anal. Chim. Acta. 2005, 536, 191–196. [Google Scholar]
- Li, X.; Husson, S.M. Adsorption of dansylated amino acids on molecularly imprinted surfaces: a surface plasmon resonance study. Biosens. Bioelectron. 2006, 22, 336–348. [Google Scholar]
- Das, K.; Penelle, J.; Rotello, V.M. Selective picomolar detection of hexachlorobenzene in water using a quartz crystal microbalance coated with a molecularly imprinted polymer thin film. Langmuir 2003, 19, 3921–3925. [Google Scholar]
- Kunitake, T.; Lee, S-W. Molecular imprinting in ultrathin titania gel films via surface sol-gel process. Anal. Chim. Acta 2004, 504, 1–6. [Google Scholar]
- Sreenivasan, K. Surface imprinted polyurethane film as a chiral discriminator. Talanta 2006, 68, 1037–1039. [Google Scholar]
- Yang, H-H.; Zhang, S-Q.; Yang, W.; Chen, X-L.; Zhuang, Z-X.; Xu, J.G.; Wang, X.R. Molecularly imprinted sol-gel nanotubes membrane for biochemical separations. J. Am. Chem. Soc. 2004, 126, 4054–4055. [Google Scholar]
- Hedborg, E.; Winquist, F.; Lundström, I.; Andersson, L.I.; Mosbach, K. Some studies of molecularly imprinted polymer membranes in combination with field-effect devices. Sensor. Actuat. A 1993, 37-38, 796–799. [Google Scholar]
- Panasyuk, T.L.; Mirsky, V.M.; Piletsky, S.A.; Wolfbeis, O.S. Electropolymerized molecularly imprinted polymers as receptor layers in a capacitive chemical sensors. Anal. Chem. 1999, 71, 4609–4613. [Google Scholar]
- Mirsky, V.M.; Hirsch, T.; Piletsky, S.A.; Wolfbeis, O.S. A spreader-bar approach to architecture: formation of stable artificial chemoreceptors. Angew. Chem. Int. Ed. 1999, 38, 1108–1110. [Google Scholar]
- Kan, X.; Zhao, Y.; Geng, Z.; Wang, Z.; Zhu, J-J. Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition. J. Phys. Chem. C 2008, 112, 4849–4854. [Google Scholar]
- Riskin, M.; Tel-Vered, R.; Bourenko, T.; Granot, E.; Willner, I. Imprinting of molecular recognition sites through electropolymerization of functionalized Au nanoparticles: development of an electrochemical TNT sensor based on π-donor-acceptor interactions. J. Am. Chem. Soc. 2008, 130, 15911–15918. [Google Scholar]
- Zhou, Y.X.; Yu, B.; Shiu, E.; Levon, K. Potentiometric sensing of chemical warfare agents: surface imprinted polymer integrated with an indium tin oxide electrode. Anal. Chem. 2004, 76, 2689–2693. [Google Scholar]
- Zhou, Y.X.; Yu, B.; Levon, K. Potentiometric sensor for dipicolinic acid. Biosens. Bioelectron. 2005, 20, 1851–1855. [Google Scholar]
- Zhou, Y.X.; Yu, B.; Levon, K. Potentiometric sensing of chiral amino acids. Chem. Mater. 2003, 15, 2774–2779. [Google Scholar]
- Lahav, M.; Kharitonov, A.B.; Katz, O.; Kunitake, T.; Willner, I. Tailored chemosensors for chloroaromatic acids using molecular imprinted TiO2 thin films on ion-sensitive field-effect transistors. Anal. Chem. 2001, 73, 720–723. [Google Scholar]
- Kubo, H.; Yoshioka, N.; Takeuchi, T. Fluorescent imprinted polymers prepared with 2-acrylamidoquinoline as a signaling monomer. Org. Lett. 2005, 7, 359–362. [Google Scholar]
- Wang, W.; Gao, S.H.; Wang, B.H. Building fluorescent sensors by template polymerization: the preparation of a fluorescent sensor for D-fructose. Org. Lett. 1999, 1, 1209–1212. [Google Scholar]
- Gao, S.H.; Wang, W.; Wang, B.H. Building fluorescent sensors for carbohydrates using template-directed polymerizations. Bioorg. Chem. 2001, 29, 308–320. [Google Scholar]
- Turkewitsch, P.; Wabdelt, B.; Darling, G.D.; Powell, W. Fluorescent functional recognition sites through molecular imprinting. A polymer-based fluorescent chemosensor for aqueous cAMP. Anal. Chem. 1998, 70, 2025–2030. [Google Scholar]
- Rathbone, D.L.; Ge, Y. Selectivity of response in fluorescent polymers imprinted with N1-benzylidene pyridine-2-carboxamidrazones. Anal. Chim. Acta 2001, 435, 129–136. [Google Scholar]
- Rathbone, D.L.; Bains, A. Tools for fluorescent molecularly imprinted polymers. Biosens. Bioelectron. 2005, 20, 1438–1442. [Google Scholar]
- Leung, M. K-P.; Choe, C-F.; Lam, M. H-W. A sol-gel derived molecular imprinted luminescent PET sensing material for 2, 4-dichlorophenoxyacetic acid. J. Mater. Chem. 2001, 11, 2985–2991. [Google Scholar]
- Liao, Y.; Wang, W.; Wang, B.H. Building fluorescent sensors by template polymerization: the preparation of a fluorescent sensor for L-tryptophan. Bioorg. Chem. 1999, 27, 463–476. [Google Scholar]
- Lin, J.M.; Yamada, M. Chemiluminescent flow-through sensor for 1, 10-phenanthroline based on the combination of molecular imprinting and chemiluminescence. Analyst 2001, 126, 810–815. [Google Scholar]
- Lin, J.M.; Yamada, M. Chemiluminescent reaction of fluorescent organic compounds with KHSO5 using cobalt(II) as catalyst and its first application to molecular imprinting. Anal. Chem. 2000, 72, 1148–1155. [Google Scholar]
- McDonagh, C.; Burke, C.S.; MacCraith, B.D. Optical chemical sensors. Chem. Rev. 2008, 108, 400–422. [Google Scholar]
- Basabe-Desmonts, L.; Reinhoudt, D.N.; Crego-Calama, M. Design of fluorescent materials for chemical sensing. Chem. Soc. Rev. 2007, 36, 993–1017. [Google Scholar]
- Li, J.; Kendig, C.E.; Nesterov, E.E. Chemosensory performance of molecularly imprinted fluorescent conjugated polymer materials. J. Am. Chem. Soc. 2007, 129, 15911–15918. [Google Scholar]
- Feng, F.D.; He, F.; An, L.L.; Wang, S.; Li, Y.H.; Zhu, D.B. Fluorescent conjugated polyelectrolytes for biomacromolecule detection. Adv. Mater. 2008, 20, 2959–2964. [Google Scholar]
- Ahn, D.J.; Kim, J.M. Fluorogenic polydiacetylene supramolecules: immobilization, micropatterning, and application to label-free chemosensors. Acc. Chem. Res. 2008, 41, 805–816. [Google Scholar]
- Lin, C.L.; Joseph, A.K.; Chang, C.K.; Lee, Y.D. Synthesis and photoluminescence study of molecularly imprinted polymers appended onto CdSe/ZnS core-shells. Biosens. Bioelectron. 2004, 20, 127–131. [Google Scholar]
- Lin, C.I.; Joseph, A.K.; Chang, C.K.; Lee, Y.D. Molecularly imprinted polymeric film on semiconductor nanoparticles analyte detection by quantum dot photoluminescence. J. Chromatogr. A 2004, 1027, 259–262. [Google Scholar]
- Hu, X.; An, Q.; Li, G.; Tao, S.; Liu, J. Imprinted photonic polymers for chiral recognition. Angew. Chem. Int. Ed. 2006, 45, 8145–8148. [Google Scholar]
- Walker, N.R.; Linman, M.J.; Timmers, M.M.; Dean, S.L.; Burkett, C.M.; Lloyd, J.A.; Keelor, J.D.; Baughman, B.M.; Edmiston, P.L. Selective detection of gas-phase TNT by integrated optical waveguide spectrometry using molecularly imprinted sol-gel sensing films. Anal. Chim. Acta 2007, 593, 82–91. [Google Scholar]
- Ávila, M.; Zougagh, M.; Escarpa, A.; Ríos, Á. Molecularly imprinted polymers for selective piezoelectric sensing of small molecules. Trends Anal. Chem. 2008, 27, 54–65. [Google Scholar]
- Reimhult, K.; Yoshimatsu, K.; Risveden, K.; Chen, S.; Ye, L.; Krozer, A. Characterization of QCM sensor surface coated with molecularly imprinted nanoparticles. Biosens. Bioelectron. 2008, 23, 1908–1914. [Google Scholar]
- Liu, F.; Liu, X.; Ng, S-C.; Chan, H.S-O. Enantioselective molecular imprinting polymer coated QCM for the recognition of L-tryptophan. Sensor. Actuat. B 2006, 113, 234–240. [Google Scholar]
- Bunte, G.; Hürttlen, J.; Pontius, H.; Hartlieb, K.; Krause, H. Gas phase detection of explosives such as 2, 4, 6-trinitrotoluene by molecularly imprinted polymers. Anal. Chim. Acta 2007, 591, 49–56. [Google Scholar]
- Piacham, T.; Josell, Å.; Arwin, H.; Prachayasittikul, V.; Ye, L. Molecularly imprinted polymer thin films on quartz crystal microbalance using a surface bound photo-radical initiator. Anal. Chim. Acta 2005, 536, 191–196. [Google Scholar]
- Haupt, K.; Noworyta, K.; Kutner, W. Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance. Anal. Commun. 1999, 36, 391–393. [Google Scholar]
- Yang, D-H.; Takahara, N.; Lee, S-W.; Kunitake, T. Fabrication of glucose-sensitive TiO2 untrathin films by molecular imprinting and selective detection of monosaccharides. Sensor. Actuat. B 2008, 130, 379–385. [Google Scholar]
- Tanaka, M. An industrial and applied review of new MEMS devices features. Microelectron. Eng. 2007, 84, 1341–1344. [Google Scholar]
- Trolier-Mckinstry, S.; Muralt, P. Thin film piezoelectrics for MEMS. J. Electroceram. 2004, 12, 7–17. [Google Scholar]
- Park, J.H.; Kwon, T.Y.; Yoon, D.S.; Kim, H.; Kim, T.S. Fabrication of microcantilever sensors actuated by piezoelectric Pb(Zr0.52Ti0.48)O3 thick films and determination of their electromechanical characteristics. Adv. Funct. Mater. 2005, 15, 2021–2028. [Google Scholar]
- Ayela, C.; Vandevelde, F.; Lagrange, D.; Haupt, K.; Nicu, L. Combining resonant piezoelectric micromembranes with molecularly imprinted polymers. Angew. Chem. Int. Ed. 2007, 46, 9271–9274. [Google Scholar]
- Lin, T.Y.; Hu, C.H.; Chou, T.C. Determination of albumin concentration by MIP-QCM sensor. Biosens. Bioelectron. 2004, 20, 75–81. [Google Scholar]
- Hao, L.H.; Sakurai, A.; Watanabe, T.; Sorensen, E.; Nidom, C.A.; Newton, M.A.; Ahlquist, P.; Kawaoka, Y. Drosophila RNAi screen identifies host genes important for influenza virus replication. Nature 2008, 454, 890–893. [Google Scholar]
- Letant, S.E.; Hart, B.R.; Van Buuren, A.W.; Terminello, L.J. Functionalized silicon membranes for selective bio-organism capture. Nat. Mater. 2003, 2, 391–396. [Google Scholar]
- Casalinuovo, L.A.; Di Pierro, D.; Coletta, M.; Di Francesco, P. Application of electronic noses for disease diagnosis and food spoilage detection. Sensors 2006, 6, 1428–1439. [Google Scholar]
- Miller, M.B.; Bassler, B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001, 55, 165–199. [Google Scholar]
- Hayden, O.; Bindeus, R.; Haderspöck, C.; Mann, K.J.; Wirl, B.; Bickert, F.L. Mass-sensitive detection of cells, viruses and enzymes with artificial receptors. Sensor. Actuat. B 2003, 91, 316–319. [Google Scholar]
- Dickert, F.L.; Hayden, O.; Bindeus, R.; Mann, K.J.; Blaas, D.; Waigmann, E. Bioimprinted QCM sensors for virus detection-screening of plant sap. Anal. Bioanal. Chem. 2004, 378, 1929–1934. [Google Scholar]
- Dickert, F.L.; Hayden, O. Bioimprinting of polymer and sol-gel phases. Selective detection of yeasts with imprinted polymers. Anal. Chem. 2002, 74, 1302–1306. [Google Scholar]
- Dickert, F.L.; Hayden, O.; Halikias, K.P. Synthetic receptors as sensor coating for molecules and living cells. Analyst 2001, 126, 766–771. [Google Scholar]
© by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative CommonsAttribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Guan, G.; Liu, B.; Wang, Z.; Zhang, Z. Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors. Sensors 2008, 8, 8291-8320. https://doi.org/10.3390/s8128291
Guan G, Liu B, Wang Z, Zhang Z. Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors. Sensors. 2008; 8(12):8291-8320. https://doi.org/10.3390/s8128291
Chicago/Turabian StyleGuan, Guijian, Bianhua Liu, Zhenyang Wang, and Zhongping Zhang. 2008. "Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors" Sensors 8, no. 12: 8291-8320. https://doi.org/10.3390/s8128291
APA StyleGuan, G., Liu, B., Wang, Z., & Zhang, Z. (2008). Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors. Sensors, 8(12), 8291-8320. https://doi.org/10.3390/s8128291