Electrooxidation and Determination of Dopamine Using a Nafion®-Cobalt Hexacyanoferrate Film Modified Electrode
Abstract
:1. Introduction
2. Experimental
2.1 Apparatus and chemicals
2.2 Electrode preparation
3. Results and Discussion
3.1 Electrochemical behaviour of the modified electrode
3.2 Electrochemical catalysis of dopamine oxidation at a CoHCFe modified electrode
3.3 Electrochemical catalysis of dopamine oxidation at a CoHCFe film-modified rotating glassy carbon disk electrode
3.4 Interference of ascorbic acid
3.5 Determination of dopamine at Nafion®-CoHCFe modified electrode
4. Conclusion
Acknowledgments
References
- McCreery, R.L.; Dreiling, R.; Adams, R.N. Voltammetry in brain-tissue fate of injected 6-hydroxydopamine. Brain Res. 1974, 73, 15–21. [Google Scholar]
- Schenk, J.O.; Miller, E.; Rice, M.; Adams, R.N. Chronoamperometry in brain-slices – Quantitative evaluations of in vivo electrochemistry. Brain Res. 1983, 277, 1–8. [Google Scholar]
- Deakin, M.R.; Kovach, P.M.; Stutts, K.J.; Wightman, R.M. Heterogeneous mechanisms of the oxidation of catechols and ascorbic-acid at carbon electrodes. Anal. Chem. 1986, 58, 1474–1480. [Google Scholar]
- Hu, L.; Kuwana, T. Oxidative mechanism of ascorbic-acid at glassy-carbon electrodes. Anal. Chem. 1986, 58, 3235–3239. [Google Scholar]
- Ponchon, J.L.; Cespuglio, R.; Gonon, F.; Pujol, J.L. Normal pulse polarography with carbon-fiber electrodes for invitro and invivo determination of catecholamines. Anal. Chem. 1979, 51, 1483–1486. [Google Scholar]
- Poon, M.; McCreery, R.L. Insitu laser activation of glassy-carbon electrodes. Anal. Chem. 1986, 58, 2745–2750. [Google Scholar]
- Cox, J. A.; Jaworski, R. K.; Kulesza, P. J. Electroanalysis with electrodes modified by inorganic films. Electroanalysis 1991, 3, 869–877. [Google Scholar]
- Itaya, K.; Uchida, I.; Neff, V.D. Electrochemistry of polynuclear transition-metal cyanides-prussian blue and its analogues. Acc. Chem. Res. 1986, 19, 162–168. [Google Scholar]
- Thomsen, K.N.; Baldwin, R.P. Evaluation of electrodes coated with metal hexacyanoferrate as amperometric sensors for nonelectroactive cations in flow systems. Electroanalysis 1990, 2, 263–271. [Google Scholar]
- Zhou, J.X.; Wang, E.K. Electrocatalytic oxidation and amperometric determination of sulfhydryl compounds at a copper hexacyanoferrate film glassy-carbon electrode in liquid chromatography. Electroanalysis 1994, 6, 29–35. [Google Scholar]
- Cai, C. X.; Ju, H. X.; Chen, H. Y. Cobalt hexacyanoferrate modified microband gold electrode and its electrocatalytic activity for oxidation of NADH. J. Electroanal. Chem. 1995, 397, 185–190. [Google Scholar]
- Zhou, D. M.; Ju, H. X.; Chen, H. Y. Catalytic oxidation of dopamine at a microdisk platinum electrode modified by electrodeposition of nickel hexacyanoferrate and Nafion(R). J. Electroanal. Chem. 1996, 408, 219–223. [Google Scholar]
- Xun, Z. Y.; Cai, C. X.; Xing, W.; Lu, T. H. Electrocatalytic oxidation of dopamine at a cobalt hexacyanoferrate modified glassy carbon electrode prepared by a new method. J. Electroanal. Chem. 2003, 545, 19–27. [Google Scholar]
- Wang, X. Y.; Cui, X. P.; Cui, Y. M.; Jin, B. K.; Lin, X. Q. Investigation of electrochemical oxidation of L-ascorbic acid at CoCuHCF/Pt electrode in neutral solutions by in situ FTIRRAS. Chem. J. Chin. Univ. 2002, 23, 1498–1500. [Google Scholar]
- Lin, M. S.; Wu, Y. C.; Jan, B. I. Mixed-valence compound-based biosensor. Biotechnol. Bioeng. 1999, 62, 56–61. [Google Scholar]
- Xun, Z. Y.; Cai, C. X.; Lu, T. H. Effects of a surfactant on the electrocatalytic activity of cobalt hexacyanoferrate modified glassy carbon electrode towards the oxidation of dopamine. Electroanalysis 2004, 16, 674–683. [Google Scholar]
- Chen, S. M.; Peng, K. T. The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt(II) hexacyanoferrate films. J. Electroanal. Chem. 2003, 547, 179–189. [Google Scholar]
- Castro, S. S. L.; Balbo, V. R.; Barbeira, P. J. S.; Stradiotto, N. R. Flow injection amperometric detection of ascorbic acid using a Prussian Blue film-modified electrode. Talanta 2001, 55, 249–254. [Google Scholar]
- Lin, M. S.; Jan, B. I. Determination of hydrogen peroxide by utilizing a cobalt(II)hexacyano-ferrate-modified glassy carbon electrode as a chemical sensor. Electroanalysis 1997, 9, 340–344. [Google Scholar]
- Lin, M. S.; Tseng, T. F.; Shih, W. C. Chromium(III) hexacyanoferrate(II)-based chemical sensor for the cathodic determination of hydrogen peroxide. Analyst 1998, 123, 159–163. [Google Scholar]
- Shankaran, D. R.; Narayanan, S. S. Chemically modified sensor for amperometric determination of sulphur dioxide. Sensors Actuat. B-Chem. 1999, 55, 191–194. [Google Scholar]
- Mortimer, R. J.; Barbeira, P. J. S.; Sene, A. F. B.; Stradiotto, N. R. Potentiometric determination of potassium cations using a nickel(II) hexacyanoferrate-modified electrode. Talanta 1999, 49, 271–275. [Google Scholar]
- Shi, G. Y.; Lu, J. X.; Xu, F.; Sun, W. L.; Jin, L. T.; Yamamoto, K.; Tao, S. G.; Jin, J. Y. Determination of glutathione in vivo by microdialysis using liquid chromatography with a cobalt hexacyanoferrate chemically modified electrode. Anal. Chim. Acta 1999, 391, 307–313. [Google Scholar]
- Cataldi, T. R. I.; De Benedetto, G.; Bianchini, A. Enhanced stability and electrocatalytic activity of a ruthenium-modified cobalt-hexacyanoferrate film electrode. J. Electroanal. Chem. 1999, 471, 42–47. [Google Scholar]
- de Oliveira, M. F.; Mortimer, R. J.; Stradiotto, N. R. Voltammetric determination of persulfate anions using an electrode modified with a Prussian blue film. Microchem. J. 2000, 64, 155–159. [Google Scholar]
- de Oliveira, M. F.; Saczk, A. A.; Neto, J. A. G.; Roldan, P. S.; Stradiotto, N. R. Flow injection amperometric determination of persulfate in cosmetic products using a Prussian Blue film-modified electrode. Sensors 2003, 3, 371–380. [Google Scholar]
- Kulesza, P. J.; Malik, M. A.; Miecznikowski, K.; Wolkiewicz, A.; Zamponi, S.; Berrettoni, M.; Marassi, R. Countercation-sensitive electrochromism of cobalt hexacyanoferrate films. J. Electrochem. Soc. 1996, 143, L10–L12. [Google Scholar]
- Gao, Z.Q.; Wang, G.Q.; Li, P.B.; Zhao, Z. F. Electrochemical and spectroscopic studies of cobalt-hexacyanoferrate film modified electrodes. Electrochim. Acta 1991, 36, 147–152. [Google Scholar]
- Nagy, G.; Gerhardt, G. A.; Oke, A. F.; Rice, M. E.; Adams, R. N. Ion-exchange and transport of neurotransmitters in nafion films on conventional and microelectrode surfaces. J. Electroanal. Chem. 1985, 188, 85–94. [Google Scholar]
© 2008 by MDPI Reproduction is permitted for noncommercial purposes.
Share and Cite
Castro, S.S.L.; Mortimer, R.J.; De Oliveira, M.F.; Stradiotto, N.R. Electrooxidation and Determination of Dopamine Using a Nafion®-Cobalt Hexacyanoferrate Film Modified Electrode. Sensors 2008, 8, 1950-1959. https://doi.org/10.3390/s8031950
Castro SSL, Mortimer RJ, De Oliveira MF, Stradiotto NR. Electrooxidation and Determination of Dopamine Using a Nafion®-Cobalt Hexacyanoferrate Film Modified Electrode. Sensors. 2008; 8(3):1950-1959. https://doi.org/10.3390/s8031950
Chicago/Turabian StyleCastro, Suely S. L., Roger J. Mortimer, Marcelo F. De Oliveira, and Nelson R. Stradiotto. 2008. "Electrooxidation and Determination of Dopamine Using a Nafion®-Cobalt Hexacyanoferrate Film Modified Electrode" Sensors 8, no. 3: 1950-1959. https://doi.org/10.3390/s8031950
APA StyleCastro, S. S. L., Mortimer, R. J., De Oliveira, M. F., & Stradiotto, N. R. (2008). Electrooxidation and Determination of Dopamine Using a Nafion®-Cobalt Hexacyanoferrate Film Modified Electrode. Sensors, 8(3), 1950-1959. https://doi.org/10.3390/s8031950