Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring
Abstract
:1. Introduction
2. Comparisons of ASTER and MODIS Sensors and Algorithms
3. Materials and Methods
3.1. Intercomparison
3.2. Accuracy Assessment
- 1)
- cross-comparison between ASTER standard and in-house (no aerosol correction) products,
- 2)
- cross-comparison between ASTER in-house products with and without aerosol correction,
- 3)
- cross-comparison between MODIS standard and in-house products.
4. Results
4.1. Intercomparison
4.2. Accuracy Assessment
5. Summary and Conclusions
Acknowledgments
References
- McRoberts, R.E.; Tomppo, E.O. Remote sensing support for national forest inventories. Remote Sens. Environ. 2007, 110(4), 412–419. [Google Scholar]
- Marsett, R.C.; Qi, J.G.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R. Remote sensing for grassland management in the arid Southwest. Rangeland Ecol. Manage. 2006, 59(5), 530–540. [Google Scholar]
- Morton, D.C.; DeFries, R.S.; Shimabukuro, Y.E.; Anderson, L.O.; Espirito-Santo, F.D.B.; Hansen, M.; Carroll, M. Rapid assessment of annual deforestaion in the Brazilian Amazon using MODIS data. Earth Interact 2005, 9(8). [Google Scholar] [CrossRef]
- Morisette, J.T.; Jarnevich, C.S.; Ullah, A.; Cai, W.J.; Pedelty, J.A.; Gentle, J.E.; Stohlgren, T.J.; Schnase, J.L. A tamarisk habitat suitability map for the continental United States. Front. Ecol. Environ. 2006, 4(1), 11–17. [Google Scholar]
- Hill, M.J.; Held, A.A.; Leuning, R.; Coops, N.C.; Hughes, D.; Cleugh, H.A. MODIS spectral signals at a flux tower site: Relationships with high-resolution data, and CO2 flux and light use efficiency measurements. Remote Sens. Environ. 2006, 103(3), 351–368. [Google Scholar]
- Pu, R.L.; Gong, P.; Michishita, R.; Sasagawa, T. Assessment of multi-resolution and multi-sensor data for urban surface temperature retrieval. Remote Sens. Environ. 2006, 104(2), 211–225. [Google Scholar]
- Jacob, F.; Petitcolin, F.; Schmugge, T.; Vermote, E.; French, A.; Ogawa, K. Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors. Remote Sens. Environ. 2004, 90(2), 137–152. [Google Scholar]
- Muukkonen, P.; Heiskanen, J. Biomass estimation over a large area based on standwise forest inventory data and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sens. Environ. 2007, 107(4), 617–624. [Google Scholar]
- DeFries, R.; Achard, F.; Brown, S.; Herold, M.; Murdiyarso, D.; Schlamadinger, B.; de Souza, C. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environ. Sci. Policy 2007, 10(4), 385–394. [Google Scholar]
- Brack, C.L. National forest inventories and biodiversity monitoring in Australia. Plant Biosyst 2007, 141(1), 104–112. [Google Scholar]
- Duro, D.; Coops, N.C.; Wulder, M.A.; Han, T. Development of a large area biodiversity monitoring system driven by remote sensing. Prog. Phys. Geog. 2007, 31(3), 235–260. [Google Scholar]
- NRC, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond; The National Academies Press: Washington, D.C., 2007; p. 428.
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sensing 1998, 36(4), 1062–1071. [Google Scholar]
- Justice, C.O.; Townshend, J.R.G.; Vermote, E.F.; Masuoka, E.; Wolfe, R.E.; Saleous, N.; Roy, D.P.; Morisette, J.T. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83(1-2), 3–15. [Google Scholar]
- Trishchenko, A.P.; Cihlar, J.; Li, Z. Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors. Remote Sens. Environ. 2002, 81(1), 1–18. [Google Scholar]
- Miura, T.; Huete, A.R.; Ferreira, L.G.; Sano, E.E.; Yoshioka, H. A technique for reflectance calibration of airborne hyperspectral spectrometer data using a broad, multi-band radiometer. Kalacska, M., Ed.; In Hyperspectral Remote Sensing of Tropical and Sub-tropical Forests; CRS Press; (in press). 2007; pp. 218–232. [Google Scholar]
- Price, J.C. Combining multispectral data of differing spatial resolution. IEEE Trans. Geosci. Remote Sensing 1999, 37(3), 1199–1203. [Google Scholar]
- Hu, Z.L.; Islam, S. Scale invariant remote sensing algorithms. IEEE Trans. Geosci. Remote Sensing 1997, 35(3), 747–755. [Google Scholar]
- Fensholt, R.; Sandholt, I.; Stisen, S. Evaluating MODIS, MERIS, and VEGETATION -Vegetation indices using in situ measurements in a semiarid environment. IEEE Trans. Geosci. Remote Sensing 2006, 44(7), 1774–1786. [Google Scholar]
- Jung, M.; Henkel, K.; Herold, M.; Churkina, G. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sens. Environ. 2006, 101(4), 534–553. [Google Scholar]
- Brown, M.E.; Pinzon, J.E.; Didan, K.; Morisette, J.T.; Tucker, C.J. Evaluation of the consistency of long-term NDVI time series derived from AVHRR, SPOT-Vegetation, SeaWiFS, MODIS, and Landsat ETM+ sensors. IEEE Trans. Geosci. Remote Sensing 2006, 44(7), 1787–1793. [Google Scholar]
- Curren, P.J.; Hay, A.M. The importance of measurement error for certain procedures in remote sensing at optical wavelength. Photogramm Eng Rem S 1986, 52, 229–241. [Google Scholar]
- Iwasaki, A.; Fujisada, H. ASTER geometric performance. IEEE Trans. Geosci. Remote Sensing 2005, 43(12), 2700–2706. [Google Scholar]
- Fujisada, H.; Bailey, G.B.; Kelly, G.G.; Hara, S.; Abrams, M.J. ASTER DEM performance. IEEE Trans. Geosci. Remote Sensing 2005, 43(12), 2707–2714. [Google Scholar]
- Wolfe, R.E.; Nishihama, M.; Fleig, A.J.; Kuyper, J.A.; Roy, D.P.; Storey, J.C.; Patt, F.S. Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 2002, 83(1-2), 31–49. [Google Scholar]
- Running, S.W.; Justice, C.O.; Salomonson, V.; Hall, D.; Barker, J.; Kaufmann, Y.J.; Strahler, A.H.; Huete, A.R.; Muller, J.P.; Vanderbilt, V.; Wan, Z.M.; Teillet, P.; Carneggie, D. Terrestrial remote sensing science and algorithms planned for EOS/MODIS. Int. J. Remote Sensing 1994, 15(17), 3587–3620. [Google Scholar]
- Miura, T.; Huete, A.R.; Ferreira, L.G.; Sano, E.E.; Yoshioka, H. A technique for reflectance calibration of airborne hyperspectral spectrometer data using a broad, multi-band radiometer. Kalacska, M., Ed.; In Hyperspectral Remote Sensing of Tropical and Sub-tropical Forests; CRS Press. (in press)
- Thome, K.; Palluconi, F.; Takashima, T.; Masuda, K. Atmospheric correction of ASTER. IEEE Trans. Geosci. Remote Sensing 1998, 36(4), 1199–1211. [Google Scholar]
- Vermote, E.; Saleous, N. Operational Atmospheric Correction of MODIS Visible to Middle Infrared Land Surface Data in the Case of an Infinite Lambertian Target. Earth Science Satellite Remote Sensing 2006, 123–153. [Google Scholar]
- Vermote, E.F.; ElSaleous, N.; Justice, C.O.; Kaufman, Y.J.; Privette, J.L.; Remer, L.; Roger, J.C.; Tanre, D. Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: Background, operational algorithm and validation. J Geophys Res-Atmos 1997, 102(D14), 17131–17141. [Google Scholar]
- Barbieri, R.; Montgomery, H.; Qiu, S.; Barnes, B.; Knowles, D., Jr.; Che, N.; Goldberg, I.L. The MODIS Level 1B Algorithm Theoretical Basis Document Version 2.0 (ATBD-MOD-01); NASA Goddard Space Flight Center: Greenbelt, MD, 1997; p. 68. [Google Scholar]
- Herman, B.M.; Browning, S.R. A numerical solution to the equation of radiative transfer. J. Atmos. Sci. 1965, 22(5), 559–566. [Google Scholar]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcrette, J.J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sensing 1997, 35(3), 675–686. [Google Scholar]
- Gao, B.; Kaufman, Y.J. Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res. 2003, 108(D13), 4389. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83(1-2), 195–213. [Google Scholar]
- Miura, T.; Huete, A.R.; Yoshioka, H.; Holben, B.N. An error and sensitivity analysis of atmospheric resistant vegetation indices derived from dark target-based atmospheric correction. Remote Sens. Environ. 2001, 78(3), 284–298. [Google Scholar]
- Huete, A.; Didan, K.; van Leeuwen, W.; Miura, T.; Glenn, E. MODIS Vegetation Indices. In Land Remote Sensing and Global Environmental Change: NASA's Earth Observing System and the Science of ASTER and MODIS; (in press). 2008. [Google Scholar]
- Holben, B.N.; Tanré, D.; Smirnov, A.; Eck, T.F.; Slutsker, I.; Abuhassan, N.; Newcomb, W.W.; Schafer, J.S.; Chatenet, B.; Lavenu, F.; Kaufman, Y.J.; Vande Castle, J.; Setzer, A.; Markham, B.; Clark, D.; Frouin, R.; Halthore, R.; Karneli, A.; O'Neill, N.T.; Pietras, C.; Pinker, R.T.; Voss, V.; Zibordi, G. An emerging ground-based aerosol climatology: Aerosol Optical Depth from AERONET. J. Geophys. Res. 2001, 106, 12,067–12,097. [Google Scholar]
ASTER [13] | MODIS [14] | |
---|---|---|
Swath Width | VNIRa & SWIRa: 60 km, push-broom | 2,330 km, whisk-broom |
TIRa: 60 km, cross-track scanning | ± 55° cross-track scanning | |
± 24° cross-track pointing for VNIR | ||
± 8.55° cross-track pointing for SWIR & TIR | ||
Spectral Bands | 14 bands, between 0.520 and 11.650 μm | 36 bands, between 0.405 and 14.385 μm |
Spatial Resolutions at Nadir | 15 m (VNIR: bands 1-3) | 250 m (bands 1-2) |
30 m (SWIR: bands 4-9) | 500 m (bands 3-7) | |
60 m (TIR: bands 10-14) | 1,000 m (bands 8-36) | |
Radiometric Resolution | 8 bits | 12 bits |
Geolocation Accuracy | ± 50 m (1 s.d.b at nadir) [23,24] | ± 50 m (1 s.d. at nadir) [25] |
ASTER (AST07) | MODIS (MOD09) | |
---|---|---|
PGEa Version | 3.1 | 4.0.10 |
Radiometric Calibration | WRC b exo-atmospheric solar irradiance (4 % calibration accuracy)[28] | Direct computation of TOAc reflectance by ratioing to the solar diffuser panel readings (2 % calibration accuracy)[31] |
Approach | Combined LUTd -matching and on-time MODTRAN computation[28]:
| Combined LUT-interpolation and on-time 6S computation[29]:
|
Pressure | NCEP GDAS e adjusted for local elevation using GTOPO30 f | NCEP GDAS adjusted for local elevation using GTOPO30 |
Ozone | NCEP TOVS g | NASA TOMS h |
Water Vapor | NCEP GDAS | MODIS water vapor[34] |
Aerosol | No correction | MODIS aerosols |
Accuracy | 14 % for ρ < 0.1; 7 % for ρ > 0.1 | 5 – 9 % for clear – high aerosol loadings |
Site Name | Biome Type | Date (DOYa) | Solar Zenith | View Zenith | *Ozone (Dobson) | *W.V.b (cm-atm) | *AOTc (550nm) |
---|---|---|---|---|---|---|---|
HJ Andrews, OR | Needleleaf Forest | 09/24 (267) | 46° | 5° | 284 | 1.0 | .04 |
Bondville, IL | Broadleaf Cropland | 03/06 (065) | 48° | 3° | 348 | 0.8 | .15 |
09/07 (250) | 37° | 7° | 280 | 2.1 | .14 | ||
Maricopa, AZ | Broadleaf Cropland | 01/12 (012) | 58° | 8° | 297 | 1.7 | .10 |
08/24 (236) | 28° | 8° | 287 | 0.9 | .02 | ||
09/16 (259) | 34° | 5° | 288 | 0.7 | .10 | ||
Konza Prairie, KS | Prairie Grassland & Cereal Crop | 06/06 (157) | 22° | 10° | 324 | 1.9 | .08 |
11/20 (324) | 60° | 1° | 288 | 1.0 | .01 | ||
Sevilleta, NM | Semi-arid Grassland & Cereal Crop | 04/20 (110) | 27° | 6° | 321 | 0.4 | .08 |
05/06 (126) | 22° | 6° | 320 | 0.3 | .08 | ||
06/16 (167) | 19° | 6° | 304 | 1.0 | .15 | ||
07/02 (183) | 20° | 6° | 300 | 1.0 | .48 | ||
Railroad Valley, NV | Desert Scrub | 08/20 (232) | 30° | 2° | 290 | 0.5 | .07 |
09/21 (264) | 40° | 2° | 281 | 0.7 | .01 |
© 2008 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
Share and Cite
Miura, T.; Yoshioka, H.; Fujiwara, K.; Yamamoto, H. Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring. Sensors 2008, 8, 2480-2499. https://doi.org/10.3390/s8042480
Miura T, Yoshioka H, Fujiwara K, Yamamoto H. Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring. Sensors. 2008; 8(4):2480-2499. https://doi.org/10.3390/s8042480
Chicago/Turabian StyleMiura, Tomoaki, Hiroki Yoshioka, Kayo Fujiwara, and Hirokazu Yamamoto. 2008. "Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring" Sensors 8, no. 4: 2480-2499. https://doi.org/10.3390/s8042480
APA StyleMiura, T., Yoshioka, H., Fujiwara, K., & Yamamoto, H. (2008). Inter-Comparison of ASTER and MODIS Surface Reflectance and Vegetation Index Products for Synergistic Applications to Natural Resource Monitoring. Sensors, 8(4), 2480-2499. https://doi.org/10.3390/s8042480