Design, Synthesis, and Antibacterial and Antifungal Activities of Novel Trifluoromethyl and Trifluoromethoxy Substituted Chalcone Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activities
2.2.1. Antibacterial and Antifungal Activities
2.2.2. Determination of Minimum Inhibitory Concentration (MIC)
2.2.3. Cytotoxicity Studies
3. Materials and Methods
3.1. Chemicals and Instruments
3.2. Synthesis
General Procedure for Synthesis
3.3. Biological Activity Studies
3.3.1. Antimicrobial Screening
Gram-positive bacteria | Bacillus subtilis (NCIM-2079), Staphylococcus aureus (NCIM-2079) |
Gram-negative bacteria | Escherichia coli (NCIM-2065), Proteus vulgaris (NCIM-2027) |
Fungi | Candida albicans (MDCC-227), Aspergillus niger (MTCC 5889) |
3.3.2. Determination of Minimum Inhibitory Concentration (MIC)
3.3.3. Cytotoxicity Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Richard, J.F.; Yitzhak, T. Antibiotics and bacterial resistance in the 21st century. Perspect. Med. Chem. 2014, 6, S14459. [Google Scholar] [CrossRef] [Green Version]
- Halling-Sørensen, B. Inhibition of aerobic growth and nitrification of bacteria in sewage sludge by antibacterial agents. Arch. Environ. Contam. Toxicol. 2001, 40, 451–460. [Google Scholar] [CrossRef]
- Harish, C.; Parul, B.; Archana, Y.; Babita, P.; Abhay, P.M.; Anant, R.N. Antimicrobial resistance and the alternative resources with special emphasis on plant-based antimicrobials-a review. Plants 2017, 6, 16. [Google Scholar] [CrossRef]
- Francesca, P.; Patrizio, P.; Annalisa, P. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [Green Version]
- Bingyun, L.; Thomas, J.W. Bacteria antibiotic resistance: New challenges and opportunities for implant-associated orthopedic infections. J Orthop. Res. 2018, 36, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Novel Drug Approvals for 2017. Available online: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2017 (accessed on 2 November 2020).
- Novel Drug Approvals for 2018. Available online: https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2018 (accessed on 2 November 2020).
- Wang, W.; Sun, Q. Novel targeted drugs approved by the NMPA and FDA in 2019. Sig. Transduct. Target Ther. 2020, 65, 1–4. [Google Scholar] [CrossRef]
- Nurken, B.; Mohamad, A. An overview of drug discovery and development. Future Med. Chem. 2020, 12, 939–947. [Google Scholar]
- Lagu, S.B.; Rajendra, P.Y.; Srinath, N.; Afzal, B.S. Synthesis. antibacterial, antifungal antitubercular activities and molecular docking studies of nitrophenyl derivatives. Int. J. Life Sci. Pharma Res. 2019, 9, 54–64. [Google Scholar] [CrossRef]
- Zhuang, C.; Zhang, W.; Sheng, C.; Zhang, W.; Xing, C.; Miao, Z. Chalcone: A Privileged Structure in Medicinal Chemistry. Chem. Rev. 2017, 117, 7762–7810. [Google Scholar] [CrossRef] [PubMed]
- Maya, Z.G.; Minh, A.N.; Sarah, K.Z. Design, synthesis and evaluation of (2-(Pyridinyl)methylene)-1-tetralone chalcones for Anticancer and Antimicrobial Activity. Med. Chem. 2018, 14, 333–343. [Google Scholar] [CrossRef]
- Mei, L.; Prapon, W.; Mei-Lin, G. Antimalarial alkoxylated and hydroxylated chalones: Structure-activity relationship analysis. J. Med. Chem. 2001, 44, 4443–4452. [Google Scholar]
- Serdar, B.; Oztekin, A.; Derya, A.A.; Arzu, G.; Gulay, G.D.; Ronak, H.E.; Nizami, D. Synthesis and anti-proliferative activity of fluoro-substituted chalcones. Bioorg. Med. Chem. Lett. 2016, 26, 3172–3176. [Google Scholar] [CrossRef]
- Ramesh, C.K.; Rita, A.; Geeta, S.; Dinesh, K.; Chetan, S.; Radhika, J.; Aneja, K.R. Ecofriendly synthesis and antimicrobial activity of chalcones. Der. Pharma. Chem. 2010, 2, 157–170. [Google Scholar]
- Zhang, X.; Zhao, D.-H.; Quan, Y.-C.; Sun, L.; Yin, X.-M.; Guan, L.-P. Synthesis and evaluation of antiinflammatory activity of substituted chalcone derivatives. Med. Chem. Res. 2010, 19, 403–412. [Google Scholar] [CrossRef]
- Khaled, R.A.A.; Heba, A.H.E.; Samir, A.S.; Hany, A.O. Synthesis, characterization and biological evaluation of novel 4-fluoro-2-hydroxychalcone derivatives as antioxidant, anti-inflammatory, analgesic agents. J Enzyme Inhib Med Chem. 2015, 30, 484–491. [Google Scholar] [CrossRef] [Green Version]
- Shen-Jew, W.; Cheng-Tsung, L.; Lo-Ti, T.; Jing-Ru, W.; Horng-Huey, K.; Jih-Pyang, W.; Chun-Nan, L. Synthetic chalcones as potential anti-inflammatory and cancer chemo preventive agents. Eur. J. Med. Chem. 2005, 40, 103–112. [Google Scholar] [CrossRef]
- Nazifi, S.I.; Farediah, A. Antimicrobial activities of some synthetic flavonoids. J. App. Chem. 2014, 7, 1–6. [Google Scholar]
- Pinki, Y.; Kashmiri; Lokesh, K.; Ashwani, K.; Anil, K.; Avijit, K.P.; Rajnish, K. Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcones-1,2,3-triazole conjugates. Eur. J. Med. Chem. 2018, 155, 263–274. [Google Scholar] [CrossRef]
- Francesca, B.; Giovanna, A.G.; Francesca, B.; Silvia, G.; Angela, R.; Alessandra, B.; Federica, B. Functionalization of the Chalcone Scaffold for the Discovery of Novel Lead Compounds Targeting Fungal Infections. Molecules 2019, 24, 372. [Google Scholar] [CrossRef] [Green Version]
- Man, X.; Piye, W.; Fan, S.; Jiayou, J.; Rakesh, K.P. Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem. 2019, 91, 103133. [Google Scholar] [CrossRef]
- Afzal, B.S.; Yejella, R.P.; Shaik, S. Synthesis, Antimicrobial, and Computational Evaluation of Novel Isobutylchalcones as Antimicrobial Agents. Int. J. Med. Chem. 2017, 2017, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Afzal, B.S.; Lohitha, S.V.K.; Puttagunta, S.B.; Shaik, A.; Supraja, K.; Sai, H.K. Synthesis and screening of novel lipophilic diarylpropeones as prospective antitubercular, antibacterial and antifungal agents. Biointerface Res. Appl. Chem. 2019, 9, 3912–3918. [Google Scholar]
- Serdar, B.; Oztekin, A.; Arzu, G.; Derya, A.A.; Mahmut, U.; Busra, G.E.; Engin, K.; Aylin, D.; Gönül, A. Design of potent fluoro-substituted chalcones as antimicrobial agents. J. Enzyme Inhib. Med. Chem. 2017, 32, 490–495. [Google Scholar] [CrossRef]
- Kayode, L.A.; Issac, A.B.; Adebayo, O.O. Synthesis, Characterization and Antibacterial Activities of New Fluorinated Chalcones. Chem. Afr. 2019, 2, 47–55. [Google Scholar]
- Prasad, Y.R.; Rao, A.L.; Rambabu, R. Synthesis and antimicrobial activity of some chalcone derivatives. J. Chem. 2008, 5, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Afzal, S.; Richie, R.B.; Palleapati, K.; Srinath, N.; Venkata, K.; Shaik, S. Antimicrobial, antioxidant, and anticancer activities of some novel isoxazole ring containing chalcone and dihydropyrazole derivatives. Molecules 2020, 25, 1047. [Google Scholar] [CrossRef] [Green Version]
- Marcelo, N.G.; Eugene, N.M.; Maristela, P.; Josana, C.P.; Lucimar, P.R.; Pedro, V.L.C.; Carolina, H.A.; Bruno, J.N. Chalcone derivatives: Promising starting points for drug design. Molecules 2017, 22, 1210. [Google Scholar] [CrossRef] [Green Version]
- Selvakumar, N.; Sunil, K.G.; Malar, A.A.; Govinda, R.G.; Shikha, S.; Sitaram, K.M.; Jagattaran, D.; Javed, I.; Sanjay, T. Synthesis, SAR and antibacterial studies on novel chalcone oxazolidinone hybrids. Eur. J. Med. Chem. 2007, 42, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Hans, J.B.; David, B.; Stefanie, B.; Manfred, K.; Bernd, K.; Klaus, M.; Ulrike, O.; Martin, S. Fluorine in Medicinal Chemistry. Chem. Bio. Chem. 2004, 5, 637–643. [Google Scholar] [CrossRef]
- Poonam, S.; Andrew, D.W. The role of fluorine in medicinal chemistry. J. Enzyme Inhib. Med. Chem. 2007, 22, 527–540. [Google Scholar] [CrossRef] [Green Version]
- Sophie, P.; Peter, R.M.; Steve, S.; Veronique, G. Fluorine in Medicinal Chemistry. Chem. Soc. Rev. 2008, 37, 320–330. [Google Scholar] [CrossRef]
- William, K.H. The Many Roles for Fluorine in Medicinal Chemistry. J. Med. Chem. 2008, 51, 4359–4369. [Google Scholar] [CrossRef]
- Eric, P.G.; Kyle, J.E.; Matthew, D.H.; David, J.D.; Nicholas, A.M.E.; Matthew, D.H.; David, J.D.; Nicholas, A.M. Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015, 58, 8315–8359. [Google Scholar] [CrossRef]
- Claisen, L.; Claparede, B.A. Condensationen von Ketonen mit Aldehyden. Berichte Deutschen Chemischen Gesellschaft. 1881, 14, 2463. [Google Scholar] [CrossRef] [Green Version]
- Shaik, A.B.; Bhandare, R.R.; Nissankararao, S.; Edis, Z.; Tangirala, N.R.; Shahanaaz, S.; Rahman, M.M. Design, facile synthesis and characterization of dichloro substituted chalcones and dihydropyrazole derivatives for their antifungal, antitubercular and antiproliferative activities. Molecules 2020, 25, 3188. [Google Scholar] [CrossRef] [PubMed]
- Lokesh, B.V.S.; Prasad, Y.R.; Shaik, A.B. Novel pyrimidine derivatives from 2,5-dichloro-3-acetylthienyl chalcones as antifungal, antitubercular and cytotoxic agents: Design, synthesis, biological activity and docking study. Asian J. Chem. 2019, 19, 310–321. [Google Scholar]
Entry | Microorganisms | Entry | Microorganisms | ||||||
---|---|---|---|---|---|---|---|---|---|
Compound Code | S.aureus | B.subtilis | E.coli | P.vulgaris | Compound Code | S.aureus | B.subtilis | E.coli | P.vulgaris |
A1 | 20.08 ± 0.02 | 21.16 ± 0.15 | 17.07 ± 0.02 | 20.02 ± 0.03 | B1 | 21.06 ± 0.04 | 22.2 ± 0.11 | 18.05 ± 0.01 | 21.09 ± 0.12 |
A2 | 18.13 ± 0.04 | 19.1 ± 0.26 | 13.11 ± 0.09 | 19.02 ± 0.02 | B2 | 18.04 ± 0.03 | 20.46 ± 0.25 | 14.04 ± 0.00 | 20.03 ± 0.03 |
A3 | 25.05 ± 0.01 | 26.36 ± 0.32 | 20.03 ± 0.02 | 23.02 ± 0.02 | B3 | 26.46 ± 0.04 | 29.43 ± 0.30 | 22.02 ± 0.02 | 21.02 ± 0.02 |
A4 | 20.06 ± 0.32 | 20.2 ± 0.17 | 16.04 ± 0.04 | 20.03 ± 0.03 | B4 | 21.56 ± 0.04 | 20.18 ± 0.14 | 17.21 ± 0.20 | 20.04 ± 0.04 |
A5 | 19.2 ± 0.81 | 20.13 ± 0.11 | 16.05 ± 0.04 | 20.06 ± 0.01 | B5 | 23.53 ± 0.04 | 22.02 ± 0.02 | 17.20 ± 0.24 | 20.04 ± 0.03 |
A6 | 18.10 ± 0.07 | 17.13 ± 0.15 | 15.18 ± 0.27 | 18.06 ± 0.01 | B6 | 20.53 ± 0.04 | 19.61 ± 0.32 | 16.05 ± 0.03 | 17.04 ± 0.00 |
A7 | 19.23 ± 0.04 | 18.66 ± 0.20 | 17.03 ± 0.02 | 19.20 ± 0.25 | B7 | 21.36 ± 0.16 | 20.41 ± 0.33 | 15.05 ± 0.01 | 18.02 ± 0.01 |
A8 | 15.23 ± 0.21 | 10.16 ± 0.20 | 15.05 ± 0.04 | 14.22 ± 0.22 | B8 | 15.15 ± 0.05 | 16.3 ± 0.10 | 9.03 ± 0.01 | 12.05 ± 0.01 |
A9 | 15.5 ± 0.16 | 17.13 ± 0.11 | 15.01 ± 0.02 | 12.09 ± 0.98 | B9 | 16.3 ± 0.02 | 15.07 ± 0.04 | 8.06 ± 0.01 | 13.04 ± 0.52 |
A10 | 12.1 ± 0.08 | 11.36 ± 0.05 | 13.03 ± 0.03 | 11.18 ± 0.07 | B10 | 14.1 ± 0.04 | 15.21 ± 0.21 | 9.46 ± 0.25 | 10.05 ± 0.01 |
Benzyl penicillin | 24.06 ± 0.05 | 27.02 ± 0.02 | 14.05 ± 0.05 | 19.04 ± 0.03 | Benzyl penicillin | 24.06 ± 0.05 | 27.02 ± 0.02 | 14.05 ± 0.05 | 19.04 ± 0.03 |
Entry | Microorganisms | Entry | Microorganisms | ||
---|---|---|---|---|---|
Compound Code | C. albicans | A. niger | Compound Code | C. albicans | A.niger |
A1 | 18.03 ± 0.01 | 20.03 ± 0.02 | B1 | 19.09 ± 0.01 | 21.04 ± 0.01 |
A2 | 15.05 ± 0.03 | 19.03 ± 0.03 | B2 | 17.08 ± 0.01 | 20.05 ± 0.01 |
A3 | 20.05 ± 0.04 | 25.06 ± 0.01 | B3 | 22.05 ± 0.03 | 26.07 ± 0.01 |
A4 | 17.07 ± 0.01 | 20.07 ± 0.01 | B4 | 16.07 ± 0.01 | 20.05 ± 0.04 |
A5 | 17.05 ± 0.01 | 20.07 ± 0.01 | B5 | 15.07 ± 0.01 | 20.02 ± 0.02 |
A6 | 10.08 ± 0.01 | 14.05 ± 0.04 | B6 | 16.08 ± 0.01 | 15.04 ± 0.03 |
A7 | 11.07 ± 0.01 | 15.04 ± 0.04 | B7 | 15.07 ± 0.01 | 17.08 ± 0.01 |
A8 | 11.03 ± 0.02 | 6.01 ± 0.01 | B8 | 11.05 ± 2.32 | 12.05 ± 0.01 |
A9 | 12.05 ± 0.01 | 12.03 ± 0.02 | B9 | 10.21 ± 0.24 | 11.05 ± 0.01 |
A10 | 13.04 ± 0.03 | 21.05 ± 0.03 | B10 | 10.09 ± 0.01 | 12.05 ± 0.02 |
Fluconazole | 19.05 ± 0.04 | 24.41 ± 0.52 | Fluconazole | 19.05 ± 0.04 | 24.41 ± 0.52 |
Entry | Staphylococcus aureus | Bacillus subtilis | Escherichia coli | Proteus vulgaris | Candida albicans | Aspergillus niger |
---|---|---|---|---|---|---|
A3 | 51 | 101 | 25 | 25 | 50 | 25 |
B3 | 48 | 24 | 24 | 48 | 48 | 24 |
Benzyl Penicillin | 95 | 95 | 191 | 191 | - | - |
Fluconazole | - | - | - | - | 52 | 26 |
S. No | Compounds | Human Normal Liver Cells (L02) |
---|---|---|
1 | A3 | >50 |
2 | B3 | >50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lagu, S.B.; Yejella, R.P.; Bhandare, R.R.; Shaik, A.B. Design, Synthesis, and Antibacterial and Antifungal Activities of Novel Trifluoromethyl and Trifluoromethoxy Substituted Chalcone Derivatives. Pharmaceuticals 2020, 13, 375. https://doi.org/10.3390/ph13110375
Lagu SB, Yejella RP, Bhandare RR, Shaik AB. Design, Synthesis, and Antibacterial and Antifungal Activities of Novel Trifluoromethyl and Trifluoromethoxy Substituted Chalcone Derivatives. Pharmaceuticals. 2020; 13(11):375. https://doi.org/10.3390/ph13110375
Chicago/Turabian StyleLagu, Surendra Babu, Rajendra Prasad Yejella, Richie R. Bhandare, and Afzal B. Shaik. 2020. "Design, Synthesis, and Antibacterial and Antifungal Activities of Novel Trifluoromethyl and Trifluoromethoxy Substituted Chalcone Derivatives" Pharmaceuticals 13, no. 11: 375. https://doi.org/10.3390/ph13110375
APA StyleLagu, S. B., Yejella, R. P., Bhandare, R. R., & Shaik, A. B. (2020). Design, Synthesis, and Antibacterial and Antifungal Activities of Novel Trifluoromethyl and Trifluoromethoxy Substituted Chalcone Derivatives. Pharmaceuticals, 13(11), 375. https://doi.org/10.3390/ph13110375