BioMEMS –Advancing the Frontiers of Medicine
Abstract
:1. Introduction
2. MEMS Technology
2.1. Patterning Technique
2.2. Material Removal Processes
2.3. Material Deposition Processes
3. Diagnostics
3.1. Point of care diagnostics
3.1.1. Cell Sorting
3.1.2. Cell Lysis
3.1.3. Purification
3.1.4. Molecular Biosensors
3.2. Other MEMS based diagnostics
4. Therapeutic Applications
4.1. Drug Discovery
4.1.1. Target Identification
4.1.2. Lead Identification & optimization
4.1.3. Preclinical testing
4.2. Drug Delivery
4.2.1. Microneedles
4.2.2. Microreservoirs
5. Surgical Applications
5.1. Minimally Invasive Surgery
5.1.1. Microtools and tactile sensing
5.1.2. MEMS Cutting tools
5.1.3. Endoscopy
6. Prosthesis
6.1. Neuro prosthesis
6.1.1. Neuroprobes
6.1.2. Regenerative electrodes
6.2. Retinal prosthesis
7. Microfluidics
7.1. Microfluidic structure design considerations
7.2. Micropumps and Microvalves
7.3. Microfluidics in Tissue Engineering
Conclusions
References
- Iguchi, S.; Mitsubayashi, K.; Uehara, T.; Ogawa, M. A wearable oxygen sensor for transcutaneous blood gas monitoring at the conjunctiva. Sens. Actuat. B-Chem. 2005, 108(1-2), 733–737. [Google Scholar]
- Lam, Y.-Z.; Atkinson, J.K. Biomedical sensor using thick film technology for transcutaneous oxygen measurement. Medic. Eng. Phys. 2007, 29(3), 291–297. [Google Scholar]
- Wittkampf, M.; Chemnitius, G.C.; Cammann, K.; Rospert, M.; Mokwa, W. Silicon thin film sensor for measurement of dissolved oxygen. Sens. Actuat. B-Chem. 1997, 43(1-3), 40–44. [Google Scholar]
- Huang, C.J.; Chen, Y.H.; Wang, C.H.; Chou, T.C.; Lee, G.B. Integrated microfluidic systems for automatic glucose sensing and insulin injection. Sens. Actuat. B-Chem. 2007, 122(2), 461–468. [Google Scholar]
- Iguchi, S.; Kudo, H.; Saito, T.; Ogawa, M.; Saito, H.; Otsuka, K.; Funakubo, A.; Mitsubayashi, K. A flexible and wearable biosensor for tear glucose measurement. Biomed. Microdev. 2007, 9(4), 603–609. [Google Scholar]
- Xu, H.; Malladi, K.; Wang, C.; Kulinsky, L.; Song, M.; Madou, M. Carbon post-microarrays for glucose sensors. Biosens. Bioelectron. 2008, 23(11), 1637–1644. [Google Scholar]
- Zhao, Y.; Li, S.; Davidson, A.; Yang, B.; Wang, Q.; Lin, Q. A MEMS viscometric sensor for continuous glucose monitoring. J. Micromech. Microeng. 2007, 17(12), 2528–2537. [Google Scholar]
- Scavetta, E.; Stipa, S.; Tonelli, D. Electrodeposition of a nickel-based hydrotalcite on Pt nanoparticles for ethanol and glucose sensing. Electrochem. Commun. 2007, 9(12), 2838–2842. [Google Scholar]
- Aravamudhan, S.; Kumar, A.; Mohapatra, S.; Bhansali, S. Sensitive estimation of total cholesterol in blood using Au nanowires based micro-fluidic platform. Biosens. Bioelectron. 2007, 22(9-10), 2289–2294. [Google Scholar]
- Wang, P.; Li, Y.; Huang, X.; Wang, L. Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta 2007, 73(3), 431–437. [Google Scholar]
- Çete, S.; Yasar, A.; Arslan, F. An amperometric biosensor for uric acid determination prepared from uricase immobilized in polypyrrole film. Artif. Cells, Blood Subst. Biotechnol. 2006, 34(3), 367–380. [Google Scholar]
- Chen, J.C.; Chung, H.H.; Hsu, C.T.; Tsai, D.M.; Kumar, A. S.; Zen, J. M. A disposable single-use electrochemical sensor for the detection of uric acid in human whole blood. Sens. Actuat. B-Chem. 2005, 110(2), 364–369. [Google Scholar]
- Cui, X.; Li, C. M.; Zang, J.; Yu, S. Highly sensitive lactate biosensor by engineering chitosan/PVI-Os/CNT/LOD network nanocomposite. Biosens. Bioelectron. 2007, 22(12), 3288–3292. [Google Scholar]
- Lin, C.L.; Shih, C.L.; Chau, L.K. Amperometric L-lactate sensor based on sol-gel processing of an enzyme-linked silicon alkoxide. Anal. Chem. 2007, 79(10), 3757–3763. [Google Scholar]
- Weber, J.; Kumar, A.; Bhansali, S. Novel lactate and pH biosensor for skin and sweat analysis based on single walled carbon nanotubes. Sens. Actuat. B-Chem. 2006, 117(1), 308–313. [Google Scholar]
- Wang, X.; Suzuki, H.; Hayashi, K.; Kaneko, T.; Sunagawa, K. Microfabricated needle-type sensors for pO2, pCO2, and pH. IEEE Sensors J. 2006, 6(1), 11–17. [Google Scholar]
- Suzuki, H.; Hirakawa, T.; Hoshi, T.; Toyooka, H. Micromachined sensing module for pO2, pCO2, and pH and its design optimization for practical use. Sens. Actuat. B-Chem. 2001, 76(1-3), 565–572. [Google Scholar]
- Wang, Y.; Xu, H.; Zhang, J.; Li, G. Electrochemical sensors for clinic analysis. Sensors 2008, 8(4), 2043–2081. [Google Scholar]
- Barton, A.C.; Collyer, S.D.; Davis, F.; Garifallou, G.-Z.; Tsekenis, G.; Tully, E.; O'Kennedy, R.; Gibson, T.; Millner, P.A.; Higson, S.P.J. Labeless AC impedimetric antibody-based sensors with pg ml-1 sensitivities for point-of-care biomedical applications. Biosens. Bioelectron. 2008. (In press) [Google Scholar]
- Shi, Y.-T.; Yuan, R.; Chai, Y.-Q.; Tang, M.-Y.; He, X.-L. Amplification of antigen-antibody interactions via back-filling of HRP on the layer-by-layer self-assembling of thionine and gold nanoparticles films on Titania nanoparticles/gold nanoparticles-coated Au electrode. J. Electroanal. Chem. 2007, 604(1), 9–16. [Google Scholar]
- Drouvalakis, K.A.; Bangsaruntip, S.; Hueber, W.; Kozar, L.G.; Utz, P.J.; Dai, H. Peptide-coated nanotube-based biosensor for the detection of disease-specific autoantibodies in human serum. Biosens. Bioelectron. 2008, 23(10), 1413–1421. [Google Scholar]
- Vestergaard, M.; Kerman, K.; Tamiya, E. An overview of label-free electrochemical protein sensors. Sensors 2007, 7(12), 3442–3458. [Google Scholar]
- Marquette, C.A.; Blum, L.J. State of the art and recent advances in immunoanalytical systems. Biosens. Bioelectron. 2006, 21(8), 1424–1433. [Google Scholar]
- Byun, I.; Park, S. Fabrication of a new micro bio chip and flow cell cytometry system using MEMS technology, Digest of Papers-Microprocesses and Nanotechnology 2007. 20th International Microprocesses and Nanotechnology Conference; 2007; pp. 350–351.
- Takubo, T.; Tsuchiya, N.; Miyamura, K.; Sugiyama, Y.; Tsuda, I.; Miyazaki, M. Evaluation of palmtop-sized blood cell counter: Prototype palm LC. Point Care 2007, 6(3), 174–177. [Google Scholar]
- Satake, D.; Ebi, H.; Oku, N.; Matsuda, K.; Takao, H.; Ashiki, M.; Ishida, M. A sensor for blood cell counter using MEMS technology. Sens. Actuat. B- Chem. 2002, 83(1-3), 77–81. [Google Scholar]
- Yalcinkaya, F.; Powner, E.T. Portable battery-operated multi-sensor-array for whole human blood analysis. Ann. Int. Conf. IEEE Engineering in Medicine and Biology—Proc. 1997; 6, pp. 2350–2353. [Google Scholar]
- Fan, C.; Li, G.; Zhuang, Y.; Zhu, J.; Zhu, D. Iodide modified silver electrode and its application to the electroanalysis of hemoglobin. Electroanalysis 2000, 12(3), 205–208. [Google Scholar]
- Brett, C.M.A.; Inzelt, G.; Kertesz, V. Poly (methylene blue) modified electrode sensor for haemoglobin. Anal. Chim. Acta 1999, 385(1-3), 119–123. [Google Scholar]
- Li, G.; Ma, N.Z.; Wang, Y. A new handheld biosensor for monitoring blood ketones. Sens. Actuat. B-Chem. 2005, 109(2), 285–290. [Google Scholar]
- Timur, S.; Anik, U.; Odaci, D.; Gorton, L. Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes. Electrochem. Commun. 2007, 9(7), 1810–1815. [Google Scholar]
- Veiseh, M.; Veiseh, O.; Martin, M.C.; Bertozzi, C.; Zhang, M. Single-cell-based sensors and synchrotron FTIR spectroscopy: A hybrid system towards bacterial detection. Biosens. Bioelectron. 2007, 23(2), 253–260. [Google Scholar]
- Ivanov, D. BioMEMS sensor systems for bacterial infection detection: Progress and potential. BioDrugs 2006, 20(6), 351–356. [Google Scholar]
- Boehm, D.A.; Gottlieb, P.; Hua, S.Z. Surface functionalization of a microfluidic biosensor for bacteria detection and identification. Proceedings of SPIE - The International Society for Optical Engineering; International Society for Optical Engineering: Bellingham, Wash., USA, ETATS-UNIS (Monographie). , Dec 2007; 6529, p. 65290H. [Google Scholar]
- Lien, K.Y.; Liu, C.J.; Lin, Y.C.; Kuo, P.L.; Lee, G.B. Extraction of genomic DNA and detection of single nucleotide polymorphism genotyping utilizing an integrated magnetic bead-based microfluidic platform. Microfluidics and Nanofluidics 2008, 1–17. [Google Scholar]
- Marasso, S.L.; Canavese, G.; Cocuzza, M.; Ferrarini, A.; Giuri, E.; Lo Bartolo, S.; Mantero, G.; Perrone, D.; Quaglio, M.; Vallini, I. APEX protocol implementation on a lab-on-a-chip for SNPs detection. Microelectr. Eng. 2008, 85(5-6), 1326–1329. [Google Scholar]
- Burns, M.A.; Johnson, B.N.; Brahmasandra, S.N.; Handique, K.; Webster, J.R.; Krishnan, M.; Sammarco, T.S.; Man, P.M.; Jones, D.; Heldsinger, D.; Mastrangelo, C.H.; Burke, D.T. An integrated nanoliter DNA analysis device. Science 1998, 282(5388), 484–487. [Google Scholar]
- Taylor, T.B.; St. John, P.M.; Albin, M. Micro-genetic analysis systems. MicroTotal Analysis Systems '98 1998, 261–266. [Google Scholar]
- Burns, M.A.; Mastrangelo, C.H.; Sammarco, T.S.; Man, F.P.; Webster, J.R.; Johnson, B.N.; Foerster, B.; Jones, D.; Fields, Y.; Kaiser, A.R.; Burke, D.T. Microfabricated structures for integrated DNA analysis. Proc. Natl. Acad. Sci. USA 1996, 93(11), 5556–5561. [Google Scholar]
- Huang, H.H.; Zhou, J.; Huang, Y.P.; Kong, J.L. Impedimetric immunosensor with on-chip integrated electrodes for high-throughput screening of liver fibrosis markers. J. Anal. Chem. 2008, 63(5), 492–498. [Google Scholar]
- Gao, P.; Yao, S.; Li, E.; Li, S. Design and analysis of label free immunosensor based on microcantilever array and magnetic bead for bio-detection. 1st International Conference on Bioinformatics and Biomedical Engineering, ICBBE; 2007; pp. 1053–1056. [Google Scholar]
- Bian, C.; Xu, Y.Y.; Sun, H.G.; Zhang, H.; Chen, S.F.; Xia, S.H. Micro amperometric immunosensor based on MEMS. J. Electron. Inf. Technol. 2006, 28(11), 2195–2198. [Google Scholar]
- Brehm-Stecher, B.F.; Johnson, E.A. Single-cell microbiology: Tools, technologies, and applications. Microbiol. Mol. Biol. R 2004, 68(3), 538–559. [Google Scholar]
- Becker, F.F.; Wang, X.B.; Huang, Y.; Pethig, R.; Vykoukal, J.; Gascoyne, P.R.C. Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. USA 1995, 92(3), 860–864. [Google Scholar]
- Schmidt, C.; Mayer, M.; Vogel, H. A chip-based biosensor for the functional analysis of single ion channels. Angew. Chem. Int. Edit. 2000, 39(17), 3137–3140. [Google Scholar]
- Chang, W.C.; Lee, L.P.; Liepmann, D. Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. Lab Chip 2005, 5(1), 64–73. [Google Scholar]
- Revzin, A.; Sekine, K.; Sin, A.; Tompkins, R.G.; Toner, M. Development of a microfabricated cytometry platform for characterization and sorting of individual leukocytes. Lab Chip 2005, 5(1), 30–37. [Google Scholar]
- Voldman, J.; Braff, R.A.; Toner, M.; Gray, M.L.; Schmidt, M.A. Holding forces of single-particle dielectrophoretic traps. Biophy. J. 2001, 80(1), 531–541. [Google Scholar]
- Ozkan, M.; Pisanic, T.; Scheel, J.; Barlow, C.; Esener, S.; Bhatia, S. N. Electro-optical platform for the manipulation of live cells. Langmuir 2003, 19(5), 1532–1538. [Google Scholar]
- Arai, F.; Ichikawa, A.; Ogawa, M.; Fukuda, T.; Horio, K.; Itoigawa, K. Combined laser tweezers and dielectric field cage for the analysis of receptor-ligand interactions single cells. Electrophoresis 2001, 22(2), 272–282. [Google Scholar]
- Zheng, F.; Qin, Y.; Chen, K. Sensitivity map of laser tweezers Raman spectroscopy for single-cell analysis of colorectal cancer. J. Biomed. Opt. 2007, 12(3), 034002. [Google Scholar]
- Wakamoto, Y.; Inouc, I.; Moriguchi, H.; Yasuda, K. Analysis of single-cell differences by use of an on-chip microculture system and optical trapping. Anal. Bioanal. Chem. 2001, 371(2), 276–281. [Google Scholar]
- Lu, H.; Schmidt, M.A.; Jensen, K.F. A microfluidic electroporation device for cell lysis. Lab Chip 2005, 5(1), 23–29. [Google Scholar]
- El-Ali, J.; Gaudet, S.; Günther, A.; Sorger, P.K.; Jensen, K.F. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow. Anal. Chem. 2005, 77(11), 3629–3636. [Google Scholar]
- Marentis, T.C.; Kusler, B.; Yaralioglu, G.G.; Liu, S.; Hæggström, E.O.; Khuri-Yakub, B.T. Microfluidic sonicator for real-time disruption of eukaryotic cells and bacterial spores for DNA analysis. Ultrasound Med. Biol. 2005, 31(9), 1265–1277. [Google Scholar]
- Marmottant, P.; Hilgenfeldt, S. Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 2003, 423(6936), 153–156. [Google Scholar]
- Di Carlo, D.; Jeong, K.H.; Lee, L.P. Reagentless mechanical cell lysis by nanoscale barbs in microchannels for sample preparation. Lab Chip 2003, 3(4), 287–291. [Google Scholar]
- Lee, S.W.; Yowanto, H.; Tai, Y.C. A micro cell lysis device. The 11th Int. Workshop on Micro Electro Mechanical Systems MEMS '98, Heidelberg, Germany, 25-29 Jan, 1998; pp. 443–447.
- Ikeda, N.; Tanaka, N.; Yanagida, Y.; Hatsuzawa, T. On-chip single-cell lysis for extracting intracellular material. Jpn. J. Appl. Phys. 1: Reg. Pap. Short Notes Rev. Pap. 2007, 46(9B), 6410–6414. [Google Scholar]
- Vilkner, T.; Janasek, D.; Manz, A. Micro total analysis systems. Recent developments. Anal. Chem. 2004, 76(12), 3373–3386. [Google Scholar]
- Verpoorte, E. Microfluidic chips for clinical and forensic analysis. Electrophoresis 2002, 23(5), 677–712. [Google Scholar]
- Northrup, M.A.; Gonzalez, C.; Hadley, D.; Hills, R.F.; Landre, P.; Lehew, S.; Saiki, R.; Sninsky, J.J.; Watson, R.; Watson, R., Jr. MEMS-based miniature DNA analysis system. International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Proceedings, Stockholm, Sweden, 25–29 June 1995; pp. 764–767.
- Chou, C.F.; Changrani, R.; Roberts, P.; Sadler, D.; Burdon, J.; Zenhausern, F.; Lin, S.; Mulholland, A.; Swami, N.; Terbrueggen, R. A miniaturized cyclic PCR device - Modeling and experiments. Microelectr. Eng. 2002, 61-62, 921–925. [Google Scholar]
- Liu, J.; Enzelberger, M.; Quake, S. A nanoliter rotary device for polymerase chain reaction. Electrophoresis 2002, 23(10), 1531–1536. [Google Scholar]
- Obeid, P.J.; Christopoulos, T.K.; Crabtree, H.J.; Backhouse, C.J. Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal. Chem. 2003, 75(2), 288–295. [Google Scholar]
- Rodriguez, I.; Lesaicherre, M.; Tie, Y.; Zou, Q.; Yu, C.; Singh, J.; Meng, L.T.; Uppili, S.; Li, S.F.Y.; Gopalakrishnakone, P.; Selvanayagam, Z.E. Practical integration of polymerase chain reaction amplification and electrophoretic analysis in microfluidic devices for genetic analysis. Electrophoresis 2003, 24(1-2), 172–178. [Google Scholar]
- Sun, K.; Yamaguchi, A.; Ishida, Y.; Matsuo, S.; Misawa, H. A heater-integrated transparent microchannel chip for continuous-flow PCR. Sens. Actuat. B-Chem. 2002, 84(2-3), 283–289. [Google Scholar]
- Zhang, C.; Xu, J.; Ma, W.; Zheng, W. PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 2006, 24(3), 243–284. [Google Scholar]
- Fu, J.; Mao, P.; Han, J. Nanofilter array chip for fast gel-free biomolecule separation. Appl Phy Lett 2005, 87(26), 1–3. [Google Scholar]
- Lavrik, N.V.; Sepaniak, M.J.; Datskos, P.G. Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum. 2004, 75(7), 2229–2253. [Google Scholar]
- Li, M.; Tang, H.X.; Roukes, M.L. Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotechnol. 2007, 2(2), 114–120. [Google Scholar]
- Shekhawat, G.; Tark, S. H.; Dravid, V.P. MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors. Science 2006, 311(5767), 1592–1595. [Google Scholar]
- Yang, M.; Zhang, X.; Vafai, K.; Ozkan, C.S. High sensitivity piezoresistive cantilever design and optimization for analyte-receptor binding. J. Micromech. Microeng. 2003, 13(6), 864–872. [Google Scholar]
- Zhang, X.R.; Xu, X. Development of a biosensor based on laser-fabricated polymer microcantilevers. Appl. Phy. Lett. 2004, 85(12), 2423–2425. [Google Scholar]
- Ziegler, C. Cantilever-based biosensors. Anal. Bioanal. Chem. 2004, 379(7-8), 946–959. [Google Scholar]
- ScienceDaily: NEMS Device Detects The Mass Of A Single DNA Molecule; 21 May 2007.
- Collins, C.C. Miniature passive pressure transensor for implanting in the eye. IEEE T. Bio-med. Eng. 1967, 14(2), 74–83. [Google Scholar]
- Marschner, C.; Eggers, T.; Drawger, J.; Hille, K.; Stegmaier, P.; Laur, R.; Binder, J. Wireless eye pressure monitoring system integrated into intra-ocular lens. Proc. MICRO. tec 2000: VDE World Microtechnologies Congress, VDE Verlag: Berlin, 25-27 Sep, 2000.
- Mokwa, W.; Schnakenberg, U. Micro-transponder systems for medical applications. IEEE Trans. Instrum. Meas. 2001, 50(6), 1551–1555. [Google Scholar]
- Puers, R.; Vandevoorde, G.; De Bruyker, D. Electrodeposited copper inductors for intraocular pressure telemetry. J. Micromech. Microeng. 2000, 10(2), 124–129. [Google Scholar]
- Flick, B.B.; Orglmeister, R.; Berger, J.M. Study and development of a portable telemetric intracranial pressure measurement unit. Ann. Int. Conf. IEEE Engineering in Medicine and Biology—Proc, Chicago, Oct, 1997; 3, pp. 977–980.
- Brindley, G.S.; Polkey, C.E.; Cooper, J.D. Technique for very long-term monitoring of intracranial pressure. Med. Biol. Eng. Comput. 1983, 21(4), 460–464. [Google Scholar]
- Eggers, T.; Marschner, C.; Marschner, U.; Clasbrummel, B.; Laur, R.; Binder, J. Advanced hybrid integrated low-power telemetric pressure monitoring system for biomedical applications. Proc. IEEE Micro Electro Mechanical Syst. (MEMS); 2000; pp. 329–334. [Google Scholar]
- Zacheja, J.; Clasbrummel, B.; Binder, J.; Steinau, U. Implantable telemetric endosystem for minimal invasive pressure measurements. In MedTech95; Berlin, Germany, 1995. [Google Scholar]
- Aubert, A.E.; Vrolix, M.; De Geest, H.; Van De Werf, F. In vivo comparison between two tip pressure transducer systems. Int. J. Clin. Monit. Comput. 1995, 12(2), 77–83. [Google Scholar]
- Esashi, M.; Komatsu, H.; Matsuo, T.; Takahashi, M.; Takishima, T.; Imabayashi, K.; Ozawa, H. Fabrication Of Catheter-Tip And Sidewall Miniature Pressure Sensors. IEEE Trans. Electron. Dev. 1982, ED-29(1), 57–63. [Google Scholar]
- Esashi, M.; Shoji, S.; Matsumoto, Y.; Furuta, K. Catheter-tip capacitive pressure sensor. Electron. Commun. Jpn. 1990, 73(10), 79–87. [Google Scholar]
- Ji, J.; Cho, S.T.; Zhang, Y.; Najafi, K.; Wise, K.D. An ultraminiature CMOS pressure sensor for a multiplexed cardiovascular catheter. IEEE Trans. Electron. Dev. 1992, 39(10), 2260–2267. [Google Scholar]
- Kandler, M.; Mokwa, W. Capacitive silicon pressure sensor for invasive measurement of blood pressure. Proc. Micromech. Euro. Tech. Dig. Berlin, Germany, Nov. 26-27, 2004; pp. 203–208.
- Manoli, Y.; Eichholz, J.; Kandler, M.; Kordas, N.; Langerbein, A.; Mokwa, W.; Fahnle, M.; Liebscher, F.F. Multisensor catheter for invasive measurement of blood parameters. Proceedings of the Annual Conference on Engineering in Medicine and Biology, Orlando, Florida, USA, 30 Oct - 3 Nov, 1991; pp. 1599–1600.
- Totsu, K.; Haga, Y.; Esashi, M. Ultra-miniature fiber-optic pressure sensor using white light interferometry. J. Micromech. Microeng. 2005, 15(1), 71–75. [Google Scholar]
- Schurr, M.O.; Schostek, S.; Ho, C.-N.; Rieber, F.; Menciassi, A. Microtechnologies in medicine: An overview. Minim. Invasiv. The. r 2007, 16(2), 76–86. [Google Scholar]
- Fodor, S.P.A.; Read, J.L.; Pirrung, M.C.; Stryer, L.; Lu, A.T.; Solas, D. Light-directed, spatially addressable parallel chemical synthesis. Science 1991, 251(4995), 767–773. [Google Scholar]
- Heller, M.J. An active microelectronics device for multiplex DNA analysis. IEEE Eng. Med. Biol. Mag. 1996, 15(2), 100–103. [Google Scholar]
- Li, N.; Ho, C.M. Patterning Functional Proteins with High Selectivity for Biosensor Applications. JALA - J. Assoc. Lab. Automat. 2008, 13(4), 237–242. [Google Scholar]
- Isoda, T.; Urushibara, I.; Sato, M.; Uemura, H.; Sato, H.; Yamauchi, N. Development of a sensor-array chip with immobilized antibodies and the application of a wireless antigen-screening system. Sens. Actuat. B-Chem. 2008, 129(2), 958–970. [Google Scholar]
- Shi, M.; Peng, Y.; Zhou, J.; Liu, B.; Huang, Y.; Kong, J. Multianalyte immunoassay based on insulating-controllable PoPD film at arrayed electrodes integrated on a silicon chip. Biosens. Bioelectron. 2007, 22(12), 2841–2847. [Google Scholar]
- Huang, H.; Zhou, J.; Huang, Y.; Kong, J. A novel multichannel immunosensor for determination of serum hepatic fibrosis markers. Sens. Mater. 2006, 18(8), 445–456. [Google Scholar]
- Lee, S. W.; Oh, B.K.; Sanedrin, R.G.; Salaita, K.; Fujigaya, T.; Mirkin, C.A. Biologically active protein nanoarrays generated using parallel dip-pen nanolithography. Adv. Mater. 2006, 18(9), 1133–1136. [Google Scholar]
- Shi, M.; Peng, Y.; Zhou, J.; Liu, B.; Huang, Y.; Kong, J. Immunoassays based on microelectrodes arrayed on a silicon chip for high throughput screening of liver fibrosis markers in human serum. Biosens. Bioelectron. 2006, 21(12), 2210–2216. [Google Scholar]
- Xu, Y.; Xia, S.; Bian, C.; Chen, S. A micro amperometric immunosensor for detection of human immunoglobulin. Sci. China Ser. F: Informat. Sci. 2006, 49(3), 397–408. [Google Scholar]
- Bru?ggemann, A.; Stoelzle, S.; George, M.; Behrends, J. C.; Fertig, N. Microchip technology for automated and parallel patch-clamp recording. Small 2006, 2(7), 840–846. [Google Scholar]
- Granfeldt, D.; Sinclair, J.; Millingen, M.; Farre, C.; Lincoln, P.; Orwar, O. Controlling desensitized states in ligand-receptor interaction studies with cyclic scanning patch-clamp protocols. Anal. Chem. 2006, 78(23), 7947–7953. [Google Scholar]
- Sigworth, F.J.; Klemic, K.G. Microchip technology in ion-channel research. IEEE Trans. Nanobiosci. 2005, 4(1), 121–127. [Google Scholar]
- Asmild, M.; Oswald, N.; Krzywkowski, K.M.; Friis, S.; Jacobsen, R.B.; Reuter, D.; Taboryski, R.; Kutchinsky, J.; Vestergaard, R.K.; Schrøder, R.L.; Sørensen, C.B.; Bech, M.; Korsgaard, M.P.G.; Willumsen, N.J. Upscaling and automation of electrophysiology: Toward high throughput screening in ion channel drug discovery. Recept. Chan. 2003, 9(1), 49–58. [Google Scholar]
- Tourovskaia, A.; Figueroa-Masot, X.; Folch, A. Differentiation-on-a-chip: A microfluidic platform for long-term cell culture studies. Lab Chip 2005, 5(1), 14–19. [Google Scholar]
- Park, T.H.; Shuler, M.L. Integration of cell culture and microfabrication technology. Biotechn. Progr. 2003, 19(2), 243–253. [Google Scholar]
- Walker, G.M.; Zeringue, H.C.; Beebe, D.J. Microenvironment design considerations for cellular scale studies. Lab Chip 2004, 4(2), 91–97. [Google Scholar]
- Barlaan, E.A.; Sugimori, M.; Furukawa, S.; Takeuchi, K. Electronic microarray analysis of 16S rDNA amplicons for bacterial detection. J. Biotechnol. 2005, 115(1), 11–21. [Google Scholar]
- Umek, R.M.; Lin, S.W.; Vielmetter, J.; Terbrueggen, R.H.; Irvine, B.; Yu, C.J.; Kayyem, J.F.; Yowanto, H.; Blackburn, G.F.; Farkas, D.H.; Chen, Y.P. Electronic detection of nucleic acids: A versatile platform for molecular diagnostics. J. Mol. Diagnost. 2001, 3(2), 74–84. [Google Scholar]
- Yu, C.J.; Wan, Y.; Yowanto, H.; Li, J.; Tao, C.; James, M.D.; Tan, C.L.; Blackburn, G.F.; Meade, T.J. Electronic detection of single-base mismatches in DNA with ferrocene-modified probes. J. Am. Chem. Soc. 2001, 123(45), 11155–11161. [Google Scholar]
- Stett, A.; Egert, U.; Guenther, E.; Hofmann, F.; Meyer, T.; Nisch, W.; Haemmerle, H. Biological application of microelectrode arrays in drug discovery and basic research. Anal. Bioanal. Chem. 2003, 377(3), 486–495. [Google Scholar]
- Wada, K.I.; Taniguchi, A.; Kobayashi, J.; Yamato, M.; Okano, T. Live cells-based cytotoxic sensorchip fabricated in a microfluidic system. Biotechn. Bioeng. 2008, 99(6), 1513–1517. [Google Scholar]
- Gerstel, M.S.; Place, V.A. Drug delivery device. US Pat. 3964482. 91. 91, 1976. [Google Scholar]
- McAllister, D.V.; Wang, P.M.; Davis, S.P.; Park, J.H.; Canatella, P.J.; Allen, M.G.; Prausnitz, M.R. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: Fabrication methods and transport studies. Proc. Natl. Acad. Sci. USA 2003, 100 (SUPPL. 2), 13755–13760. [Google Scholar]
- Qiu, Y.; Gao, Y.; Hu, K.; Li, F. Enhancement of skin permeation of docetaxel: A novel approach combining microneedle and elastic liposomes. J. Control. Rel. 2008, 129(2), 144–150. [Google Scholar]
- Chen, J.; Wise, K. D.; Hetke, J.F.; Bledsoe, S.C., Jr. A multichannel neural probe for selective chemical delivery at the cellular level. IEEE Trans. Bio-med. Eng. 1997, 44(8), 760–769. [Google Scholar]
- Lee, J.W.; Park, J.H.; Prausnitz, M.R. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008, 29(13), 2113–2124. [Google Scholar]
- Baron, N.; Passave, J.; Guichardaz, B.; Cabodevila, G. Investigations of development process of high hollow beveled microneedles using a combination of ICP RIE and dicing saw. Microsyst. Technol. 2008, 1–6. [Google Scholar]
- Sivamani, R.K.; Stoeber, B.; Wu, G.; Hongbo, Z.; Lipemann, D.; Maibach, H. Clinical microneedle injection of methyl nicotinate: stratum corneum penetration. Skin Res. Technol. 2005, 11(2), 152–156. [Google Scholar]
- Ahmed, A.; Bonner, C.; Desai, T. A. Bioadhesive microdevices with multiple reservoirs: A new platform for oral drug delivery. J Control. Rel. 2002, 81(3), 291–306. [Google Scholar]
- Lou, D.; Saltzman, W. M. Synthetic DNA delivery systems. Nat. Biotech. 2000, 18(1), 33–37. [Google Scholar]
- Saffran, M.; Kumar, G. S.; Neckers, D. C.; Pena, J.; Jones, R. H.; Field, J. B. Biodegradable azopolymer coating for oral delivery of peptide drugs. Biochem. Soc. T 1990, 18(5), 752–754. [Google Scholar]
- Tao, S.L.; Desai, T.A. Microfabricated drug delivery systems: From particles to pores. Adv. Drug Deliver Rev. 2003, 55(3), 315–328. [Google Scholar]
- Tsapis, N.; Bennett, D.; Jackson, B.; Weitz, D.A.; Edwards, D.A. Trojan particles: Large porous carriers of nanoparticles for drug delivery. Proc. Natl. Acad. Sci. USA 2002, 99(19), 12001–12005. [Google Scholar]
- Santini, J.T., Jr.; Richards, A.C.; Scheidt, R.A.; Cima, M.J.; Langer, R.S. Microchip technology in drug delivery. Ann. Med. 2000, 32(6), 377–379. [Google Scholar]
- Santini, J.T., Jr; Cima, M.J.; Langer, R. A controlled-release microchip. Nature 1999, 397(6717), 335–338. [Google Scholar]
- Jackman, R.J.; Duffy, D.C.; Ostuni, E.; Willmore, N.D.; Whitesides, G.M. Fabricating Large Arrays of Microwells with Arbitrary Dimensions and Filling Them Using Discontinuous Dewetting. Anal. Chem. 1998, 70(11), 2280–2287. [Google Scholar]
- Prescott, J.H.; Lipka, S.; Baldwin, S.; Sheppard, N.F., Jr.; Maloney, J.M.; Coppeta, J.; Yomtov, B.; Staples, M.A.; Santini, J.T., Jr. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat. Biotechnol. 2006, 24(4), 437–438. [Google Scholar]
- Bhisitkul, R.B.; Keller, C.G. Development of Microelectromechanical Systems (MEMS) forceps for intraocular surgery. Brit. J. Ophthalmol. 2005, 89(12), 1586–1588. [Google Scholar]
- Carrozza, M.C.; Dario, P.; Jay, L.P.S. Micromechatronics in surgery. T. I. Meas. Control. 2003, 25(4), 309–327. [Google Scholar]
- Sretavan, D.W.; Chang, W.; Hawkes, E.; Keller, C.; Kliot, M. Microscale surgery on single axons. Neurosurgery 2005, 57(4), 635–646. [Google Scholar]
- Dargahi, J.; Najarian, S. An integrated force-position tactile sensor for improving diagnostic and therapeutic endoscopic surgery. Bio-med. Mater. Eng. 2004, 14(2), 151–166. [Google Scholar]
- Dargahi, J.; Parameswaran, M.; Payandeh, S. Micromachined piezoelectric tactile sensor for an endoscopic grasper - theory, fabrication and experiments. J. MEMS 2000, 9(3), 329–335. [Google Scholar]
- Gray, B.L.; Fearing, R.S. A surface micromachined microtactile sensor array. IEEE Int. Conf. Robotics and Automation, Minneapolis, MN, USA, April 1996; pp. 1–6.
- Rao, N.P.; Dargahi, J.; Kahrizi, M.; Prasad, S. Design and fabrication of a microtactile sensor. Proc. Can. Conf. Elect. Comput. Eng., Montreal, Que. Canada, May 2003; 2, pp. 1167–1170.
- Menciassi, A.; Eisinberg, A.; Carrozza, M.C.; Dario, P. Force sensing microinstrument for measuring tissue properties and pulse in microsurgery. IEEE/ASME Trans. Mechatron. 2003, 8(1), 10–17. [Google Scholar]
- Dario, P.; Carrozza, M. C.; Allotta, B.; Guglielmelli, E. Micromechatronics in medicine. IEEE/ASME Trans. Mechatron. 1996, 1(2), 137–148. [Google Scholar]
- Lal, A.; White, R. M. Silicon microfabricated horns for power ultrasonics. Sens. Actuat. A-Phys. 1996, 54(1-3), 542–546. [Google Scholar]
- EETimes. com. Verimetra awarded patent for ‘MEMS-in-blades’; 2007. [Google Scholar]
- Gong, F.; Swain, P.; Mills, T. Wireless endoscopy. Gastrointest. Endosc. 2000, 51(6), 725–729. [Google Scholar]
- Leighton, J. A. Recent advances in endoscopic capsule imaging: See what we have been missing. Rev. Gastroenterol. Disord. 2006, 6 (SUPPL. 1), S19–S27. [Google Scholar]
- Triester, S.L.; Leighton, J.A.; Leontiadis, G.I.; Gurudu, S.R.; Fleischer, D.E.; Hara, A.K.; Heigh, R.I.; Shiff, A.D.; Sharma, V.K. A meta-analysis of the yield of capsule endoscopy compared to other diagnostic modalities in patients with non-stricturing small bowel Crohn's disease. Am. J. Gastroenterol. 2006, 101(5), 954–964. [Google Scholar]
- Jacob, H.; Levy, D.; Shreiber, R. Localization of the Given M2A ingestible capsule in the Given diagnostic imaging system. Gastrointest Endosc 2002, 55(5), AB135. [Google Scholar]
- Byungkyu, K.; Sukho, P.; Chang Yeol, J.; Seok-Jin, Y. An earthworm-like locomotive mechanism for capsule endoscopes. Intelligent Robots and Systems, (IROS 2005), IEEE/RSJ International Conference on, Edmonton, Alberta, Canada, 2-6, Aug 2005; pp. 2997–3002.
- Byungkyu, K.; Sunghak, L.; Jong Heong, P.; Jong-Oh, P. Design and fabrication of a locomotive mechanism for capsule-type endoscopes using shape memory alloys (SMAs). Mechatronics, IEEE/ASME Trans. Mechatron. 2005, 10(1), 77–86. [Google Scholar]
- Moglia, A.; Menciassi, A.; Schurr, M.O.; Dario, P. Wireless capsule endoscopy: From diagnostic devices to multipurpose robotic systems. Biomed. Microdevices 2007, 9(2), 235–243. [Google Scholar]
- Menciassi, A.; Dario, P. Bio-inspired solutions for locomotion in the gastrointestinal tract: Background and perspectives. Philos. Trans. A Math. Phys. Eng. Sci. 2003, 361(1811), 2287–2298. [Google Scholar]
- Zuo, J.; Yan, G.; Gao, Z. A micro creeping robot for colonoscopy based on the earthworm. J. Med. Eng. Technol. 2005, 29(1), 1–7. [Google Scholar]
- Dario, P.; Carrozza, M.C.; Pietrabissa, A. Development and in vitro testing of a miniature robotic system for computer-assisted colonoscopy. Comput. Aided Surg. 1999, 4(1), 1–14. [Google Scholar]
- Wise, K.D. Integrated sensors, MEMS, and microsystems: Reflections on a fantastic voyage. Sens. Actuat. A-Phys. 2007, 136(1), 39–50. [Google Scholar]
- Metz, S.; Bertsch, A.; Bertrand, D.; Renaud, P. Flexible polyimide probes with microelectrodes and embedded microfluidic channels for simultaneous drug delivery and multi-channel monitoring of bioelectric activity. Biosens. Bioelectron. 2004, 19(10), 1309–1318. [Google Scholar]
- Drake, K.L.; Wise, K.D.; Farraye, J.; Anderson, D.J.; BeMent, S.L. Performance of planar multisite microprobes in recording extracellular single-unit intracortical activity. IEEE T. Bio-med. Eng. 1988, 35(9), 719–732. [Google Scholar]
- Tae Hwan, Y.; Eun Jung, H.; Dong Yong, S.; Sek Ik, P.; Seung Jae, O.; Sung Cherl, J.; Hyung Cheul, S.; Sung June, K. A micromachined silicon depth probe for multichannel neural recording. IEEE T. Bio-med. Eng. 2000, 47(8), 1082–1087. [Google Scholar]
- Rutten, W. L. C. Selective electrical interfaces with the nervous system. Annu. Rev. Biomed. Eng. 2002, 4, 407–452. [Google Scholar]
- Branner, A.; Stein, R.B.; Normann, R.A. Selective stimulation of cat sciatic nerve using an array of varying-length microelectrodes. J. Neurophysiol. 2001, 85(4), 1585–1594. [Google Scholar]
- He, W.; Bellamkonda, R.V. Nanoscale neuro-integrative coatings for neural implants. Biomaterials 2005, 26(16), 2983–2990. [Google Scholar]
- Holman, Y.H.; Willows, A.O.D.; Denton, D.; Bohringer, K.F. IEEE-EMBS Second Annual International Special Topic Conference on Microtechnologies in Medicine & Biology; 2002.
- Zhong, Y.; Yu, X.; Gilbert, R.; Bellamkonda, R.V. Stabilizing electrode-host interfaces: A tissue engineering approach. J. Rehabil. Res. Dev. 2001, 38(6), 627–632. [Google Scholar]
- Meacham, K.W.; Giuly, R.J.; Guo, L.; Hochman, S.; De Weerth, S.P. A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomed Microdevices 2008, 10(2), 259–269. [Google Scholar]
- Marks, A.F. Bullfrog nerve regeneration into porous implants. Anat. Rec. 1969, 163, 226. [Google Scholar]
- Mannard, A.; Stein, R.B.; Charles, D. Regeneration electrode units: Implants for recording from single peripheral nerve fibers in freely moving animals. Science 1974, 183(4124), 547–549. [Google Scholar]
- Edell, D.J. A peripheral nerve information transducer for amputees: Long-term multichannel recordings from rabbit peripheral nerves. IEEE T. Bio-med. Eng. 1986, 33(2), 203–214. [Google Scholar]
- Akin, T.; Najafi, K.; Smoke, R.H.; Bradley, R.M. A micromachined silicon sieve electrode for nerve regeneration applications. IEEE T. Bio-med. Eng. 1994, 41(4), 305–313. [Google Scholar]
- Kovacs, G.T.A.; Storment, C.W.; Rosen, J.M. Regeneration microelectrode array for peripheral nerve recording and stimulation. IEEE T. Bio-med. Eng. 1992, 39(9), 893–902. [Google Scholar]
- Dario, P.; Garzella, P.; Toro, M.; Micera, S.; Alavi, M.; Meyer, U.; Valderrama, E.; Sebastiani, L.; Ghelarducci, B.; Mazzoni, C.; Pastacaldi, P. Neural interfaces for regenerated nerve stimulation and recording. IEEE Trans. Rehabil. Eng. 1998, 6(4), 353–363. [Google Scholar]
- Lago, N.; Udina, E.; Navarro, X. Regenerative electrodes for interfacing injured peripheral nerves: Neurobiological assessment. Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob, Pisa, Italy, February 20-22, 2006; pp. 1149–1153.
- Navarro, X.; Calvet, S.; Rodríguez, F.J.; Stieglitz, T.; Blau, C.; Buti, M.; Valderrama, E.; Meyer, J.U. Stimulation and recording from regenerated peripheral nerves through polyimide sieve electrodes. J. Peripher. Nerv. Syst. 1998, 3(2), 91–101. [Google Scholar]
- Wallman, L.; Levinsson, A.; Schouenborg, J.; Holmberg, H.; Montelius, L.; Danielsen, N.; Laurell, T. Perforated silicon nerve chips with doped registration electrodes: In vitro performance and in vivo operation. IEEE T. Bio-med. Eng. 1999, 46(9), 1065–1073. [Google Scholar]
- Lago, N.; Ceballos, D.; J Rodríguez, F.; Stieglitz, T.; Navarro, X. Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials 2005, 26(14), 2021–2031. [Google Scholar]
- Stieglitz, T.; Beutel, H.; Schuettler, M.; Meyer, J.U. Micromachined, polyimide-based devices for flexible neural interfaces. Biomed. Microdev. 2000, 2(4), 283–294. [Google Scholar]
- Stieglitz, T.; Ruf, H.; Gross, M.; Schuettler, M.; Meyer, J.U. A biohybrid system to interface peripheral nerves after traumatic lesions: Design of a high channel sieve electrode. Biosens. Bioelectron. 2002, 17(8), 685–696. [Google Scholar]
- Ceballos, D.; Valero-Cabr, A.; Valderrama, E.; Schttler, M.; Stieglitz, T.; Navarro, X. Morphologic and functional evaluation of peripheral nerve fibers regenerated through polyimide sieve electrodes over long-term implantation. J. Biomed. Mater. Res. 2002, 60(4), 517–528. [Google Scholar]
- Navarro, X.; Krueger, T.B.; Lago, N.; Micera, S.; Stieglitz, T.; Dario, P. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 2005, 10(3), 229–258. [Google Scholar]
- Weiland, J.D.; Wentai, L.; Humayun, M.S. Retinal Prosthesis. Annu. Rev. Biomed. Eng. 2005, 7(1), 361–364. [Google Scholar]
- Chow, A.Y.; Chow, V.Y.; Packo, K.H.; Pollack, J.S.; Peyman, G.A.; Schuchard, R. The Artificial Silicon Retina Microchip for the Treatment of Vision Loss from Retinitis Pigmentosa. Arch. Opthalmol. 2004, 122(4), 460–469. [Google Scholar]
- Zrenner, E.; Miliczek, K.D.; Gabel, V.P.; Graf, H.G.; Guenther, E.; Haemmerle, H.; Hoefflinger, B.; Kohler, K.; Nisch, W.; Schubert, M.; Stett, A.; Weiss, S. The development of subretinal microphotodiodes for replacement of degenerated photoreceptors. Ophthal. Res. 1997, 29(5), 269–280. [Google Scholar]
- Bauerdick, S.; Burkhardt, C.; Kern, D.P.; Nisch, W. Substrate-integrated microelectrodes with improved charge transfer capacity by 30-dimensional micro-fabrication. Biomed Microdevices 2003, 5(2), 93–99. [Google Scholar]
- Chow, A.Y.; Pardue, M.T.; Perlman, J.I.; Ball, S.L.; Chow, V.Y.; Hetling, J.R.; Peyman, G.A.; Liang, C.; Stubbs, E.B., Jr.; Peachey, N.S. Subretinal implantation of semiconductor-based photodiodes: Durability of novel implant designs. J. Rehabil. Res. Dev. 2002, 39(3), 313–321. [Google Scholar]
- Grumet, A.E.; Wyatt, J.L., Jr.; Rizzo, J.F., Iii. Multi-electrode stimulation and recording in the isolated retina. J. Neurosci. Meth. 2000, 101(1), 31–42. [Google Scholar]
- Sachs, H.G.; Schanze, T.; Brunner, U.; Sailer, H.; Wiesenack, C. Transscleral implantation and neurophysiological testing of subretinal polyimide film electrodes in the domestic pig in visual prosthesis development. J. Neural. Eng. 2005, 2, S57–S64. [Google Scholar]
- Rodger, D.C.; Fong, A.J.; Li, W.; Ameri, H.; Ahuja, A.K.; Gutierrez, C.; Lavrov, I.; Zhong, H.; Menon, P.R.; Meng, E.; Burdick, J.W.; Roy, R.R.; Edgerton, V.R.; Weiland, J.D.; Humayun, M.S.; Tai, Y.-C. Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens. Actuat. B-Chem. 2008, 132(2), 449–460. [Google Scholar]
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442(7101), 368–373. [Google Scholar]
- Chiem, N.; Harrison, D.J. Microchip-based capillary electrophoresis for immunoassays: Analysis of monoclonal antibodies and theophylline. Anal. Chem. 1997, 69(3), 373–378. [Google Scholar]
- Hadd, A.G.; Raymond, D.E.; Halliwell, J.W.; Jacobson, S.C.; Ramsey, J.M. Microchip Device for Performing Enzyme Assays. Anal. Chem. 1997, 69(17), 3407–3412. [Google Scholar]
- Sin, A.; Chin, K.C.; Jamil, M.F.; Kostov, Y.; Rao, G.; Shuler, M.L. The Design and Fabrication of Three-Chamber Microscale Cell Culture Analog Devices with Integrated Dissolved Oxygen Sensors. Biotechnol. Progr. 2004, 20(1), 338–345. [Google Scholar]
- Laser, D.J.; Santiago, J.G. A review of micropumps. J. Micromech. Microeng. 2004, 14(6), R35–R64. [Google Scholar]
- Nguyen, N.T.; Wu, Z. Micromixers - A review. J. Micromech. Microeng. 2005, 15(2), R1–R16. [Google Scholar]
- Hilt, J.Z.; Peppas, N.A. Microfabricated drug delivery devices. Int. J. Pharm. 2005, 306(1-2), 15–23. [Google Scholar]
- Smits, J.G. Piezoelectric micropump with three valves working peristaltically. Sensors Actuat. A-Physical 1990, 21(1-3), 203–206. [Google Scholar]
- Ryu, W.; Huang, Z.; Prinz, F.B.; Goodman, S.B.; Fasching, R. Biodegradable micro-osmotic pump for long-term and controlled release of basic fibroblast growth factor. J. Control. Release 2007, 124(1-2), 98–105. [Google Scholar]
- Viravaidya, K.; Sin, A.; Shuler, M.L. Development of a Microscale Cell Culture Analog to Probe Naphthalene Toxicity. Biotechnol. Progr. 2004, 20(1), 316–323. [Google Scholar]
- Beebe, D.; Wheeler, M.; Zeringue, H.; Walters, E.; Raty, S. Microfluidic technology for assisted reproduction. Theriogenology 2002, 57(1), 125–135. [Google Scholar]
- Glasgow, I.K.; Zeringue, H.C.; Beebe, D.J.; Choi, S.J.; Lyman, J.T.; Chan, N.G.; Wheeler, M.B. IEEE Eng. Med. Biol.; 2001; Volume 48, p. 5. [Google Scholar]
- Raty, S.; Walters, E.M.; Davis, J.; Zeringue, H.; Beebe, D.J.; Rodriguez-Zas, S.L.; Wheeler, M.B. Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 2004, 4(3), 186–190. [Google Scholar]
- Walters, E.M.; Clark, S.G.; Beebe, D.J.; Wheeler, M.B. Mammalian embryo culture in a microfluidic device. Method Mol. Biol. 2004, 254, 375–382. [Google Scholar]
- Takayama, S.; Ostuni, E.; LeDuc, P.; Naruse, K.; Ingber, D.E.; Whitesides, G.M. Laminar flows: Subcellular positioning of small molecules. Nature 2001, 411(6841), 1016–1016. [Google Scholar]
- Kaji, H.; Nishizawa, M.; Matsue, T. Localized chemical stimulation to micropatterned cells using multiple laminar fluid flows. Lab Chip 2003, 3(3), 208–211. [Google Scholar]
- Golden, A.P.; Tien, J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip 2007, 7(6), 720–725. [Google Scholar]
- Leclerc, E.; Furukawa, K.S.; Miyata, F.; Sakai, Y.; Ushida, T.; Fujii, T. Fabrication of microstructures in photosensitive biodegradable polymers for tissue engineering applications. Biomaterials 2004, 25(19), 4683–4690. [Google Scholar]
- Stangegaard, M.; Petronis, S.; Jørgensen, A.M.; Christensen, C. B. V.; Dufva, M. A biocompatible micro cell culture chamber (μCCC) for the culturing and on-line monitoring of eukaryote cells. Lab Chip 2006, 6(8), 1045–1051. [Google Scholar]
- Whitesides, G. M.; Ostuni, E.; Takayama, S.; Jiang, X.; Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 2001, 3, 335–373. [Google Scholar]
- Rowe, L.; Almasri, M.; Lee, K.; Fogleman, N.; Brewer, G.J.; Nam, Y.; Wheeler, B.C.; Vukasinovic, J.; Glezer, A.; Frazier, A. B. Active 3-D microscaffold system with fluid perfusion for culturing in vitro neuronal networks. Lab Chip 2007, 7(4), 475–482. [Google Scholar]
- Ryu, W.; Min, S.W.; Hammerick, K.E.; Vyakarnam, M.; Greco, R.S.; Prinz, F.B.; Fasching, R.J. The construction of three-dimensional micro-fluidic scaffolds of biodegradable polymers by solvent vapor based bonding of micro-molded layers. Biomaterials 2007, 28(6), 1174–1184. [Google Scholar]
- Vozzi, G.; Previti, A.; De Rossi, D.; Ahluwalia, A. Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng. 2002, 8(6), 1089–1098. [Google Scholar]
Diagnostic Sesgment | Purpose | Examples |
---|---|---|
Clinical chemistry | Measurement of compounds or chemical reaction products in body. | Blood gas [1-3], Glucose [4-7], Ethanol [8], Cholesterol [9], uric acid [10-12], lactate[13-15], pH [16, 17] and other clinical sensors[18] |
Immunochemistry | Detection of specific types of proteins using antigen/antibody chemistry | Microfabricated immunosensors [19-23] |
Hematology | Characterization of blood components. | Differential blood cell counters [24-26], whole blood analysis [27], hemoglobin [28, 29] and blood ketone analysis [30] |
Microbiology | Investigation of the presence of disease causing agents. | Microbial sensors [31-34] |
Molecular diagnostics | Mainly focuses on diagnostics based on DNA, RNA and proteins. | DNA sensors [35-39], Immunosensors [40-42] |
Process stages | Functions | Mechanisms |
---|---|---|
Cell Sorting | Isolation of cells from heterogeneous mixture of cell population | Flow cytometry, Dielectrophorosis Electrophoresis, Electro-magnetic sorting, Optical tweezers and Micro filters |
Cell lysis | Disruption of cell membrane for releasing intra cellular material | Thermal, acoustic, mechanical, chemical and electrical lysing |
Analytical purification | Purification/amplification of analytical molecules | PCR amplification (for nucleic acids), Purification using adhesion based technique |
Molecular sensing | Detecting the presence of analyte molecules such as proteins and nucleic acids | Electrical, Mechanical, Optical Acoustic and Magnetic sensing |
Process | Deals with | MEMS technologies |
---|---|---|
Target identification | Identification of biomolecules with significant role in a specific disease. | |
Lead identification & optimization | Identification and optimization of chemical compounds that can interact with the target molecules to produce drug like effect. |
|
Laboratory Testing | Laboratory tests conducted on the investigational drug to see its effects both in living organism (in vivo) and cells (in vitro). |
|
© 2008 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
James, T.; Mannoor, M.S.; Ivanov, D.V. BioMEMS –Advancing the Frontiers of Medicine. Sensors 2008, 8, 6077-6107. https://doi.org/10.3390/s8096077
James T, Mannoor MS, Ivanov DV. BioMEMS –Advancing the Frontiers of Medicine. Sensors. 2008; 8(9):6077-6107. https://doi.org/10.3390/s8096077
Chicago/Turabian StyleJames, Teena, Manu Sebastian Mannoor, and Dentcho V. Ivanov. 2008. "BioMEMS –Advancing the Frontiers of Medicine" Sensors 8, no. 9: 6077-6107. https://doi.org/10.3390/s8096077
APA StyleJames, T., Mannoor, M. S., & Ivanov, D. V. (2008). BioMEMS –Advancing the Frontiers of Medicine. Sensors, 8(9), 6077-6107. https://doi.org/10.3390/s8096077