Relationship between Surface Properties and In Vitro Drug Release from Compressed Matrix Containing Polymeric Materials with Different Hydrophobicity Degrees
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of Copolymers Materials
2.2. Granulometric Properties
2.3. Thermal Characterization of Polymer-Drug Blends
2.4. Preparation of the Compressed Matrices
2.5. Analysis of the Surface Roughness of the Tablets
2.6. Contact Angle Measurements (θc)
2.7. Determination of Wadh and SFE
2.8. Variation of Contact Angle vs. Time
2.9. In Vitro Dissolution Tests of the Model Drug
2.10. Kinetic Study of Drug Release
3. Materials and Methods
3.1. Materials
3.2. Obtaining and Characterization of Polymers
3.3. Methods
3.3.1. Granulometric Properties
3.3.2. Thermal Characterization of Polymer-Drug Blends
3.3.3. Preparation of the Compressed Matrices
3.3.4. Analysis of Surface Roughness of the Tablets
3.3.5. Contact Angle Measurements
3.3.6. Determination of Wadh and SFE
3.3.7. Contact Angle vs. Time
3.3.8. In Vitro Dissolution Tests
3.4. Data Processing and Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Li, J.; Yu, F.; Chen, Y.; Oupický, D. Polymeric drugs: Advances in the development of pharmacologically active polymers. J. Control. Release 2015, 219, 369–382. [Google Scholar] [CrossRef] [PubMed]
- De Goeij, B.E.C.G.; Lambert, J.M. New developments for antibody-drug conjugate-based therapeutic approaches. Curr. Opin. Immunol. 2016, 40, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.W.; Kabanov, A.V. Potential applications of polymers in the delivery of drugs to the central nervous system. Colloids Surf. B Biointerfaces 1999, 16, 321–330. [Google Scholar] [CrossRef]
- Allen, C.; Maysinger, D.; Eisenberg, A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf. B Biointerfaces 1999, 16, 3–27. [Google Scholar] [CrossRef]
- Brudno, Y.; Mooney, D.J. On-demand drug delivery from local depots. J. Control. Release 2015, 219, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Olea, A.F.; Acevedo, B.; Martinez, F. Effect of hydrophobic bonding on the conformational transition and properties of intramolecular micelles formed by copolymers of maleic acid and styrene. J. Phys. Chem. B 1999, 103, 9306–9313. [Google Scholar] [CrossRef]
- Olea, A.F.; Barraza, R.G.; Fuentes, I.; Acevedo, B.; Martinez, F. Solubilization of phenols by intramolecular micelles formed by copolymers of maleic acid and olefins. Macromolecules 2002, 35, 1049–1053. [Google Scholar] [CrossRef]
- Angelova, N.; Yordanov, G. Nanoparticles of poly(styrene-co-maleic acid) as colloidal carriers for the anticancer drug epirubicin. Colloids Surf. A Physicochem. Eng. Asp. 2014, 452, 73–81. [Google Scholar] [CrossRef]
- Trivedi, B.C.; Culbertson, B.M. Maleic Anhydride; Springer: New York, NY, USA, 1982; Available online: http://link.springer.com/book/10.1007%2F978-1-4757-0940-7 (accessed on 16 January 2017).
- Bacu, E.; Chitanu, G.C.; Couture, A.; Grandclaudon, P.; Singurel, G.; Carpov, A. Potential drug delivery systems from maleic anhydride copolymers and phenothiazine derivatives. Eur. Polym. J. 2002, 38, 1509–1513. [Google Scholar] [CrossRef]
- Finne, U.; Kyyrönen, K.; Urtti, A. Drug release from monoisopropyl ester of poly(vinyl methyl ether-maleic anhydride) can be modified by basic salts in the polymer matrix. J. Control. Release 1989, 10, 189–194. [Google Scholar] [CrossRef]
- Şen, M.; Uzun, C.; Güven, O. Controlled release of terbinafine hydrochloride from pH sensitive poly(acrylamide/maleic acid) hydrogels. Int. J. Pharm. 2000, 203, 149–157. [Google Scholar] [CrossRef]
- Chiriac, A.P.; Nita, L.E.; Tudorachi, N.; Neamtu, I.; Balan, V.; Tartau, L. Upon synthesis of a polymeric matrix with pH and temperature responsiveness and antioxidant bioactivity based on poly(maleic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane) derivatives. Mater. Sci. Eng. C 2015, 50, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Nita, L.E.; Chiriac, A.P.; Mititelu-Tartau, L.; Stoleru, E.; Doroftei, F.; Diaconu, A. Patterning poly(maleic anhydride-co-3,9-divinyl-2,4,8,10-tetraoxaspiro (5.5) undecane) copolymer bioconjugates for controlled release of drugs. Int. J. Pharm. 2015, 493, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Salamanca, C.; Quintero, A.; Pineda, D.; Andrade, A. Aggregates of alternate amphiphilc polyanion to carry zwitterionic drug in aqueous media. Int. J. Pharm. Sci. Res. 2015, 6, 2360–2366. [Google Scholar]
- Salamanca, C.H.; Barraza, R.G.; Acevedo, B.; Olea, A.F. Hydrophobically modified polyelectrolytes as potential drugs reservoirs of N-alkyl-nitroimidazoles. J. Chil. Chem. Soc. 2007, 52, 1115–1119. [Google Scholar] [CrossRef]
- Gamboa, C.; Olea, A.F. Association of cationic surfactants to humic acid: Effect on the surface activity. Colloids Surf. A Physicochem. Eng. Asp. 2006, 278, 241–245. [Google Scholar] [CrossRef]
- Geetha, P.; Sivaram, A.J.; Jayakumar, R.; Gopi Mohan, C. Integration of in silico modeling, prediction by binding energy and experimental approach to study the amorphous chitin nanocarriers for cancer drug delivery. Carbohydr. Polym. 2016, 142, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.-C.; Jones, S.A.; Riffo-Vasquez, Y.; Spina, D.; Hoffman, E.; Morgan, A.; Patel, A.; Page, C.; Forbes, B.; Dailey, L.A. Quantitative assessment of nanoparticle surface hydrophobicity and its influence on pulmonary biocompatibility. J. Control. Release 2014, 183, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Piest, M.; Engbersen, J.F.J. Effects of charge density and hydrophobicity of poly(amido amine)s for non-viral gene delivery. J. Control. Release 2010, 148, 83–90. [Google Scholar] [CrossRef]
- Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2001, 48, 139–157. [Google Scholar] [CrossRef]
- Hager, A.-S.; Arendt, E.K. Influence of hydroxypropylmethylcellulose (HPMC), xanthan gum and their combination on loaf specific volume, crumb hardness and crumb grain characteristics of gluten-free breads based on rice, maize, teff and buckwheat. Food Hydrocoll. 2013, 32, 195–203. [Google Scholar] [CrossRef]
- Camino, N.A.; Sanchez, C.C.; Rodríguez Patino, J.M.; Pilosof, A.M.R. Hydroxypropylmethylcellulose–β-lactoglobulin mixtures at the oil–water interface. Bulk, interfacial and emulsification behavior as affected by pH. Food Hydrocoll. 2012, 27, 464–474. [Google Scholar] [CrossRef]
- Liu, C.-L.; Chang, T.-C.; Wu, S.-M.; Chiang, H.-J. Total solubility determination of mixtures containing ampicillin anhydrate and ampicillin trihydrate. J. Chin. Chem. Soc. 2006, 53, 851–856. [Google Scholar] [CrossRef]
- Chang, M.-K. Mechanical properties and thermal stability of low-density polyethylene grafted maleic anhydride/montmorillonite nanocomposites. J. Ind. Eng. Chem. 2015, 27, 96–101. [Google Scholar] [CrossRef]
- Mosig, J.; Kleinebudde, P. Evaluation of lubrication methods: How to generate a comparable lubrication for dry granules and powder material for tableting processes. Powder Technol. 2014, 266, 156–166. [Google Scholar] [CrossRef]
- Yarce, C.; Pineda, D.; Correa, C.; Salamanca, C. Relationship between surface properties and in vitro drug release from a compressed matrix containing an amphiphilic polymer material. Pharmaceuticals 2016, 9, 34. [Google Scholar] [CrossRef]
- Hapgood, K.P.; Litster, J.D.; Biggs, S.R.; Howes, T. Drop penetration into porous powder beds. J. Colloid Interface Sci. 2002, 253, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Gennes, P.G.D. Wetting: Static and dynamics. Rev. Mod. Phys. 1985, 57, 827–863. [Google Scholar] [CrossRef]
- Chau, T.T.; Bruckard, W.J.; Koh, P.T.L.; Nguyen, A.V. A review of factors that affect contact angle and implications for flotation practice. Adv. Colloid Interface Sci. 2009, 150, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhai, S.; Liu, Y.; Zhou, H.; Wu, J.; Jiao, Q.; Zhang, B.; Zhu, H.; Yan, B. Experimental modulation and computational model of nano-hydrophobicity. Biomaterials 2015, 52, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Birdi, K.S. Handbook of Surface and Colloid Chemistry; CRC Press: Boca Ratón, FL, USA, 1997; p. 292. [Google Scholar]
- Ohm, A.; Lippold, B.C. Charakterisierung der benetzbarkeit von arzeistoffpulvern mit hilfe der sessipe-drop technik, teil 2: Oberflächenspannung und raindwinkel/oberflächenspannungskurven. Pharm. Ind. 1986, 48, 508–513. [Google Scholar]
- Wang, L.; Cai, M.; Liu, Y.; Yang, T.; Zeng, Y.; Zhang, Y.; Li, Q.; Zhu, B.; Ma, G. Polymer hydrophobicity regulates paclitaxel distribution in microspheres, release profile and cytotoxicity in vitro. Powder Technol. 2015, 275, 77–84. [Google Scholar] [CrossRef]
- Kikkinides, E.S.; Charalambopoulou, G.C.; Stubos, A.K.; Kanellopoulos, N.K.; Varelas, C.G.; Steiner, C.A. A two-phase model for controlled drug release from biphasic polymer hydrogels. J. Control. Release 1998, 51, 313–325. [Google Scholar] [CrossRef]
- Korsmeyer, R.W.; Gurny, R.; Doelker, E.; Buri, P.; Peppas, N.A. Mechanisms of solute release from porous hydrophilic polymers. Int. J. Pharm. 1983, 15, 25–35. [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Van Nguyen, H.; Nguyen, V.H.; Lee, B.-J. Dual release and molecular mechanism of bilayered aceclofenac tablet using polymer mixture. Int. J. Pharm. 2016, 515, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Saurí, J.; Suñé-Negre, J.M.; Díaz-Marcos, J.; Vilana, J.; Millán, D.; Ticó, J.R.; Miñarro, M.; Pérez-Lozano, P.; García-Montoya, E. Relationships between surface free energy, surface texture parameters and controlled drug release in hydrophilic matrices. Int. J. Pharm. 2015, 478, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, C.; Du, Z.; Li, H. Preparation of hydrophilic/hydrophobic porous materials. J. Colloid Interface Sci. 2008, 323, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Peppas, N.A. Higuchi equation: Derivation, applications, use and misuse. Int. J. Pharm. 2011, 418, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Streubel, A.; Siepmann, J.; Peppas, N.A.; Bodmeier, R. Bimodal drug release achieved with multi-layer matrix tablets: Transport mechanisms and device design. J. Control. Release 2000, 69, 455–468. [Google Scholar] [CrossRef]
- Kwon, I.C.; Bae, Y.H.; Kim, S.W. Electrically erodible polymer gel for controlled release of drugs. Nature 1991, 354, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Grund, J.; Körber, M.; Bodmeier, R. Predictability of drug release from water-insoluble polymeric matrix tablets. Eur. J. Pharm. Biopharm. 2013, 85, 650–655. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Siepmann, F. Mathematical modeling of drug dissolution. Int. J. Pharm. 2013, 453, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Kwok, D.Y.; Neumann, A.W. Contact angle measurement and contact angle interpretation. Adv. Colloid Interface Sci. 1999, 81, 167–249. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Ullman, J.L.; Teel, A.L.; Watts, R.J. pH and temperature effects on the hydrolysis of three β-lactam antibiotics: Ampicillin, cefalotin and cefoxitin. Sci. Total Environ. 2014, 466–467, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Mathematical models of drug release. In Strategies to Modify the Drug Release from Pharmaceutical Systems; Bruschi, M.L. (Ed.) Woodhead Publishing: Cambridge, UK, 2015; Chapter 5; pp. 63–86.
- Higuchi, W.I. Diffusional models useful in biopharmaceutics drug releaserate processes. J. Pharm. Sci. 1967, 56, 315–324. [Google Scholar] [CrossRef]
- Petropoulos, J.H.; Papadokostaki, K.G.; Sanopoulou, M. Higuchi′s equation and beyond: Overview of the formulation and application of a generalized model of drug release from polymeric matrices. Int. J. Pharm. 2012, 437, 178–191. [Google Scholar] [CrossRef] [PubMed]
Polymer | % Polymer | Tablets Hardness (kp) | Disintegration Time (min:s ± s) at 37 °C |
---|---|---|---|
PAM-4Na | 0 | 8.65 ± 0.33 | 4:30 ± 0 |
10 | 7.42 ± 0.38 | 4:03 ± 5 | |
20 | 10.04 ± 0.53 | 5:00 ± 0 | |
30 | 9.84 ± 1.64 | 5:50 ± 0 | |
40 | 12.69 ± 0.76 | 5:50 ± 0 | |
PAM-18Na | 0 | 8.65 ± 0.33 | 4:48 ± 2 |
10 | 10.37 ± 0.22 | 4:30 ± 0 | |
20 | 12.17 ± 1.09 | 9:35 ± 1 | |
30 | 13.73 ± 0.52 | 23:14 ± 9 | |
40 | 16.80 ± 0.19 | 32:48 ± 5 | |
PAM-18 | 0 | 8.65 ± 0.33 | 4:30 ± 0 |
10 | 2.91 ± 0.59 | 2:13 ± 2 | |
20 | 2.92 ± 0.25 | 1:34 ± 3 | |
30 | 2.25 ± 0.44 | 1:12 ± 2 | |
40 | 2.73 ± 0.15 | 1:42 ± 1 | |
HPMC | 0 | 8.65 ± 0.33 | 4:30 ± 0 |
10 | 6.66 ± 0.47 | >4 h | |
20 | 7.81 ± 0.66 | >4 h | |
30 | 8.16 ± 0.97 | >4 h | |
40 | 8.73 ± 0.41 | >4 h |
% Polymer | IR/A | |||
---|---|---|---|---|
PAM-4Na | PAM-18Na | PAM-18 | HPMC | |
0% | 1.18 | 1.18 | 1.18 | 1.18 |
10% | 1.10 | 1.17 | 1.14 | 1.12 |
20% | 1.21 | 1.17 | 1.20 | 1.39 |
30% | 1.33 | 1.10 | 1.12 | 1.37 |
40% | 1.49 | 1.08 | 1.13 | 1.54 |
Polymer | % Polymer | Contact Angle (°) | ||
---|---|---|---|---|
Water | Ethylene Glycol | Isopropanol | ||
PAM-4Na | 0 | 61.5 ± 2.3 | 61.4 ± 4.2 | 16.8 ± 1.6 |
10 | 64.8 ± 4.9 | 66.6 ± 2.3 | 20.2 ± 2.9 | |
20 | 68.8 ± 4.2 | 57.7 ± 1.6 | 15.2 ± 0.4 | |
30 | 69.8 ± 5.1 | 48.2 ± 2.0 | 12.9 ± 0.9 | |
40 | 71.6 ± 0.6 | 69.8 ± 7.4 | 13.4 ± 0.8 | |
PAM-18Na | 0 | 61.5 ± 2.2 | 61.4 ± 4.2 | 16.8 ± 1.6 |
10 | 58.9 ± 2.9 | 52.7 ± 2.3 | 18.2 ± 3.3 | |
20 | 45.3 ± 2.1 | 50.8 ± 2.5 | 21.0 ± 3.7 | |
30 | 83.2 ± 3.1 | 64.2 ± 1.1 | 20.6 ± 2.6 | |
40 | 95.6 ± 2.5 | 60.8 ± 2.7 | 16.0 ± 2.5 | |
PAM-18 | 0 | 61.5 ± 2.3 | 61.4 ± 4.2 | 16.8 ± 1.6 |
10 | 83.6 ± 2.5 | 70.0 ± 2.4 | 19.3 ± 1.8 | |
20 | 78.9 ± 1.4 | 68.8 ± 0.8 | 17.3 ± 0.4 | |
30 | 79.9 ± 4.0 | 69.1 ±3.5 | 18.4 ± 3.6 | |
40 | 79.0 ± 0.5 | 67.6 ± 3.4 | 15.3 ± 2.7 | |
HPMC | 0 | 61.5 ± 2.3 | 61.4 ± 4.2 | 16.8 ± 1.6 |
10 | 73.5 ± 4.0 | 57.2 ± 2.5 | 19.6 ± 4.6 | |
20 | 77.9 ± 3.2 | 54.8 ± 1.7 | 16.3 ± 2.0 | |
30 | 76.3 ± 2.4 | 57.9 ± 1.4 | 20.4 ± 1.2 | |
40 | 84.2 ± 3.4 | 61.4 ± 2.8 | 21.6 ± 3.7 |
Polymer | % Polymer | Wadh (mJ/m2) | Surface Free Energy (mJ/m2) | (R2) | (s) | Ip/d | ||
---|---|---|---|---|---|---|---|---|
SFEtotal | SFEd | SFEp | ||||||
PAM-4Na | 0% | 106.1 ± 2.7 | 39.5 ± 2.5 | 5.3 ± 0.8 | 34.2 ± 3.4 | 0.983 | 4.0 | 6.4 |
10% | 102.3 ± 5.9 | 36.3 ± 5.4 | 5.2 ± 0.9 | 31.1 ± 6.3 | 0.982 | 4.3 | 5.9 | |
20% | 97.7 ± 5.3 | 33.3 ± 3.7 | 8.7 ± 1.6 | 24.6 ± 5.3 | 0.999 | 0.8 | 2.8 | |
30% | 96.6 ± 6.6 | 33.6 ± 3.6 | 11.2 ± 2.8 | 22.4 ± 6.4 | 0.993 | 2.0 | 2.0 | |
40% | 94.5 ± 0.3 | 30.1 ± 1.6 | 7.4 ± 1.6 | 22.7 ± 1.0 | 0.972 | 4.1 | 3.0 | |
PAM-18Na | 0% | 106.1 ± 2.7 | 39.5 ± 2.5 | 5.3 ± 0.8 | 34.2 ± 3.4 | 0.983 | 4.0 | 6.4 |
10% | 108.9 ± 1.8 | 42.3 ± 1.8 | 5.8 ± 0.7 | 36.5 ± 2.6 | 0.997 | 0.8 | 6.2 | |
20% | 122.4 ± 1.7 | 57.5 ± 1.7 | 2.7 ± 0.1 | 54.8 ± 1.7 | 0.986 | 1.9 | 20.2 | |
30% | 80.3 ± 4.0 | 24.6 ± 0.9 | 13.4 ± 1.6 | 11.1 ± 2.6 | 0.989 | 1.4 | 0.8 | |
40% | 64.8 ± 1.3 | 25.4 ± 1.1 | 22.6 ± 1.6 | 2.8 ± 0.5 | 0.973 | 1.7 | 0.1 | |
PAM-18 | 0% | 106.1 ± 2.7 | 39.5 ± 2.5 | 5.3 ± 0.8 | 34.2 ± 3.4 | 0.983 | 4.0 | 6.4 |
10% | 79.9 ± 2.0 | 23.4 ± 0.1 | 12.2 ± 1.5 | 11.2 ± 1.6 | 0.992 | 1.6 | 0.9 | |
20% | 85.7 ± 1.6 | 25.5 ± 0.7 | 10.3 ± 0.4 | 15.2 ± 1.2 | 0.986 | 2.3 | 1.5 | |
30% | 84.3 ± 4.9 | 25.0 ± 2.3 | 10.7 ± 1.0 | 14.3 ± 3.4 | 0.990 | 2.0 | 1.3 | |
40% | 85.6 ± 0.5 | 25.7 ± 0.6 | 10.9 ± 1.0 | 14.8 ± 0.5 | 0.992 | 1.9 | 1.4 | |
HPMC | 0% | 106.2 ± 2.8 | 39.5 ± 2.5 | 5.3 ± 0.8 | 34.2 ± 3.4 | 0.983 | 4.0 | 6.4 |
10% | 92.2 ± 4.8 | 30.1 ± 2.2 | 10.4 ± 2.5 | 19.7 ± 4.6 | 0.998 | 0.7 | 1.9 | |
20% | 86.9 ± 3.8 | 28.1 ±1.1 | 13.4 ± 2.0 | 14.7 ± 2.3 | 0.992 | 1.9 | 1.1 | |
30% | 88.9 ± 2.9 | 28.3 ± 1.4 | 11.4 ± 0.9 | 16.9 ± 2.4 | 0.999 | 0.8 | 1.5 | |
40% | 79.2 ± 4.3 | 24.4 ± 1.1 | 15.2 ± 1.9 | 9.2 ± 3.1 | 0.990 | 1.0 | 0.6 |
% Polymer | AUC (°/s) | |||
---|---|---|---|---|
PAM-4Na | PAM-18Na | PAM-18 | HPMC | |
0% | 23.14 | 342.70 | 289.20 | 113.70 |
10% | 19.18 | 293.90 | 499.10 | 184.30 |
20% | 14.20 | 515.60 | 585.70 | 161.70 |
30% | 11.61 | 750.80 | 780.60 | 190.90 |
40% | 10.70 | 816.50 | 720.30 | 306.10 |
Media | % Polymer | Dissolution Efficiency Percentage (%) | |||
---|---|---|---|---|---|
PAM-4Na | PAM-18Na | PAM-18 | HPMC | ||
Gastric | 0 | 87.69 | 87.69 | 87.69 | 87.69 |
10 | 99.78 | 98.93 | 61.4 | 68.36 | |
20 | 99.27 | 53.91 | 65.71 | 34.51 | |
30 | 95.44 | 18.35 | 67.58 | 24.98 | |
40 | 93.91 | 12.52 | 53.96 | 18.13 | |
Duodenal | 0 | 93.87 | 93.87 | 93.87 | 93.87 |
10 | 98.64 | 82.73 | 48.84 | 28.6 | |
20 | 100 | 16.77 | 51.13 | 16.39 | |
30 | 88.76 | 7.02 | 66.02 | 16.05 | |
40 * | 89.07 | 6.61 | 62.53 | 11.42 |
Polymer | Media | % Polymer | Order Zero | Order 1 | Higuchi | Korsmeyer–Peppas | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
k0 | R2 | k1 | R2 | kH | R2 | n | kr | R2 | |||
PAM-4Na | Gastric | 0 | 4.388 | 0.760 | 0.115 | 0.037 | 21.873 | 0.927 | - | - | - |
10 | 10.662 | 0.917 | 0.461 | 0.976 | 34.196 | 0.997 | 0.108 | 1.283 | 0.624 | ||
20 | 10.059 | 0.896 | 0.461 | 0.970 | 32.539 | 0.991 | 0.126 | 1.338 | 0.733 | ||
30 | 7.167 | 0.913 | 0.326 | 0.968 | 28.605 | 0.990 | 0.224 | 1.674 | 0.678 | ||
40 | 0.419 | 0.963 | 0.005 | 0.974 | 3.097 | 0.984 | 0.244 | 1.752 | 0.706 | ||
Duodenal | 0 | 7.791 | 0.899 | −0.305 | 0.003 | 28.341 | 0.985 | - | - | - | |
10 | 10.517 | 0.859 | 0.461 | 1.000 | 34.502 | 0.980 | 0.060 | 1.149 | 0.549 | ||
20 | 10.753 | 0.931 | 0.461 | 0.967 | 34.251 | 0.999 | 0.131 | 1.351 | 0.637 | ||
30 | 3.516 | 0.711 | 0.206 | 0.927 | 20.721 | 0.929 | 0.172 | 1.486 | 0.768 | ||
40 | 1.728 | 0.516 | 0.124 | 0.475 | 14.580 | 0.971 | 0.148 | 1.408 | 0.783 | ||
PAM-18Na | Gastric | 0 | 4.388 | 0.760 | 0.115 | 0.037 | 21.873 | 0.926 | - | - | - |
10 | 7.495 | 0.880 | 0.350 | 0.873 | 30.155 | 0.970 | - | - | - | ||
20 | 2.419 | 0.996 | 0.095 | 0.827 | 16.885 | 0.909 | 1.280 | 1.194 | 0.988 | ||
30 | 0.712 | 0.988 | 0.009 | 0.966 | 5.075 | 0.939 | 1.269 | 0.870 | 0.975 | ||
40 | 0.419 | 0.963 | 0.005 | 0.964 | 3.097 | 0.983 | 1.256 | 0.754 | 0.974 | ||
Duodenal | 0 | 7.791 | 0.899 | 0.305 | 0.003 | 28.431 | 0.985 | - | - | - | |
10 | 4.121 | 0.890 | 0.211 | 0.937 | 22.167 | 0.962 | - | - | - | ||
20 | 0.533 | 0.932 | 0.006 | 0.953 | 4.0163 | 0.993 | 1.353 | 0.823 | 0.963 | ||
30 | 0.267 | 0.948 | 0.003 | 0.947 | 1.9177 | 0.916 | 0.964 | 0.656 | 0.972 | ||
40 | 0.232 | 0.930 | 0.003 | 0.931 | 1.6897 | 0.926 | 1.006 | 0.618 | 0.972 | ||
PAM-18 | Gastric | 0 | 4.388 | 0.760 | 0.115 | 0.037 | 21.873 | 0.926 | - | - | - |
10 | 0.779 | 0.821 | 0.021 | 0.892 | 7.528 | 0.916 | 0.279 | 1.900 | 0.958 | ||
20 | 0.400 | 0.675 | 0.012 | 0.744 | 3.966 | 0.792 | 0.136 | 1.368 | 0.877 | ||
30 | 0.204 | 0.739 | 0.012 | 0.785 | 1.978 | 0.834 | 0.062 | 1.154 | 0.905 | ||
40 | 1.292 | 0.894 | 0.030 | 0.962 | 12.262 | 0.963 | 0.566 | 3.682 | 0.965 | ||
Duodenal | 0 | 7.791 | 0.899 | 0.305 | 0.003 | 28.431 | 0.985 | - | - | - | |
10 | 0.524 | 0.609 | 0.010 | 0.649 | 5.285 | 0.739 | 0.272 | 1.869 | 0.824 | ||
20 | 0.361 | 0.640 | 0.007 | 0.683 | 3.602 | 0.763 | 0.163 | 1.457 | 0.849 | ||
30 | 0.376 | 0.724 | 0.012 | 0.789 | 3.693 | 0.836 | 0.123 | 1.328 | 0.913 | ||
40 | 0.786 | 0.867 | 0.023 | 0.943 | 7.512 | 0.947 | 0.267 | 1.848 | 0.975 | ||
HPMC | Gastric | 0 | 4.388 | 0.760 | 0.115 | 0.037 | 21.873 | 0.926 | - | - | - |
10 | 2.343 | 0.960 | 0.651 | 0.627 | 21.616 | 0.977 | 0.756 | 5.699 | 0.982 | ||
20 | 1.172 | 0.998 | 0.020 | 0.989 | 10.602 | 0.976 | 0.663 | 4.600 | 0.980 | ||
30 | 0.626 | 0.990 | 0.009 | 0.997 | 5.738 | 0.996 | 0.593 | 3.113 | 0.994 | ||
40 | 0.525 | 0.988 | 0.006 | 0.992 | 4.803 | 0.988 | 0.577 | 3.779 | 0.998 | ||
Duodenal | 0 | 7.791 | 0.899 | 0.305 | 0.003 | 28.431 | 0.985 | - | - | - | |
10 | 0.695 | 0.986 | 0.010 | 0.979 | 6.209 | 0.941 | 0.418 | 2.620 | 0.898 | ||
20 | 0.392 | 0.974 | 0.005 | 0.977 | 3.573 | 0.967 | 0.464 | 2.913 | 0.965 | ||
30 | 0.467 | 0.948 | 0.006 | 0.950 | 4.179 | 0.909 | 0.516 | 3.284 | 0.902 | ||
40 | 0.209 | 0.775 | 0.002 | 0.767 | 1.868 | 0.740 | 0.310 | 2.044 | 0.764 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yarce, C.J.; Echeverri, J.D.; Palacio, M.A.; Rivera, C.A.; Salamanca, C.H. Relationship between Surface Properties and In Vitro Drug Release from Compressed Matrix Containing Polymeric Materials with Different Hydrophobicity Degrees. Pharmaceuticals 2017, 10, 15. https://doi.org/10.3390/ph10010015
Yarce CJ, Echeverri JD, Palacio MA, Rivera CA, Salamanca CH. Relationship between Surface Properties and In Vitro Drug Release from Compressed Matrix Containing Polymeric Materials with Different Hydrophobicity Degrees. Pharmaceuticals. 2017; 10(1):15. https://doi.org/10.3390/ph10010015
Chicago/Turabian StyleYarce, Cristhian J., Juan D. Echeverri, Mario A. Palacio, Carlos A. Rivera, and Constain H. Salamanca. 2017. "Relationship between Surface Properties and In Vitro Drug Release from Compressed Matrix Containing Polymeric Materials with Different Hydrophobicity Degrees" Pharmaceuticals 10, no. 1: 15. https://doi.org/10.3390/ph10010015
APA StyleYarce, C. J., Echeverri, J. D., Palacio, M. A., Rivera, C. A., & Salamanca, C. H. (2017). Relationship between Surface Properties and In Vitro Drug Release from Compressed Matrix Containing Polymeric Materials with Different Hydrophobicity Degrees. Pharmaceuticals, 10(1), 15. https://doi.org/10.3390/ph10010015