From Zn(II) to Cu(II) Detection by MRI Using Metal-Based Probes: Current Progress and Challenges
Abstract
:1. Introduction
2. Metal-Based Contrast Agents in MRI
- (1)
- The number of water molecules directly coordinated to Gd3+, hydration number: q, must be at least one but not too high so that the thermodynamic stability remains sufficient;
- (2)
- The exchange rate of these water molecules with the bulk: kex;
- (3)
- The rotational correlation time of the complex: τR, linked to the size and rigidity of the system.
3. Principle of Cation Detection
3.1. General Design and Requirements
3.2. T1-Based Contrast Agents
3.3. ParaCEST and Parashift Contrast Agents
4. Design of T1-Based Probes for Zn2+ and Cu2+ Detection
4.1. Generalities on the Design
4.2. Small Molecular Probes for Zn2+ Detection
4.3. Small Molecular Probes for Cu2+ Detection
4.4. Selectivity Issues for Zn2+ and Cu2+ Detection
4.5. Bio-Inspired Probes
5. Other Responsive Contrast Agents for Zn2+ and Cu2+ Detection
5.1. ParaCEST Probes
5.2. Parashift Probes
19F MRI Probes
6. In Vivo Detection of Zn2+ and Cu2+
7. Fast-Field Cycling MRI: A Way to Improve Cation Detection at High Fields
8. Quantification Methods for Cation Detection
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brewer, G.J.; Kanzer, S.H.; Zimmerman, E.A.; Molho, E.S.; Celmins, D.F.; Heckman, S.M.; Dick, R. Subclinical zinc deficiency in alzheimer’s disease and parkinson’s disease. Am. J. Alzheimer’s Dis. Other Dement. 2010, 25, 572–575. [Google Scholar] [CrossRef]
- Atwood, C.S.; Huang, X.; Moir, R.D.; Tanzi, R.E.; Bush, A.I. Role of Free Radicals and Metal Ions in The Pathogenesis of Alzheimer’s Disease. In Metal Ions in Biological Systems, 1st ed.; Sigel, A., Sigel, H., Eds.; Routledge & CRC Press: London, UK, 2018; pp. 309–364. [Google Scholar]
- Lovell, M.A.; Robertson, J.D.; Teesdale, W.J.; Campbell, J.L.; Markesbery, W.R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 1998, 158, 47–52. [Google Scholar] [CrossRef]
- Colvin, R.A.; Fontaine, C.P.; Laskowski, M.; Thomas, D. Zn2+ transporters and Zn2+ homeostasis in neurons. Eur. J. Pharmacol. 2003, 479, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, P.; Pigera, S.; Galappatthy, P.; Katulanda, P.; Constantine, G.R. Zinc and diabetes mellitus: Understanding molecular mechanisms and clinical implications. DARU J. Pharm. Sci. 2015, 23, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelleher, S.L.; McCormick, N.H.; Velasquez, V.; Lopez, V. Zinc in specialized secretory tissues: Roles in the pancreas, prostate, and mammary gland. Adv. Nutr. 2011, 2, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Barnham, K.J.; Bush, A.I. Metals in Alzheimer’s and Parkinson’s diseases. Curr. Opin. Chem. Biol. 2008, 12, 222–228. [Google Scholar] [CrossRef]
- Harrison, N.; Gibbons, S. Zn2+: An endogenous modulator of ligand- and voltage-gated ion channels. Neuropharmacology 1994, 33, 935–952. [Google Scholar] [CrossRef]
- Smart, T.G.; Xie, X.; Krishek, B.J. Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog. Neurobiol. 1994, 42, 393–441. [Google Scholar] [CrossRef]
- Choi, D.W.; Koh, J.Y. Zinc and brain injury. Annu. Rev. Neurosci. 1998, 21, 347–375. [Google Scholar] [CrossRef]
- Frederickson, C.J.; Maret, W.; Cuajungco, M.P. Zinc and excitotoxic brain injury: A new model. Neuroscientist 2004, 10, 18–25. [Google Scholar] [CrossRef]
- Weiss, J.H.; Sensi, S.L.; Koh, J.Y. Zn2+: A novel ionic mediator of neural injury in brain disease. Trends Pharmacol. Sci. 2000, 21, 395–401. [Google Scholar] [CrossRef]
- Faller, P.; Hureau, C. Bioinorganic chemistry of copper and zinc ions coordinated to amyloid-β peptide. Dalton Trans. 2009, 21, 1080–1094. [Google Scholar] [CrossRef] [PubMed]
- Frederickson, C.J. Neurobiology of zinc and zinc-containing neurons. In International Review of Neurobiology; Elsevier: Amsterdam, The Netherland, 1989; Volume 31, pp. 145–238. [Google Scholar]
- Nedumpully-Govindan, P.; Ding, F. Inhibition of IAPP aggregation by insulin depends on the insulin oligomeric state regulated by zinc ion concentration. Sci. Rep. 2015, 5, 8240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, B.X.; Han, B.; Shaw, D.G.; Nimni, M. Zinc as a possible preventive and therapeutic agent in pancreatic, prostate, and breast cancer. Eur. J. Cancer Prev. 2016, 25, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Stovall, D.B.; Wang, W.; Sui, G. Advances of zinc signaling studies in prostate cancer. Int. J. Mol. Sci. 2020, 21, 667. [Google Scholar] [CrossRef] [Green Version]
- Halliwell, B.; Gutteridge, J.M.C. Oxygen-toxicity, oxygen radicals, transition-metals and disease. Biochem. J. 1984, 219, 1–14. [Google Scholar] [CrossRef]
- Que, E.L.; Chang, C.J. A smart magnetic resonance contrast agent for selective copper sensing. J. Am. Chem. Soc. 2006, 128, 15942–15943. [Google Scholar] [CrossRef]
- Waggoner, D.J.; Bartnikas, T.B.; Gitlin, J.D. The role of copper in neurodegenerative disease. Neurobiol. Dis. 1999, 6, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Hordyjewska, A.; Popiolek, L.; Kocot, J. The many “faces” of copper in medicine and treatment. BioMetals 2014, 27, 611–621. [Google Scholar] [CrossRef] [Green Version]
- Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI contrast agents: Current challenges and new frontiers. Chem. Rev. 2019, 119, 957–1057. [Google Scholar] [CrossRef]
- Huang, J.G.; Pu, K.Y. Activatable molecular probes for second near-infrared fluorescence, chemiluminescence, and photoacoustic imaging. Angew. Chem. Int. Ed. 2020, 59, 11717–11731. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Yuan, J.L. Responsive metal complex probes for time-gated luminescence biosensing and imaging. Acc. Chem. Res. 2020, 53, 1316–1329. [Google Scholar] [CrossRef]
- Chen, Y.C.; Bai, Y.; Han, Z.; He, W.J.; Guo, Z.J. Photoluminescence imaging of Zn2+ in living systems. Chem. Soc. Rev. 2015, 44, 4517–4546. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.; Salunke-Gawali, S. Overview of the chemosensor ligands used for selective detection of anions and metal ions (Zn2+, Cu2+, Ni2+, Co2+, Fe2+, Hg2+). Inorg. Chem. Acta 2018, 482, 99–112. [Google Scholar] [CrossRef]
- Sivaraman, G.; Iniya, M.; Anand, T.; Kotla, N.G.; Sunnapu, O.; Singaravadivel, S.; Gulyani, A.; Chellappa, D. Chemically diverse small molecule fluorescent chemosensors for copper ion. Coord. Chem. Rev. 2018, 357, 50–104. [Google Scholar] [CrossRef]
- Que, E.L.; Domaille, D.W.; Chang, C.J. Metals in neurobiology: Probing their chemistry and biology with molecular imaging. Chem. Rev. 2008, 108, 1517–1549. [Google Scholar] [CrossRef]
- De Leon-Rodriguez, L.; Lubag, A.J., Jr.; Sherry, A.D. Imaging free zinc levels in vivo—What can be learned? Inorg. Chem. Acta 2012, 393, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Kotera, N.; Tassali, N.; Léonce, E.; Boutin, C.; Berthault, P.; Brotin, T.; Dutasta, J.-P.; Delacour, L.; Traoré, T.; Buisson, D.-A.; et al. A sensitive zinc-activated 129Xe MRI probe. Angew. Chem. Int. Ed. 2012, 51, 4100–4103. [Google Scholar] [CrossRef]
- Bar-Shir, A.; Yadav, N.N.; Gilad, A.A.; van Zijl, P.C.M.; McMahon, M.T.; Bulte, J.W.M. Single 19F probe for simultaneous detection of multiple metal ions using micest MRI. J. Am. Chem. Soc. 2015, 137, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Yuan, Y.; Zhang, H.; Bo, S.; Li, Y.; Chen, S.; Yang, Z.; Zhou, X.; Jiang, Z.-X. 19F CEST imaging probes for metal ion detection. Org. Biomol. Chem. 2017, 15, 6441–6446. [Google Scholar] [CrossRef]
- Tóth, E.; Helm, L.; Merbach, A. Relaxivity of gadolinium(III) complexes: Theory and mechanism. In The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; Merbach, A., Helm, L., Tóth, É., Eds.; John Wiley & Sons: Chichester, UK, 2013; pp. 25–81. [Google Scholar]
- Tsitovich, P.B.; Cox, J.M.; Spernyak, J.A.; Morrow, J.R. Gear up for a pH shift: A responsive iron (II) 2-amino-6-picolyl-appended macrocyclic paracest agent that protonates at a pendent group. Inorg. Chem. 2016, 55, 12001–12010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorazio, S.J.; Olatunde, A.O.; Spernyak, J.A.; Morrow, J.R. Cocest: Cobalt (II) amide-appended ParaCESE MRI contrast agents. Chem. Commun. 2013, 49, 10025–10027. [Google Scholar] [CrossRef] [PubMed]
- Thorarinsdottir, A.E.; Harris, T.D. Dramatic enhancement in pH sensitivity and signal intensity through ligand modification of a dicobalt paracest probe. Chem. Commun. 2019, 55, 794–797. [Google Scholar] [CrossRef]
- Tsitovich, P.B.; Spernyak, J.A.; Morrow, J.R. A redox-activated MRI contrast agent that switches between paramagnetic and diamagnetic states. Angew. Chem. Int. Ed. 2013, 52, 13997–14000. [Google Scholar] [CrossRef] [PubMed]
- Harnden, A.C.; Parker, D.; Rogers, N.J. Employing paramagnetic shift for responsive MRI probes. Coord. Chem. Rev. 2019, 383, 30–42. [Google Scholar] [CrossRef] [Green Version]
- Port, M.; Idée, J.-M.; Medina, C.; Robic, C.; Sabatou, M.; Corot, C. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: A critical review. BioMetals 2008, 21, 469–490. [Google Scholar] [CrossRef]
- Laurent, S.; Vander Elst, L.; Henoumont, C.; Muller, R.N. How to measure the transmetallation of a gadolinium complex. Contrast. Media Mol. Imaging 2010, 5, 305–308. [Google Scholar] [CrossRef]
- Bonnet, C.S. Zn2+ detection by MRI using Ln3+-based complexes: The central role of coordination chemistry. Coord. Chem. Rev. 2018, 369, 91–104. [Google Scholar] [CrossRef]
- Khalighinejad, P.; Parrott, D.; Sherry, A.D. Imaging tissue physiology in vivo by use of metal ion-responsive MRI contrast agents. Pharmaceuticals 2020, 13, 268. [Google Scholar] [CrossRef]
- Hanaoka, K.; Kikuchi, K.; Urano, Y.; Nagano, T. Selective sensing of zinc ions with a novel magnetic resonance imaging contrast agent†. J. Chem. Soc. Perkin Trans. 2001, 1840–1843. [Google Scholar] [CrossRef]
- Hanaoka, K.; Kikuchi, K.; Urano, Y.; Narazaki, M.; Yokawa, T.; Sakamoto, S.; Yamaguchi, K.; Nagano, T. Design and synthesis of a novel magnetic resonance imaging contrast agent for selective sensing of zinc ion. Chem. Biol. 2002, 9, 1027–1032. [Google Scholar] [CrossRef] [Green Version]
- Major, J.L.; Parigi, G.; Luchinat, C.; Meade, T.J. The synthesis and in vitro testing of a zinc-activated MRI contrast agent. Proc. Natl. Acad. Sci. USA 2007, 104, 13881–13886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Major, J.L.; Boiteau, R.M.; Meade, T.J. Mechanisms of Zn (II)-activated magnetic resonance imaging agents. Inorg. Chem. 2008, 47, 10788–10795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esqueda, A.C.; López, J.A.; Andreu-de-Riquer, G.; Alvarado-Monzón, J.C.; Ratnakar, J.; Lubag, A.J.M.; Sherry, A.D.; De León-Rodríguez, L.M. A new gadolinium-based MRI zinc sensor. J. Am. Chem. Soc. 2009, 131, 11387–11391. [Google Scholar] [CrossRef] [Green Version]
- Rivas, C.; Stasiuk, G.J.; Sae-Heng, M.; Long, N.J. Towards understanding the design of dual-modal MR/fluorescent probes to sense zinc ions. Dalton. Trans. 2015, 44, 4976–4985. [Google Scholar] [CrossRef]
- Mishra, A.; Logothetis, N.K.; Parker, D. Critical in vitro evaluation of responsive MRI contrast agents for calcium and zinc. Chem. Eur. J. 2011, 17, 1529–1537. [Google Scholar] [CrossRef]
- Ahn, S.-M.; Byun, K.; Cho, K.; Kim, J.Y.; Yoo, J.S.; Kim, D.; Paek, S.H.; Kim, S.U.; Simpson, R.J.; Lee, B. Human microglial cells synthesize albumin in brain. PLoS ONE 2008, 3, e2829. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Stewart, A.J.; Sadler, P.J.; Pinheiro, T.J.T.; Blindauer, C.A. Albumin as a zinc carrier: Properties of its high-affinity zinc-binding site. Biochem. Soc. Trans. 2008, 36, 1317–1321. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Martins, A.F.; Preihs, C.; Clavijo Jordan, V.; Chirayil, S.; Zhao, P.; Wu, Y.; Nasr, K.; Kiefer, G.E.; Sherry, A.D. Amplifying the sensitivity of zinc(II) responsive MRI contrast agents by altering water exchange rates. J. Am. Chem. Soc. 2015, 137, 14173–14179. [Google Scholar] [CrossRef]
- Bonnet, C.S.; Caillé, F.; Pallier, A.; Morfin, J.-F.; Petoud, S.; Suzenet, F.; Tóth, É. Mechanistic studies of Gd3+-based MRI contrast agents for Zn2+ detection: Towards rational design. Chem. Eur. J. 2014, 20, 10959–10969. [Google Scholar] [CrossRef]
- Malikidogo, K.P.; Da Silva, I.; Morfin, J.F.; Lacerda, S.; Barantin, L.; Sauvage, T.; Sobilo, J.; Lerondel, S.; Toth, E.; Bonnet, C.S. A cocktail of 165Er(III) and Gd(III) complexes for quantitative detection of zinc using spect and MRI. Chem. Commun. 2018, 54, 7597–7600. [Google Scholar] [CrossRef]
- Bodenler, M.; Malikidogo, K.P.; Morfin, J.F.; Aigner, C.S.; Toth, E.; Bonnet, C.S.; Scharfetter, H. High-field detection of biomarkers with fast field-cycling MRI: The example of zinc sensing. Chem. Eur. J. 2019, 25, 8236–8239. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, C.S.; Buron, F.; Caillé, F.; Shade, C.M.; Drahoš, B.; Pellegatti, L.; Zhang, J.; Villette, S.; Helm, L.; Pichon, C. Pyridine-based lanthanide complexes combining MRI and NIR luminescence activities. Chem. Eur. J. 2012, 18, 1419–1431. [Google Scholar] [CrossRef] [PubMed]
- Pellegatti, L.; Zhang, J.; Drahos, B.; Villette, S.; Suzenet, F.; Guillaumet, G.; Petoud, S.; Tóth, É. Pyridine-based lanthanide complexes: Towards bimodal agents operating as near infrared luminescent and MRI reporters. Chem. Commun. 2008, 0, 6591–6593. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.F.; Clavijo Jordan, V.; Bochner, F.; Chirayil, S.; Paranawithana, N.; Zhang, S.; Lo, S.T.; Wen, X.; Zhao, P.; Neeman, M. Imaging insulin secretion from mouse pancreas by MRI is improved by use of a zinc-responsive MRI sensor with lower affinity for Zn2+ ions. J. Am. Chem. Soc. 2018, 140, 17456–17464. [Google Scholar] [CrossRef] [PubMed]
- Stasiuk, G.J.; Minuzzi, F.; Sae-Heng, M.; Rivas, C.; Juretschke, H.P.; Piemonti, L.; Allegrini, P.R.; Laurent, D.; Duckworth, A.R.; Beeby, A. Dual-modal magnetic resonance/fluorescent zinc probes for pancreatic beta-cell mass imaging. Chem. Eur. J. 2015, 21, 5023–5033. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Li, W.S.; Xu, P.; Zhang, L.Y.; Chen, Z.N. Zn2+ responsive bimodal magnetic resonance imaging and fluorescent imaging probe based on a gadolinium(III) complex. Inorg. Chem. 2012, 51, 9508–9516. [Google Scholar] [CrossRef]
- Xu, Y.-Q.; Luo, J.; Chen, Z.-N. Zn2+-responsive bimodal magnetic resonance imaging and fluorescence imaging agents and their interaction with human serum albumin. Eur. J. Inorg. Chem. 2014, 2014, 3208–3215. [Google Scholar] [CrossRef]
- Regueiro-Figueroa, M.; Gunduz, S.; Patinec, V.; Logothetis, N.K.; Esteban-Gomez, D.; Tripier, R.; Angelovski, G.; Platas-Iglesias, C. Gd3+-based magnetic resonance imaging contrast agent responsive to zn(2+). Inorg. Chem. 2015, 54, 10342–10350. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.A.; Lovejoy, K.S.; Jasanoff, A.; Lippard, S.J. Water-soluble porphyrins imaging platform for MRI and fluorescence zinc sensing. Proc. Natl. Acad. Sci. USA 2007, 104, 10780–10785. [Google Scholar] [CrossRef] [Green Version]
- Que, E.L.; Gianolio, E.; Baker, S.L.; Wong, A.P.; Aime, S.; Chang, C.J. Copper-responsive magnetic resonance imaging contrast agents. J. Am. Chem. Soc. 2009, 131, 8527–8536. [Google Scholar] [CrossRef] [PubMed]
- Li, W.S.; Luo, J.; Chen, Z.N. A gadolinium(III) complex with 8-amidequinoline based ligand as copper(II) ion responsive contrast agent. Dalton Trans. 2011, 40, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jing, X.; Liu, T.; Han, G.; Li, H.; Duan, C. Dual-functional gadolinium-based copper(II) probe for selective magnetic resonance imaging and fluorescence sensing. Inorg. Chem. 2012, 51, 2325–2331. [Google Scholar] [CrossRef] [PubMed]
- Romary, J.K.; Barger, J.D.; Bunds, J.E. New multidentate alpha-pyridyl ligand. Coordination of bis(2-pyridylmethyl) amine with transition metal ions. Inorg. Chem. 1968, 7, 1142–1145. [Google Scholar] [CrossRef]
- Jang, J.H.; Bhuniya, S.; Kang, J.; Yeom, A.; Hong, K.S.; Kim, J.S. Cu2+-responsive bimodal (optical/MRI) contrast agent for cellular imaging. Org. Lett. 2013, 15, 4702–4705. [Google Scholar] [CrossRef]
- Xiao, Y.-M.; Zhao, G.-Y.; Fang, X.-X.; Zhao, Y.-X.; Wang, G.-H.; Yang, W.; Xu, J.-W. A smart copper(II)-responsive binuclear gadolinium(III) complex-based magnetic resonance imaging contrast agent. RSC Adv. 2014, 4, 34421–34427. [Google Scholar] [CrossRef]
- Paranawithana, N.N.; Martins, A.F.; Clavijo Jordan, V.; Zhao, P.; Chirayil, S.; Meloni, G.; Sherry, A.D. A responsive magnetic resonance imaging contrast agent for detection of excess copper(II) in the liver in vivo. J. Am. Chem. Soc. 2019, 141, 11009–11018. [Google Scholar] [CrossRef]
- Gonzalez, P.; Bossak, K.; Stefaniak, E.; Hureau, C.; Raibaut, L.; Bal, W.; Faller, P. N-terminal cu-binding motifs (xxx-zzz-his, xxx-his) and their derivatives: Chemistry, biology and medicinal applications. Chem. Eur. J. 2018, 24, 8029–8041. [Google Scholar] [CrossRef]
- Bossak-Ahmad, K.; Frączyk, T.; Bal, W.; Drew, S.C. The sub-picomolar Cu2+ dissociation constant of human serum albumin. ChemBioChem 2020, 21, 331–334. [Google Scholar] [CrossRef]
- De Leon-Rodriguez, L.M.; Lubag, A.J.; Lopez, J.A.; Andreu-de-Riquer, G.; Alvarado-Monzon, J.C.; Sherry, A.D. A second generation MRI contrast agent for imaging zinc ions in vivo. MedChemComm 2012, 3, 480–483. [Google Scholar] [CrossRef] [Green Version]
- Krizek, B.A.; Amann, B.T.; Kilfoil, V.J.; Merkle, D.L.; Berg, J.M. A consensus zinc finger peptide: Design, high-affinity metal binding, a pH-dependent structure, and a his to Cys sequence variant. J. Am. Chem. Soc. 1991, 113, 4518–4523. [Google Scholar] [CrossRef]
- Isaac, M.; Pallier, A.; Szeremeta, F.; Bayle, P.A.; Barantin, L.; Bonnet, C.S.; Seneque, O. MRI and luminescence detection of Zn2+ with a lanthanide complex-zinc finger peptide conjugate. Chem. Commun. 2018, 54, 7350–7353. [Google Scholar] [CrossRef] [PubMed]
- Trokowski, R.; Ren, J.; Kálmán, F.K.; Sherry, A.D. Selective sensing of zinc ions with a PARACEST contrast agent. Angew. Chem. Int. Ed. 2005, 44, 6920–6923. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, K.; Ferrauto, G.; Harris, S.M.; Longo, D.L.; Botta, M.; Aime, S.; Pierre, V.C. Complete on/off responsive PARACEST MRI contrast agents for copper and zinc. Dalton Trans. 2018, 47, 11346–11357. [Google Scholar] [CrossRef] [PubMed]
- Harnden, A.C.; Batsanov, A.S.; Parker, D. Paramagnetic lanthanide NMR probes signalling changes in zinc concentration by emission and chemical shift: A proof of concept study. Chem. Eur. J. 2019, 25, 6212–6225. [Google Scholar] [CrossRef] [Green Version]
- Tirotta, I.; Dichiarante, V.; Pigliacelli, C.; Cavallo, G.; Terraneo, G.; Bombelli, F.B.; Metrangolo, P.; Resnati, G. 19F magnetic resonance imaging (MRI): From design of materials to clinical applications. Chem. Rev. 2015, 115, 1106–1129. [Google Scholar] [CrossRef]
- Xie, D.; Yu, M.; Kadakia, R.T.; Que, E.L. F-19 magnetic resonance activity-based sensing using paramagnetic metals. Acc. Chem. Res. 2020, 53, 2–10. [Google Scholar] [CrossRef]
- Yu, M.; Xie, D.; Kadakia, R.T.; Wang, W.; Que, E.L. Harnessing chemical exchange: F-19 magnetic resonance off/on zinc sensing with a Tm(III) complex. Chem. Commun. 2020, 56, 6257–6260. [Google Scholar] [CrossRef]
- Lee, T.; Zhang, X.-A.; Dhar, S.; Faas, H.; Lippard, S.J.; Jasanoff, A. In vivo imaging with a cell-permeable porphyrin-based MRI contrast agent. Chem. Biol. 2010, 17, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Lubag, A.J.; De Leon-Rodriguez, L.M.; Burgess, S.C.; Sherry, A.D. Noninvasive MRI of beta-cell function using a Zn2+-responsive contrast agent. Proc. Natl. Acad. Sci. USA 2011, 108, 18400–18405. [Google Scholar] [CrossRef] [Green Version]
- Lo, S.-T.; Martins, A.F.; Jordan, V.C.; Sherry, A.D. Zinc as an imaging biomarker of prostate cancer. Isr. J. Chem. 2017, 57, 854–861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jordan, M.V.C.; Lo, S.-T.; Chen, S.; Preihs, C.; Chirayil, S.; Zhang, S.; Kapur, P.; Li, W.-H.; Leon-Rodriguez, L.M.D.; Lubag, A.J.M.; et al. Zinc-sensitive MRI contrast agent detects differential release of Zn(II) ions from the healthy vs. Malignant mouse prostate. Proc. Natl. Acad. Sci. USA 2016, 113, E5464–E5471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clavijo Jordan, V.; Al-Ebraheem, A.; Geraki, K.; Dao, E.; Martins, A.F.; Chirayil, S.; Farquharson, M.; Sherry, A.D. Synchrotron radiation X-ray fluorescence elemental mapping in healthy versus malignant prostate tissues provides new insights into the glucose-stimulated zinc trafficking in the prostate as discovered by MRI. Inorg. Chem. 2019, 58, 13654–13660. [Google Scholar] [CrossRef] [PubMed]
- Parrott, D.; Fernando, W.S.; Martins, A.F. Smart MRI agents for detecting extracellular events in vivo: Progress and challenges. Inorganics 2019, 7, 18. [Google Scholar] [CrossRef] [Green Version]
- Bödenler, M.; de Rochefort, L.; Ross, P.J.; Chanet, N.; Guillot, G.; Davies, G.R.; Gösweiner, C.; Scharfetter, H.; Lurie, D.J.; Broche, L.M. Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives. Mol. Phys. 2019, 117, 832–848. [Google Scholar] [CrossRef] [Green Version]
- Alford, J.K.; Rutt, B.K.; Scholl, T.J.; Handler, W.B.; Chronik, B.A. Delta relaxation enhanced MR: Improving activation-specificity of molecular probes through r-1 dispersion imaging. Magn. Reson. Med. 2009, 61, 796–802. [Google Scholar] [CrossRef]
- Aime, S.; Fedeli, F.; Sanino, A.; Terreno, E. A r2/r1 ratiometric procedure for a concentration-independent, pH-responsive, Gd(III)-based MRI agent. J. Am. Chem. Soc. 2006, 128, 11326–11327. [Google Scholar] [CrossRef]
- Garcia-Martin, M.L.; Martinez, G.V.; Raghunand, N.; Sherry, A.D.; Zhang, S.; Gillies, R.J. High resolution pHe imaging of rat glioma using ph-dependent relaxivity. Magn. Reson. Med. 2006, 55, 309–315. [Google Scholar] [CrossRef]
- Lacerda, S.; Marques, F.; Campello, P.; Gano, L.; Kubicek, V.; Hermann, P.; Santos, I. Chemical, radiochemical and biological studies of Sm and Ho complexes of H4dota analogues containing one methylphosphonic/phosphinic acid pendant arm. J. Labelled Comp. Radiopharm. 2010, 53, 36–43. [Google Scholar] [CrossRef]
- Frullano, L.; Catana, C.; Benner, T.; Sherry, A.D.; Caravan, P. Bimodal MR-PET agent for quantitative pH imaging. Angew. Chem. Int. Ed. 2010, 49, 2382–2384. [Google Scholar] [CrossRef]
- Gianolio, E.; Maciocco, L.; Imperio, D.; Giovenzana, G.B.; Simonelli, F.; Abbas, K.; Bisi, G.; Aime, S. Dual MRI-SPECT agent for pH-mapping. Chem. Commun. 2011, 47, 1539–1541. [Google Scholar] [CrossRef] [PubMed]
- Le Fur, M.; Rotile, N.J.; Correcher, C.; Jordan, V.C.; Ross, A.W.; Catana, C.; Caravan, P. Yttrium-86 is a positron emitting surrogate of gadolinium for noninvasive quantification of whole-body distribution of gadolinium-based contrast agents. Angew. Chem. Int. Ed. 2020, 59, 1474–1478. [Google Scholar] [CrossRef] [PubMed]
- Gambino, G.; Gambino, T.; Angelovski, G. Combination of bioresponsive chelates and perfluorinated lipid nanoparticles enables in vivo MRI probe quantification. Chem. Commun. 2020, 56, 9433–9436. [Google Scholar] [CrossRef] [PubMed]
- Gambino, G.; Gambino, T.; Pohmann, R.; Angelovski, G. A ratiometric F-19 MR-based method for the quantification of Ca2+ using responsive paramagnetic probes. Chem. Commun. 2020, 56, 3492–3495. [Google Scholar] [CrossRef] [Green Version]
Partial Cation Binding Site | Name | Detection of Zn/Cu | Kd for the Sensed Cation | Δr1 (%) | Mode of Detection | Selectivity Zn vs Cu | Selectivity vs Other Cations | Ref. |
---|---|---|---|---|---|---|---|---|
GdP4 | Zn | 240 µM | 121 | Direct: Δq | No | Ca, Mg | [45] | |
GdP9 | Zn | 126 (316 a) µM | 70 | Direct: Δq | Partially | Ca, Mg, Na, K | [49] | |
GdP27 | Cu | 167 µM | 41 | Direct: Δq | No | Ca, Mg, Na, K | [19] | |
GdP31 | Cu | 11 µM | 100 | Direct: Δq | No | nd | [68] | |
GdP2 | Zn | nd | −30 | Direct: Δq | No | Ca, Mg | [44] | |
GdP16 | Zn | 10 nM | 20 | Direct: τR | No | Ca, Mg | [53] | |
GdP17 | Zn | 10 nM | 20 | Direct: τR | No | Ca, Mg | [53] | |
GdP1 | Zn | nd | −33 | Direct: Δq | No | Ca, Mg | [43] | |
GdP8 | Zn | 118 nM | 200 | Interaction with HSA | No | Ca, Mg | [58] | |
GdP10 | Zn | 33.6 nM | 165 | Interaction with HSA | No | Ca, Mg | [47] | |
GdP19 | Zn | nd | 25 | Interaction with HSA | No | Ca, Mg | [55] | |
MnP26 | Zn | 12 nM | −25 | nd | No | Ca, Mg | [63] | |
GdP30 | Cu | 12 µM | 42 | Direct: Δq | Yes | Ca, Mg, Na | [66] | |
GdP18 | Zn | 126 nM | 25 | Interaction with HSA | No | Ca, Mg | [53] | |
GdP20 | Zn | 2350 nM | 100 | Interaction with HSA | nd | nd | [58] | |
GdP21 | Zn | 379 µM | 80 | Interaction with HSA | No | Ca, Mg | [73] | |
GdP22 | Zn | 22 µM | 57 | Direct: τR | No | Ca | [59] | |
GdP23 | Zn | 476 nM; 2.4 pM b | 55 | Direct: τR | No | Ca, Mg, Fe | [60] | |
GdP24 | Zn | 435 fM b | 44 | Direct: τR | No | Ca, Mg, Fe | [61] | |
GdP29 | Cu | 160 pM | 66 | Direct: Δq | No | Ca, Mg, Na | [65] | |
GdP25 | Zn | nd | 150 | Direct: Δq | No | Ca, Mg | [62] | |
GdP28 | Cu | 0.99 fM | 73 | Direct: Δq | Yes | Ca, Mg, Na | [64] | |
GdP32 | Cu | nd | 76 | Direct: Δq | Yes | Ca, Mg, Na | [69] | |
GdP33 | Cu | 84 µM | 270 | Interaction with HSA | No | Ca, Mg, Na, Fe, Cu(+I) | [70] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malikidogo, K.P.; Martin, H.; Bonnet, C.S. From Zn(II) to Cu(II) Detection by MRI Using Metal-Based Probes: Current Progress and Challenges. Pharmaceuticals 2020, 13, 436. https://doi.org/10.3390/ph13120436
Malikidogo KP, Martin H, Bonnet CS. From Zn(II) to Cu(II) Detection by MRI Using Metal-Based Probes: Current Progress and Challenges. Pharmaceuticals. 2020; 13(12):436. https://doi.org/10.3390/ph13120436
Chicago/Turabian StyleMalikidogo, Kyangwi P., Harlei Martin, and Célia S. Bonnet. 2020. "From Zn(II) to Cu(II) Detection by MRI Using Metal-Based Probes: Current Progress and Challenges" Pharmaceuticals 13, no. 12: 436. https://doi.org/10.3390/ph13120436
APA StyleMalikidogo, K. P., Martin, H., & Bonnet, C. S. (2020). From Zn(II) to Cu(II) Detection by MRI Using Metal-Based Probes: Current Progress and Challenges. Pharmaceuticals, 13(12), 436. https://doi.org/10.3390/ph13120436