Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor
Abstract
:1. Introduction
2. Experimental Setup
2.1. Sensor array and materials
2.2. Air sample calibration and testing
3. Results and Discussion
3.1. Ozone detection and Tuning Fork sensor calibration
3.2. Ozone detection in ambient air
3.3. Characterization of ozone detection reaction products
4. Conclusions
Acknowledgments
References and Notes
- McConnell, R.; Berhane, K.; Gilliland, F.; London, S.J.; Islam, T.; Gauderman, W.J.; Avol, E.; Margolis, H.G.; Peters, J.M. Asthma in exercising children exposed to ozone: a cohort study. Lancet 2002, 359, 386–391. [Google Scholar]
- Destaillats, H.; Lunden, M.M.; Singer, B.C.; Coleman, B.K.; Hodgson, A.T.; Weschler, C.J.; Nazaroff, W.W. Indoor secondary pollutants from household product emissions in the presence of ozone: a bench-scale chamber study. Environ. Sci. Technol 2006, 40, 4421–4428. [Google Scholar]
- Destaillats, H.; Singer, B.C.; Lee, S.K.; Gundel, L.A. Effect of ozone on nicotine desorption from model surfaces: Evidence for heterogeneous chemistry. Environ. Sci. Technol 2006, 40, 1799–1805. [Google Scholar]
- Coleman, B.K.; Destaillats, H.; Hodgson, A.; Nazaroff, W.W. Ozone consumption and volatile byproduct formation from surface reactions with aircraft cabin materials and clothing fabrics. Atmos. Environ 2008, 42, 642–654. [Google Scholar]
- Destaillats, H.; Maddalena, R.L.; Singer, B.C.; Hodgson, A.T.; McKone, T.E. Indoor pollutants emitted by office equipment: a review of reported data and information needs. Atmos. Environ 2008, 42, 1371–1388. [Google Scholar]
- Wilson, K.L.; Birks, J.W. Mechanism and elimination of a water vapor interference in the measurement of ozone by UV absorbance. Environ. Sci. Technol 2006, 40, 6361–6367. [Google Scholar]
- Utembe, S.R.; Hansford, G.M.; Sanderson, M.G.; Freshwater, R.A.; Pratt, K.F.E.; Williams, D.E.; Cox, R.A.; Jones, R.L. An ozone monitoring instrument based on the tungsten trioxide (WO3) semiconductor. Sensors Actuat. B-Chem 2006, 114, 507–512. [Google Scholar]
- Black, D.R.; Harley, R.A.; Hering, S.V.; Stolzenburg, M.R. A new, portable, real-time ozone monitor. Environ. Sci. Technol 2000, 34, 3031–3040. [Google Scholar]
- Triche, E.W.; Gent, J.F.; Holford, T.R.; Belanger, K.; Bracken, M.B.; Becket, W.S.; Naeher, L.; McSharry, J.-E.; Leaderer, B.P. Low-level ozone exposure and respiratory symptoms in infants. Environ. Health Perspect 2006, 114, 911–916. [Google Scholar]
- Penard-Morand, C.; Charpin, D.; Raherison, C.; Kopferschmitt, C.; Caillaud, D.; Lavaud, F.; Annesi-Maesano, I. Long-term exposure to background air pollution related to respiratory and allergic health in schoolchildren. Clin. Exp. Allerg 2005, 35, 1279–1287. [Google Scholar]
- Lewis, T.C.; Robins, T.G.; Dvonch, J.T.; Keeler, G.; Yip, F.Y.; Mentz, G.B.; Lin, X.; Parker, E.A.; Israel, B.A.; Gonzalez, L.; Hill, Y. Air pollution-associated changes in lung function among asthmatic children in Detroit. Environ. Health Perspect 2005, 113, 1068–1075. [Google Scholar]
- Rai, A.; Tsow, F.; Nassirpour, S.; Bankers, J.; Spinatsch, M.; He, P.M.; Forzani, E.; Tao, N.J. Selective detection of sulfur derivatives using microfabricated tuning fork-based sensors. Sensors Actuat. B 2009, in press.. [Google Scholar]
- Ren, M.H.; Forzani, E.S.; Tao, N.J. Chemical sensor based on microfabricated wristwatch tuning forks. Anal. Chem 2005, 77, 2700–2707. [Google Scholar]
- Tsow, F.; Forzani, E.S.; Tao, N.J. Frequency-coded chemical sensors. Anal. Chem 2008, 80, 606–611. [Google Scholar]
- Boussaad, S.; Tao, N.J. Polymer wire chemical sensor using a microfabricated tuning fork. Nano Lett 2003, 3, 1173–1176. [Google Scholar]
- Tsow, F.; Forzani, E.; Rai, A.; Wang, R.; Tsui, R.; Mastroianni, S.; Knobbe, C.; Gandolfi, A.; Tao, N.J. A wearable & wireless sensor system for real-time monitoring of toxic environmental volatile organic compounds. IEEE Sensors J 2009, in press.. [Google Scholar]
- Cai, Q.; Lin, W.Y.; Xiao, F.S.; Pang, W.Q.; Chen, X.H.; Zou, B.S. The preparation of highly ordered MCM-41 with extremely low surfactant concentration. Microp. Mesop. Mat 1999, 32, 1–15. [Google Scholar]
© 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, R.; Tsow, F.; Zhang, X.; Peng, J.-H.; Forzani, E.S.; Chen, Y.; Crittenden, J.C.; Destaillats, H.; Tao, N. Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor. Sensors 2009, 9, 5655-5663. https://doi.org/10.3390/s90705655
Wang R, Tsow F, Zhang X, Peng J-H, Forzani ES, Chen Y, Crittenden JC, Destaillats H, Tao N. Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor. Sensors. 2009; 9(7):5655-5663. https://doi.org/10.3390/s90705655
Chicago/Turabian StyleWang, Rui, Francis Tsow, Xuezhi Zhang, Jhih-Hong Peng, Erica S. Forzani, Yongsheng Chen, John C. Crittenden, Hugo Destaillats, and Nongjian Tao. 2009. "Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor" Sensors 9, no. 7: 5655-5663. https://doi.org/10.3390/s90705655
APA StyleWang, R., Tsow, F., Zhang, X., Peng, J. -H., Forzani, E. S., Chen, Y., Crittenden, J. C., Destaillats, H., & Tao, N. (2009). Real-Time Ozone Detection Based on a Microfabricated Quartz Crystal Tuning Fork Sensor. Sensors, 9(7), 5655-5663. https://doi.org/10.3390/s90705655