Simultaneous Determination of Isothiazolinones and Parabens in Cosmetic Products Using Solid-Phase Extraction and Ultra-High Performance Liquid Chromatography/Diode Array Detector
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of SPE Method
2.2. Optimization of UHPLC/DAD Method
2.3. Performance of the Method
2.4. Comparison of Proposed Method with the Previous Works
2.5. Application
3. Materials and Methods
3.1. Chemical and Reagents
3.2. Extraction Method
3.3. Instrumentation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sukakul, T.; Kanchanapenkul, D.; Bunyavaree, M.; Limphoka, P.; Kumpangsin, T.; Boonchai, W. Methylchloroisothiazolinone and/or methylisothiazolinone in cosmetic products—A market survey. Contact Dermat. 2019, 80, 110–113. [Google Scholar] [CrossRef] [PubMed]
- Wittenberg, J.B.; Canas, B.J.; Zhou, W.; Wang, P.G.; Rua, D.; Krynitsky, A.J. Determination of methylisothiazolinone and methylchloroisothiazolinone in cosmetic products by ultra high performance liquid chromatography with tandem mass spectrometry. J. Sep. Sci. 2015, 38, 2983–2988. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Rivera, G.; Dagnac, T.; Lores, M.; Garcia-Jares, C.; Sanchez-Prado, L.; Lamas, J.P.; Llompart, M. Determination of isothiazolinone preservatives in cosmetics and household products by matrix solid-phase dispersion followed by high-performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2012, 1270, 41–50. [Google Scholar] [CrossRef] [PubMed]
- De Groot, A.C.; Weyland, J.W. Kathon CG: A review. J. Am. Acad. Dermatol. 1988, 18, 350–358. [Google Scholar] [CrossRef]
- Elder, R.L. Final report on the safety assessment of methylisothiazolinone and methylchloroisothiazolinone. JACT 1992, 11, 75–128. [Google Scholar]
- Hannuksela, M. Rapid increase in contact allergy to Kathon® CG in Finland. Contact Dermat. 1986, 15, 211–214. [Google Scholar] [CrossRef]
- Castanedo-Tardana, M.P.; Zug, K.A. Methylisothiazolinone. Dermatitis 2013, 24, 2–6. [Google Scholar] [CrossRef]
- Recommendation on MT. Available online: https//cosmeticseurope.eu/files/3614/7634/5470/Recommendation_on_MIT.pdf (accessed on 21 November 2020).
- European Society of Contact Dermatitis. Available online: https://www.escd.org/contact-dermatitis/allergic-contact-dermatitis (accessed on 21 November 2020).
- Błędzka, D.; Gromadzińska, J.; Wąsowicz, W. Parabens. From environmental studies to human health. Environ. Int. 2014, 67, 27–42. [Google Scholar] [CrossRef]
- Chen, C.-W.; Hsu, W.-C.; Lu, Y.-C.; Weng, J.-R.; Feng, C.-H. Determination of parabens using two microextraction methods coupled with capillary liquid chromatography-UV detection. Food Chem. 2018, 241, 411–418. [Google Scholar] [CrossRef]
- Soni, M.G.; Taylor, S.L.; Greenberg, N.A.; Burdock, G.A. Evaluation of the health aspects of methyl paraben: A review of the published literature. Food Chem. Toxicol. 2002, 40, 1335–1373. [Google Scholar] [CrossRef]
- Boberg, J.; Taxvig, C.; Christiansen, S.; Hass, U. Possible endocrine disrupting effects of parabens and their metabolites. Reprod. Toxicol. 2010, 30, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Boberg, J.; Axelstad, M.; Svingen, T.; Mandrup, K.; Christiansen, S.; Vinggaard, A.M.; Hass, U. Multiple endocrine disrupting effects in rats perinatally exposed to butylparaben. Toxicol. Sci. 2016, 152, 244–256. [Google Scholar] [CrossRef] [PubMed]
- Costa, J.R.; Campos, M.S.; Lima, R.F.; Gomes, L.S.; Marques, M.R.; Taboga, S.R.; Biancardi, M.F.; Brito, P.V.A.; Santos, F.C.A. Endocrine-disrupting effects of methylparaben on the adult gerbil prostate. Environ. Toxicol. 2017, 32, 1801–1812. [Google Scholar] [CrossRef] [PubMed]
- Giulivo, M.; de Alda, M.L.; Capri, E.; Barceló, D. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ. Res. 2016, 151, 251–264. [Google Scholar] [CrossRef]
- World Health Organization. Safety Evaluation of Certain Food Additives and Contaminants; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- European Commission. Commission regulation (EU) No 1004/2014 of 18 September 2014 amending annex V to regulation (EC) No 1223/2009 of the European Parliament and of the Council on cosmetic products. Off. J. Eur. Union 2014, 282, 5–8. [Google Scholar]
- Buzek, J.; Ask, B. Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Off. J. Eur. Union 2009, 342, 59–209. [Google Scholar]
- Guo, Y.; Kannan, K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environ. Sci. Technol. 2013, 47, 14442–14449. [Google Scholar] [CrossRef]
- Abad-Gil, L.; Lucas-Sanchez, S.; Gismera, M.J.; Sevilla, M.T.; Procopio, J.R. Determination of paraben-, isothiazolinone- and alcohol-type preservatives in personal care products by HPLC with dual (diode-array and fluorescence) detection. Microchem. J. 2021, 160, 105613. [Google Scholar] [CrossRef]
- Le Hoa, T.H.; Hung, V.T.N.; do Trang, T.; Thu, T.N.H.; Le, D.C. Development and validation of an HPLC method for simultaneous assay of MCI and MI in shampoos containing plant extracts. Int. J. Anal. Chem. 2019, 2019, 1851796. [Google Scholar]
- Kaur, R.; Kaur, R.; Grover, A.; Rani, S.; Malik, A.K.; Kabir, A.; Furton, K.G. Trace determination of parabens in cosmetics and personal care products using fabric-phase sorptive extraction and high-performance liquid chromatography with UV detection. J. Sep. Sci. 2020, 43, 2626–2635. [Google Scholar] [CrossRef]
- Razavi, N.; Es’ haghi, Z. Curcumin loaded magnetic graphene oxide solid-phase extraction for the determination of parabens in toothpaste and mouthwash coupled with high performance liquid chromatography. Microchem. J. 2019, 148, 616–625. [Google Scholar] [CrossRef]
- Zotou, A.; Sakla, I.; Tzanavaras, P.D. LC-determination of five paraben preservatives in saliva and toothpaste samples using UV detection and a short monolithic column. J. Pharm. Biomed. Anal. 2010, 53, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Fei, T.; Li, H.; Ding, M.; Ito, M.; Lin, J.-M. Determination of parabens in cosmetic products by solid-phase microextraction of poly(ethylene glycol) diacrylate thin film on fibers and ultra high-speed liquid chromatography with diode array detector. J. Sep. Sci. 2011, 34, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Schettgen, T.; Bertram, J.; Kraus, T. Quantification of N-methylmalonamic acid in urine as metabolite of the biocides methylisothiazolinone and chloromethylisothiazolinone using gas chromatography-tandem mass spectrometry. J. Chromatogr. B 2017, 1044, 185–193. [Google Scholar] [CrossRef]
- Chilbule, A.; Singh, R.; Mann, B.; Arora, S.; Sharma, R.; Rao, P.S. Development and validation of an analytical method for determination of bronopol and kathon preservative in milk. J. Food Sci. Technol. 2019, 56, 3170–3176. [Google Scholar] [CrossRef]
- Chen, Z.-F.; Ying, G.-G.; Lai, H.-J.; Chen, F.; Su, H.-C.; Liu, Y.-S.; Peng, F.-Q.; Zhao, J.-L. Determination of biocides in different environmental matrices by use of ultra-high-performance liquid chromatography—Tandem mass spectrometry. Anal. Bioanal. Chem. 2012, 404, 3175–3188. [Google Scholar] [CrossRef]
- Heo, J.J.; Kim, U.-J.; Oh, J.-E.; Heo, J.J.; Kim, U.-J.; Oh, J.-E. Simultaneous quantitative analysis of four isothiazolinones and 3-iodo-2-propynyl butyl carbamate in hygienic consumer products. Environ. Eng. Res. 2018, 24, 137–143. [Google Scholar] [CrossRef]
- Goodier, M.C.; Siegel, P.D.; Zang, L.-Y.; Warshaw, E.M. Isothiazolinone in residential interior wall paint: A high-performance liquid chromatographic-mass spectrometry analysis. Dermat. Contact Atopic Occup. Drug 2018, 29, 332–338. [Google Scholar] [CrossRef]
- Rosero-Moreano, M.; Canellas, E.; Nerín, C. Three-phase hollow-fiber liquid-phase microextraction combined with HPLC–UV for the determination of isothiazolinone biocides in adhesives used for food packaging materials. J. Sep. Sci. 2014, 37, 272–280. [Google Scholar] [CrossRef]
- Baranowska, I.; Wojciechowska, I.; Solarz, N.; Krutysza, E. Determination of preservatives in cosmetics, cleaning agents and pharmaceuticals using fast liquid chromatography. J. Chromatogr. Sci. 2014, 52, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Zgoła-Grześkowiak, A.; Werner, J.; Jeszka-Skowron, M.; Czarczyńska-Goślińska, B. Determination of parabens in cosmetic products using high performance liquid chromatography with fluorescence detection. Anal. Methods 2016, 8, 3903–3909. [Google Scholar] [CrossRef]
- Bartella, L.; Di Donna, L.; Napoli, A.; Sindona, G.; Mazzotti, F. Paper Spray tandem mass spectrometry: A rapid approach for the assay of parabens in cosmetics and drugs. J. Mass Spectrom. 2020, 55, e4526. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.-T.; Chen, H.-C.; Ding, W.-H. Accurate analysis of parabens in human urine using isotope-dilution ultrahigh-performance liquid chromatography-high resolution mass spectrometry. J. Pharm. Biomed. Anal. 2018, 150, 469–473. [Google Scholar] [CrossRef] [PubMed]
- Vela-Soria, F.; Iribarne-Durán, L.M.; Mustieles, V.; Jiménez-Díaz, I.; Fernández, M.F.; Olea, N. QuEChERS and ultra-high performance liquid chromatography–tandem mass spectrometry method for the determination of parabens and ultraviolet filters in human milk samples. J. Chromatogr. A 2018, 1546, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Che, D.; Sun, Z.; Cheng, J.; Dou, K.; Ji, Z.; Chen, G.; Li, G.; You, J. Determination of parabens in domestic sewage by isotope-coded derivatization coupled with high performance liquid chromatography-tandem mass spectrometry. Microchem. J. 2017, 130, 420–427. [Google Scholar] [CrossRef]
- Hefnawy, M.; Al-Majed, A.; Mohammed, M.; Al-Ghusn, A.; Al-Musallam, A.; Al-Sowidan, N.; Al-Hamid, M.; Al-Homoud, A. Fast and sensitive liquid chromatography method for simultaneous determination of methylisothiazolinone, salicylic acid and parabens in cosmetic products. Curr. Anal. Chem. 2017, 13, 430–438. [Google Scholar] [CrossRef]
- Núñez, L.; Tadeo, J.L.; García-Valcárcel, A.I.; Turiel, E. Determination of parabens in environmental solid samples by ultrasonic-assisted extraction and liquid chromatography with triple quadrupole mass spectrometry. J. Chromatogr. A 2008, 1214, 178–182. [Google Scholar] [CrossRef]
- Lin, Q.-B.; Wang, T.-J.; Song, H.; Li, B. Analysis of isothiazolinone biocides in paper for food packaging by ultra-high-performance liquid chromatography—Tandem mass spectrometry. Food Addit. Contam. Part A 2010, 27, 1775–1781. [Google Scholar] [CrossRef]
- Jardim, V.C.; Melo, L.d.P.; Domingues, D.S.; Queiroz, M.E.C. Determination of parabens in urine samples by microextraction usingpacked sorbent and ultra-performance liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. B 2015, 974, 35–41. [Google Scholar] [CrossRef]
- Dualde, P.; Pardo, O.; Fernández, S.F.; Pastor, A.; Yusà, V. Determination of four parabens and bisphenols A, F and S in human breast milk using QuEChERS and liquid chromatography coupled to mass spectrometry. J. Chromatogr. B 2019, 1114, 154–166. [Google Scholar] [CrossRef]
- Ocana-Gonzalez, J.A.; Villar-Navarro, M.; Ramos-Payan, M.; Fernandez-Torres, R.; Bello-Lopez, M.A. New developments in the extraction and determination of parabens in cosmetics and environmental samples. A review. Anal. Chim. Acta 2015, 858, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, H.; Mostafa, A.; Alhajri, W.; Almubarak, L.; AlKhalifah, K. Development and validation of an eco-friendly SPE-HPLC-MS method for simultaneous determination of selected parabens and bisphenol A in personal care products: Evaluation of the greenness profile of the developed method. J. Liq. Chromatogr. Rel. Technol. 2018, 41, 621–628. [Google Scholar] [CrossRef]
- Bocato, M.Z.; Cesila, C.A.; Lataro, B.F.; de Oliveira, A.R.M.; Campiglia, A.D.; Barbosa, F., Jr. A fast-multiclass method for the determination of 21 endocrine disruptors in human urine by using vortex-assisted dispersive liquid-liquid microextraction (VADLLME) and LC-MS/MS. Environ. Res. 2020, 189, 109883. [Google Scholar] [CrossRef] [PubMed]
Analyte | Linear Range (µg/mL) | R2 | LOD (µg/g) ± SD | LOQ (µg/g) ± SD |
---|---|---|---|---|
MI | 0.005–10 | 0.997 | 0.002 ± 0.001 | 0.007 ± 0.002 |
MCI | 0.005–10 | 0.998 | 0.002 ± 0.001 | 0.007 ± 0.002 |
MP | 0.005–10 | 0.999 | 0.001 ± 0.001 | 0.004 ± 0.001 |
EP | 0.005–10 | 0.998 | 0.002 ± 0.001 | 0.007 ± 0.002 |
PP | 0.005–20 | 0.997 | 0.001 ± 0.001 | 0.004 ± 0.001 |
BP | 0.005–20 | 0.999 | 0.001 ± 0.001 | 0.004 ± 0.001 |
Analyte | Concentration Added (µg/mL) | Intra-Day | Inter-Day | ||||
---|---|---|---|---|---|---|---|
Conc. Found (µg/mL) ± SD | Recovery (%) | RSD (%) | Conc. Found (µg/mL) ± SD | Recovery (%) | RSD (%) | ||
MI | 0.07 | 0.07 ± 0.002 | 101.14 | 2.40 | 0.07 ± 0.004 | 99.28 | 5.32 |
3 | 3.01 ± 0.003 | 100.17 | 0.11 | 2.95 ± 0.078 | 98.37 | 2.67 | |
15 | 14.30 ± 0.035 | 95.33 | 0.24 | 14.30 ± 0.035 | 95.33 | 0.24 | |
MCI | 0.07 | 0.07 ± 0.003 | 98.57 | 0.67 | 0.07 ± 0.004 | 97.14 | 2.67 |
3 | 2.96 ± 0.003 | 98.67 | 0.70 | 2.95 ± 0.075 | 98.33 | 0.78 | |
15 | 14.91 ± 0.07 | 99.40 | 0.02 | 14.86 ± 0.02 | 99.07 | 0.41 | |
MP | 0.07 | 0.07 ± 0.001 | 100.14 | 1.43 | 0.07 ± 0.003 | 101.00 | 4.24 |
3 | 2.99 ± 0.001 | 99.73 | 0.34 | 2.99 ± 0.008 | 99.53 | 0.27 | |
15 | 14.67 ± 0.003 | 97.78 | 0.02 | 14.66 ± 0.022 | 97.69 | 0.15 | |
EP | 0.07 | 0.07 ± 0.001 | 101.43 | 1.41 | 0.07 ± 0.004 | 98.57 | 5.80 |
3 | 2.97 ± 0.008 | 98.90 | 0.27 | 2.96 ± 0.001 | 98.73 | 0.04 | |
15 | 13.9 ± 0.004 | 92.33 | 0.03 | 13.83 ± 0.038 | 92.20 | 0.28 | |
PP | 0.07 | 0.07 ± 0.002 | 100 | 2.86 | 0.07 ± 0.003 | 98.57 | 4.35 |
3 | 2.97 ± 0.001 | 99.03 | 0.04 | 2.97 ± 0.013 | 98.90 | 0.44 | |
15 | 14.34 ± 0.001 | 95.60 | 0.01 | 14.32 ± 0.026 | 95.47 | 0.18 | |
BP | 0.07 | 0.07 ± 0.001 | 101.43 | 1.41 | 0.07 ± 0.002 | 100 | 2.86 |
3 | 3.01 ± 0.003 | 100.23 | 0.10 | 3.01 ± 0.007 | 100.17 | 0.23 | |
15 | 14.53 ± 0.013 | 96.87 | 0.09 | 14.53 ± 0.007 | 96.67 | 0.05 |
Sample Type | Analyte | Extraction Method | Determination Method | Analysis Time (min) | Linear Range (ng/mL) | R2 | LOD (ng/mL) | Precision (RSD%) | R, (%) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
Cosmetics | MI, MCI | Solvent extraction | UHPLC–MS/MS | 2.81 | 0.1–500 (MI), 0.1–1000 (MCI) | 0.9997 (MI), 0.9996 (MCI) | 43 | <7 | 99–111% (MI), 93–104% (MCI) | [2] |
Soil and sediments | MP, EP, PP, BP, IPP, BzP | Ultrasonic-assisted extraction | LC–MS/MS | 15 | 0.6–0.60 | 0.9993–0.9987 | 0.04–0.17 | <9 | 83.2–110.2 | [40] |
Cosmetics, cleaning agents and pharmaceuticals | MI, MCI, BA, SB, MP | Ultrasonic extraction | FLC/UV | 27 | 330–13,330 (MI), 250–10,000 (MCI), 5000–100,000 (BA), 1000–10,000 (SB), 250–10,000 (MP) | 0.9996–0.9999 | 60–4380 | 0.39–3.45 | 69–119 | [33] |
Cosmetics and personal care products | MP, EP, PP, BP, BzP | Fabric-phase sorptive extraction | HPLC/UV | 25.27 | 50–500 | 0.9955 | 0.3–0.6 | <5 | 88–122 | [23] |
Human milk | MP, EP, PP, BP | QuEChERS | HPLC–MS/MS | 7.2 | 0.1–50 | 0.99 | 0.04 | 1–16 | 83–107 | [43] |
Food, cosmetics and pharmaceuticals | MP, EP, PP, BP | VA-DLLME-SFO and SA-CPE | CLC/UV | 15 | 100–10,000 | 0.998 | 10–30 (VA-DLLME-SFO), 30 (SA-CPE) | <5 | - | [11] |
Saliva and toothpaste | MP, EP, PP, BP, nBP, iBP | SPE | HPLC/ UV–Vis | 15 | 300–50,000 | 0.9988–0.9998 | 100–300 | 1–6.8 | 88–113 | [25] |
Cosmetics | MI, MCI, MP, EP, PP, BP | SPE | UHPLC/DAD | 24.7 | 8–20,000 | 0.997–0.999 | 1–2 | 3–6 | 92.33–101.43 | This work |
Sample * | Code | Brand | Origin | Concentration (µg/mL ± SD) | |||||
---|---|---|---|---|---|---|---|---|---|
MI | MCI | MP | EP | PP | BP | ||||
Face powder | FP1 | Max beauty compact powder | China | 0.16 ± 0.04 | 0.23 ± 0.05 | 0.05 ± 0.02 | 0.16 ± 0.05 | 0.41 ± 0.06 | 0.56 ± 0.06 |
FP2 | Kokuryu super summer cake | China | 0.08 ± 0.03 | 0.62 ± 0.08 | 0.08 ± 0.02 | 0.08 ± 0.02 | 0.33 ± 0.05 | nd | |
FP3 | Diamond beauty snake oil | China | 0.05 ± 0.01 | nd | 0.85 ± 0.09 | 0.13 ± 0.04 | 3.86 ± 0.15 | 0.26 ± 0.06 | |
FP4 | Kiss beauty compact powder | China | 0.07 ± 0.02 | nd | nd | nd | 1.23 ± 0.10 | 0.75 ± 0.07 | |
FP5 | Bourjois Compact powder | China | 0.11 ± 0.03 | nd | nd | nd | 3.51 ± 0.13 | 0.92 ± 0.09 | |
FP6 | Naked moisturizing and soothing | China | 0.13 ± 0.04 | nd | nd | nd | 0.15 ± 0.04 | 1.24 ± 0.10 | |
FP7 | Nitrq beauty | China | Nd | nd | 6.53 ± 0.15 | 0.18 ± 0.05 | 1.27 ± 0.11 | 0.76 ± 0.07 | |
FP8 | MaXdona Compact powder | China | 0.10 ± 0.03 | nd | 0.14 ± 0.04 | nd | 1.76 ± 0.14 | 0.66 ± 0.06 | |
FP9 | Lilianword Compact powder | China | 0.08 ± 0.03 | nd | 0.57 ± 0.07 | 0.20 ± 0.05 | 0.55 ± 0.06 | 0.45 ± 0.05 | |
Perfumed body (Dusting) powder | PP1 | Franck Olivier | France | 0.06 ± 0.01 | nd | 6.34 ± 0.18 | nd | 9.69 ± 0.23 | 1.41 ± 0.13 |
PP2 | Pond’s | India | 0.08 ± 0.03 | nd | 2.02 ± 0.12 | 0.82 ± 0.10 | 0.64 ± 0.07 | 3.03 ± 0.20 | |
PP3 | Max | France | 0.08 ± 0.02 | 0.10 ± 0.04 | 2.16 ± 0.13 | 0.90 ± 0.10 | 0.81 ± 0.08 | 3.73 ± 0.22 | |
Wet wipe | WW1 | Ribbon | China | 0.13 ± 0.05 | 0.11 ± 0.04 | 0.05 ± 0.02 | 0.08 ± 0.02 | nd | 0.42 ± 0.03 |
WW2 | BabyJoy | UAE | 0.10 ± 0.04 | 0.21 ± 0.06 | nd | nd | nd | 0.16 ± 0.02 | |
WW3 | Good baby | Turkey | nd | nd | nd | 0.12 ± 0.03 | nd | nd | |
WW4 | Welziadtm | UAE | 0.07 ± 0.01 | 0.31 ± 0.07 | 0.10 ± 0.03 | nd | nd | 0.08 ± 0.02 | |
WW5 | Dandi | Turkey | 0.26 ± 0.02 | nd | 0.07 ± 0.01 | nd | nd | 0.25 ± 0.12 | |
WW6 | Pafilya | Turkey | 0.41 ± 0.03 | nd | nd | 0.07 ± 0.02 | nd | 0.16 ± 0.03 | |
WW7 | Omay care | Turkey | 0.35 ± 0.03 | nd | 0.16 ± 0.05 | nd | nd | 0.22 ± 0.04 | |
WW8 | Johnson’s | Germany | 0.52 ± 0.06 | nd | 0.54 ± 0.07 | 0.11 ± 0.03 | 0.21 ± 0.01 | 0.11 ± 0.01 | |
WW9 | Deema | KSA | 0.06 ± 0.01 | nd | nd | nd | nd | 0.12 ± 0.01 | |
Shampoo | HS1 | Pearl touch | UAE | 0.21 ± 0.04 | nd | nd | nd | nd | 17.80 ± 1.32 |
HS2 | Perfect cosmetics | UAE | 0.27 ± 0.06 | nd | nd | nd | nd | 13.51 ± 1.20 | |
HS3 | SoftCare | China | 0.89 ± 0.07 | nd | nd | nd | nd | 4.94 ± 0.86 | |
Liquid hand wash soap | LS1 | Soph | Turkey | 0.22 ± 0.05 | 0.11 ± 0.02 | nd | nd | nd | 5.35 ± 0.92 |
LS2 | Lux | KSA | nd | nd | nd | nd | nd | 1.13 ± 0.10 | |
LS3 | Gento | KSA | nd | nd | nd | nd | nd | 1.15 ± 0.10 | |
LS4 | Mada | KSA | 0.12 ± 0.04 | nd | nd | nd | nd | 0.62 ± 0.01 | |
Shower gel | SG1 | Amalfi | Spain | 0.33 ± 0.08 | 0.31 ± 0.07 | nd | nd | nd | 0.74 ± 0.06 |
SG2 | Aqua vera | Turkey | 0.27 ± 0.06 | 0.10 ± 0.02 | nd | nd | nd | 0.11 ± 0.01 | |
SG3 | Gian | Turkey | 0.11 ± 0.03 | 0.12 ± 0.02 | nd | nd | nd | 0.61 ± 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, H.M.; Alsohaimi, I.H.; Khan, M.R.; Azam, M. Simultaneous Determination of Isothiazolinones and Parabens in Cosmetic Products Using Solid-Phase Extraction and Ultra-High Performance Liquid Chromatography/Diode Array Detector. Pharmaceuticals 2020, 13, 412. https://doi.org/10.3390/ph13110412
Ali HM, Alsohaimi IH, Khan MR, Azam M. Simultaneous Determination of Isothiazolinones and Parabens in Cosmetic Products Using Solid-Phase Extraction and Ultra-High Performance Liquid Chromatography/Diode Array Detector. Pharmaceuticals. 2020; 13(11):412. https://doi.org/10.3390/ph13110412
Chicago/Turabian StyleAli, Hazim Mohammed, Ibrahim Hotan Alsohaimi, Mohammad Rizwan Khan, and Mohammad Azam. 2020. "Simultaneous Determination of Isothiazolinones and Parabens in Cosmetic Products Using Solid-Phase Extraction and Ultra-High Performance Liquid Chromatography/Diode Array Detector" Pharmaceuticals 13, no. 11: 412. https://doi.org/10.3390/ph13110412
APA StyleAli, H. M., Alsohaimi, I. H., Khan, M. R., & Azam, M. (2020). Simultaneous Determination of Isothiazolinones and Parabens in Cosmetic Products Using Solid-Phase Extraction and Ultra-High Performance Liquid Chromatography/Diode Array Detector. Pharmaceuticals, 13(11), 412. https://doi.org/10.3390/ph13110412