L-Lysine α-Oxidase: Enzyme with Anticancer Properties
Abstract
:1. Introduction
2. Structure of L-Lysine α-Oxidase from Different Sources
3. Pharmacokinetic Properties and Tissue Distribution of L-Lysine α-Oxidase
4. L-Lysine Depletion by L-Lysine α-Oxidase In Vitro and In Vivo
5. Mechanisms of the Cytotoxic Action of L-Lysine α-Oxidase
6. The Cytotoxic Effects of L-Lysine α-Oxidase In Vitro
7. The Antitumor Effects of L-Lysine α-Oxidase In Vivo
8. Immunogenicity of L-Lysine α-Oxidase
9. Research Areas for L-Lysine α-Oxidase as Anticancer Agent
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pokrovsky, V.S.; Chepikova, O.E.; Davydov, D.Z.; Zamyatnin, A.A., Jr.; Lukashev, A.N.; Lukasheva, E.V. Amino acid degrading enzymes and their application in cancer therapy. Curr. Med. Chem. 2019, 26, 446–464. [Google Scholar] [CrossRef] [PubMed]
- Salim, N.; Santhiagu, A.; Joji, K. Purification, characterization and anticancer evaluation of l-methioninase from Trichoderma harzianum. Biotech 2020, 10, 501. [Google Scholar] [CrossRef]
- Sidoruk, K.V.; Pokrovsky, V.S.; Borisova, A.A.; Omeljanuk, N.M.; Aleksandrova, S.S.; Pokrovskaya, M.V.; Gladilina, J.A.; Bogush, V.; Sokolov, N.N. Creation of a Producent, Optimization of Expression, and Purification of Recombinant Yersinia Pseudotuberculosis L-Asparaginase. Bull. Exp. Biol. Med. 2011, 152, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Pokrovsky, V.S.; Anisimova, N.; Davydov, D.Z.; Bazhenov, S.; Bulushova, N.V.; Zavilgelsky, G.B.; Kotova, V.Y.; Manukhov, I. Methionine gamma lyase from Clostridium sporogenes increases the anticancer effect of doxorubicin in A549 cells and human cancer xenografts. Investig. New Drugs 2018, 37, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Plyasova, A.A.; Pokrovskaya, M.V.; Lisitsyna, O.M.; Pokrovsky, V.S.; Alexandrova, S.S.; Hilal, A.; Sokolov, N.N.; Zhdanov, D.D. Penetration into Cancer Cells via Clathrin-Dependent Mechanism Allows L-Asparaginase from Rhodospirillum rubrum to Inhibit Telomerase. Pharmaceuticals 2020, 13, 286. [Google Scholar] [CrossRef]
- Pokrovsky, V.S.; Kazanov, M.D.; Dyakov, I.N.; Pokrovskaya, M.V.; Aleksandrova, S.S. Comparative immunogenicity and structural analysis of epitopes of different bacterial L-asparaginases. BMC Cancer 2016, 16, 89. [Google Scholar] [CrossRef] [Green Version]
- Morozova, E.A.; Kulikova, V.V.; Yashin, D.V.; Anufrieva, N.V.; Anisimova, N.Y.; Revtovich, S.V.; Kotlov, M.I.; Belyi, Y.F.; Pokrovsky, V.S.; Demidkina, T.V. Kinetic parameters and cytotoxic activity of recombinant methionine γ-lyase from Clostridium tetani, Clostridium sporogenes, Porphyromonas gingivalis and Citrobacter freundii. Acta Nat. 2013, 5, 92–98. [Google Scholar] [CrossRef]
- Fung, M.K.L.; Chan, G.C.-F. Drug-induced amino acid deprivation as strategy for cancer therapy. J. Hematol. Oncol. 2017, 10, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zou, S.; Wang, X.; Liu, P.; Ke, C.; Xu, S. Arginine metabolism and deprivation in cancer therapy. Biomed. Pharmacother. 2019, 118, 109210. [Google Scholar] [CrossRef]
- Grzywa, T.; Sosnowska, A.; Matryba, P.; Rydzynska, Z.; Jasinski, M.; Nowis, D.; Golab, J. Myeloid Cell-Derived Arginase in Cancer Immune Response. Front. Immunol. 2020, 11, 938. [Google Scholar] [CrossRef]
- Blanchard, M.; Green, D.E.; Nocito, V.; Ratner, S. Isolation of L-amino acid oxidase. J. Biol. Chem. 1945, 161, 583–598. [Google Scholar] [CrossRef]
- Zeller, E.A.; Maritz, A. Über eine neue L-Aminosäure-oxydase. (1. Mitteilung). Helvetica Chim. Acta 1944, 27, 1888–1902. [Google Scholar] [CrossRef]
- Lukasheva, E.V.; Efremova, A.A.; Treshalina, E.M.; Arinbasarova, A.Y.; Medentzev, A.G.; Berezov, T.T. L-Amino acid oxidases: Properties and molecular mechanisms of action. Biochem. Suppl. Ser. B Biomed. Chem. 2011, 5, 337–345. [Google Scholar] [CrossRef]
- Sabotič, J.; Brzin, J.; Erjavec, J.; Dreo, T.; Tušek Žnidarič, M.; Ravnikar, M.; Kos, J. L-Amino Acid Oxidases from Mushrooms Show Antibacterial Activity against the Phytopathogen Ralstonia solanacearum. Front. Microbiol. 2020, 11, 977. [Google Scholar] [CrossRef]
- Pišlar, A.; Sabotič, J.; Šlenc, J.; Brzin, J.; Kos, J. Cytotoxic L-amino-acid oxidases from Amanita phalloides and Clitocybe geotropa induce caspase-dependent apoptosis. Cell Death Discov. 2016, 2, 16021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.A.; Cheng, C.H.; Lo, C.T.; Liu, S.Y.; Lee, J.W.; Peng, K.C. A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani. J. Agric. Food Chem. 2011, 59, 4519–4526. [Google Scholar] [CrossRef]
- Lukasheva, E.V.; Berezov, T.T. L-Lysine α-oxidase: Physicochemical and biological properties. Biochemistry 2002, 67, 1152–1158. [Google Scholar]
- Curti, B.; Ronchi, S.; Simonetta, M.P. D-and L-amino acid oxidases. In Chemistry and Biochemistry of Flavoenzymes; Müller, F., Ed.; CRC Press: Boca Raton, FL, USA, 1992; Volume 3, pp. 69–94. [Google Scholar]
- Guo, C.; Liu, S.; Yao, Y.; Zhang, Q.; Sun, M.-Z. Past decade study of snake venom l-amino acid oxidase. Toxicon 2012, 60, 302–311. [Google Scholar] [CrossRef]
- Du, X.Y.; Clemetson, K.J. Snake venom L-amino acid oxidases. Toxicon 2002, 40, 659–666. [Google Scholar] [CrossRef]
- Umanskii, V.Y.; Khaduev, S.K.; Zaletok, S.P.; Balitskii, K.P.; Berdinskikh, N.K.; Berezov, T.T. Antimetastatic effect of L-lysine-α-oxidase. Bull. Exp. Biol. Med. 1990, 109, 605–607. [Google Scholar] [CrossRef]
- Chen, W.M.; Lin, C.Y.; Sheu, S.Y. Investigating antimicrobial activity in Rheinheimera sp. due to hydrogen peroxide gen-erated by l-lysine oxidase activity. Enzyme Microb. Technol. 2010, 46, 487–493. [Google Scholar] [CrossRef] [PubMed]
- Pokrovsky, V.S.; Treshalina, H.M.; Lukasheva, E.V.; Sedakova, L.A.; Medentzev, A.G.; Arinbasarova, A.Y.; Berezov, T.T. Enzymatic properties and anticancer activity of L-lysine α-oxidase from Trichoderma cf. aureoviride Rifai BKMF-4268D. Anticancer Drugs 2013, 24, 846–851. [Google Scholar] [CrossRef]
- Zhukova, O.S.; Gogichaeva, N.V.; Lukasheva, E.V.; Berezov, T.T. Cytotoxic effect of conjugates of L-lysine-alpha-oxidase with monoclonal antibodies on human tumor cells in vitro. Vopr. Med. Khim. 2002, 47, 588–592. [Google Scholar]
- Selishcheva, A.A.; Alekseev, S.B.; Smirnova, I.P.; Podboronov, V.M. Antiherpetic activity of l-lysine-alpha-oxidase in different dosage forms. Antibiotics Chemoter. 2003, 48, 9–12. [Google Scholar]
- Khaduev, S.K.; Zhukova, O.S.; Dobrynin, I.V.; Soda, K.; Berezov, T.T. Comparative study of the effect of L-lysine α-oxidase from Trichoderma harzianum Rifai and Trichoderma viride on nucleic acid synthesis in human tumor cells in vitro. Biull. Eksp. Biol. Med. 1986, 101, 603–604. [Google Scholar] [CrossRef]
- Khaduev, S.K.; Umanskiĭ, V.I.; Vesa, V.S.; Sinkaĭ, K.; Akedo, K.; Berezov, T.T. Anti-invasive and anti-metastatic effect of lysine oxidase from Trichoderma sp. in vitro and in vivo. Biull. Eksp. Biol. Med. 1991, 112, 419–422. [Google Scholar] [CrossRef]
- Kondo, H.; Kitagawa, M.; Matsumoto, Y.; Saito, M.; Amano, M.; Sugiyama, S.; Tamura, T.; Kusakabe, H.; Inagaki, K.; Imada, K. Structural basis of strict substrate recognition of l-lysine α-oxidase from Trichoderma viride. Protein Sci. 2020, 29, 2213–2225. [Google Scholar] [CrossRef]
- Amano, M.; Mizuguchi, H.; Sano, T.; Kondo, H.; Shinyashiki, K.; Inagaki, J.; Tamura, T.; Kawaguchi, T.; Kusakabe, H.; Imada, K.; et al. Recombinant expression, molecular characterization and crystal structure of antitumor enzyme, L-lysine -oxidase from Trichoderma viride. J. Biochem. 2015, 157, 549–559. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, M.; Ito, N.; Matsumoto, Y.; Saito, M.; Tamura, T.; Kusakabe, H.; Inagaki, K.; Imada, K. Structural basis of enzyme activity regulation by the propeptide of l-lysine α-oxidase precursor from Trichoderma viride. J. Struct. Biol. X 2021, 5, 100044. [Google Scholar] [CrossRef]
- Moustafa, I.M.; Foster, S.; Lyubimov, A.Y.; Vrielink, A. Crystal Structure of LAAO from Calloselasma rhodostoma with an l-Phenylalanine Substrate: Insights into Structure and Mechanism. J. Mol. Biol. 2006, 364, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Kusakabe, H.; Kodama, K.; Kuninaka, A.; Yoshino, H.; Misono, H.; Soda, K. A new antitumor enzyme, L-lysine alpha-oxidase from Trichoderma viride: Purification and enzymological properties. J. Biol. Chem. 1980, 255, 976–981. [Google Scholar] [CrossRef]
- Khaduev, K.S.; Lukasheva, E.V.; Smirnova, I.P.; Berezov, T.T. Isolation and purification of L-lysine-alpha-oxidase from Trichoderma sp. Vopr. Med. Khim. 1985, 31, 130–134. [Google Scholar] [PubMed]
- Krupyanko, V.I.; Medentsev, A.G.; Lukasheva, E.V.; Arinbasarova, A.Y. Kinetic characteristics of L-lysine α- oxidase from Trichoderma cf. aureoviride Rifai VKM F-4268D: Substrate specificity and allosteric effects. Biochem. Biophys. Rep. 2016, 9, 9–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, E.; Tonder, K.; Reinbothe, C.; Unverhau, K.; Weide, H.; Aurich, H. L-Lysine α-oxidase from Trichoderma viride i4: Purification and characterization. J. Basic Microbiol. 1994, 34, 265–276. [Google Scholar] [CrossRef]
- Isobe, K.; Nagasawa, S. Characterization of N-alpha-benzyloxycarbonyl-L-lysine oxidizing enzyme from Rhodococcus sp. AIU Z-35-1. J. Biosci. Bioeng. 2007, 104, 218–223. [Google Scholar] [CrossRef]
- Isobe, K.; Sugawara, A.; Domon, H.; Fukuta, Y.; Asano, Y. Purification and characterization of an l-amino acid oxidase from Pseudomonas sp. AIU 813. J. Biosci. Bioeng. 2012, 114, 257–261. [Google Scholar] [CrossRef]
- Ullah, A. Structure–Function Studies and Mechanism of Action of Snake Venom L-Amino Acid Oxidases. Front. Pharmacol. 2020, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Kusakabe, H.; Kodama, K.; Kuninaka, A.; Yoshino, H.; Soda, K. Effect of L-lysine α-oxidase on growth of mouse leukemic cells. Agric. Biol. Chem. 1980, 44, 387–392. [Google Scholar]
- Pokrovsky, V.S.; Lukashev, A.N.; Babayeva, G.; Karshieva, S.S.; Arinbasarova, A.Y.; Medentzev, A.G.; Komarova, M.V.; Lukasheva, E.V. Plasma pharmacokinetics and tissue distribution of L-lysine α-oxidase from Trichoderma cf. aureoviride RIFAI VKM F-4268D in mice. Amino Acids 2021, 53, 111–118. [Google Scholar] [CrossRef]
- Lishko, V.K.; Lishko, O.V.; Hoffman, R.M. Depletion of serum methionine by methioninase in mice. Anticancer. Res. 1993, 13, 1465–1468. [Google Scholar]
- Lukasheva, E.V.; Lukashev, A.N.; Pokrovsky, V.S.; Treshalina, H.M.; Shumilina, E.Y.; Arinbasarova, A.Y.; Medentsev, A.G.; Berezov, T.T. Investigation of basic pharmacokinetic properties of L-lysine-α-oxidase. Probl. Biol. Med. Pharm. Chem. 2013, 1, 57–62. [Google Scholar]
- Wriston, J.C.; Yellin, T.O. L-asparaginase: A review. Adv. Enzymol. Related Areas Mol. Biol. 1973, 39, 185–248. [Google Scholar]
- Reiken, S.R.; Briedis, D.M. The effect of lysine deprivation on leukemic blood. Amino Acids 1992, 3, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Lukasheva, E.V.; Makletsova, M.G.; Lukashev, A.N.; Babayeva, G.; Arinbasarova, A.Y.; Medentsev, A.G. Fungal Enzyme l-Lysine α-Oxidase Affects the Amino Acid Metabolism in the Brain and Decreases the Polyamine Level. Pharmaceuticals 2020, 13, 398. [Google Scholar] [CrossRef] [PubMed]
- Kusakabe, H.; Kodama, K.; Machida, H.; Midorikawa, Y.; Kuninaka, A.; Misono, H.; Soda, K. Occurrence of a novel enzyme, L-lysine oxidase with antitumor activity in culture extract of Trichoderma viride. Agric. Biol. Chem. 1979, 43, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Lladó, V.; López, D.J.; Ibarguren, M.; Alonso, M.; Soriano, J.B.; Escribá, P.V.; Busquets, X. Regulation of the cancer cell membrane lipid composition by NaCHOleate: Effects on cell signaling and therapeutical relevance in glioma. Biochim. Biophys. Acta Biomembranes 2014, 1838, 1619–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suhr, S.-M.; Kim, D.-S. Comparison of the apoptotic pathways induced by L-amino acid oxidase and hydrogen peroxide. J. Biochem. 1999, 125, 305–309. [Google Scholar] [CrossRef]
- Ande, S.R.; Kommoju, P.R.; Draxl, S.; Murkovic, M.; Macheroux, P.; Ghisla, S.; Ferrando-May, E. Mechanisms of cell death induction by L-amino acid oxidase, a major component of ophidian venom. Apoptosis 2006, 11, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- Lukasheva, E.V.; Ribakova, Y.S.; Fedorova, T.N.; Makletsova, M.G.; Arinbasarova, A.Y.; Medentzev, A.G.; Berezov, T.T. The effect of L-lysine alpha-oxidase from Trichoderma cf. aureoviride Rifai VKM F-4268D on the rat pheochromocytoma PC12 cell line. Biochem. Suppl. Ser. B Biomed. Chem. 2014, 8, 130–133. [Google Scholar] [CrossRef]
- Lee, M.L.; Fung, S.Y.; Chung, I.; Pailoor, J.; Cheah, S.H.; Tan, N.H. King Cobra (Ophiophagus hannah) Venom L-Amino Acid Oxidase Induces Apoptosis in PC-3 Cells and Suppresses PC-3 Solid Tumor Growth in a Tumor Xenograft Mouse Model. Int. J. Med. Sci. 2014, 11, 593–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chepikova, O.E.; Malin, D.; Strekalova, E.; Lukasheva, E.V.; Zamyatnin, A.A.; Cryns, V.L. Lysine oxidase exposes a dependency on the thioredoxin antioxidant pathway in triple-negative breast cancer cells. Breast Cancer Res. Treat. 2020, 183, 549–564. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Liu, S.; Dong, P.; Zhao, D.; Wang, C.; Tao, Z.; Sun, M.-Z. Akbu-LAAO exhibits potent anti-tumor activity to HepG2 cells partially through produced H2O2 via TGF-β signal pathway. Sci. Rep. 2015, 5, 18215. [Google Scholar] [CrossRef] [PubMed]
- Abidin, S.A.Z.; Rajadurai, P.; Chowdhury, E.H.; Othman, I.; Naidu, R. Cytotoxic, Anti-Proliferative and Apoptosis Activity of l-Amino Acid Oxidase from Malaysian Cryptelytrops purpureomaculatus (CP-LAAO) Venom on Human Colon Cancer Cells. Molecules 2018, 23, 1388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burin, S.M.; Cacemiro, M.D.C.; Cominal, J.G.; Grandis, R.A.D.; Machado, A.R.T.; Donaires, F.S.; Castro, F.A.D. Bothrops moojeni L-amino acid oxidase induces apoptosis and epigenetic modulation on Bcr-Abl+ cells. J. Venomous Animals Toxins Tropical Dis. 2020, 26, 1–14. [Google Scholar]
- Costa, T.R.; Menaldo, D.L.; Zoccal, K.F.; Burin, S.M.; Aissa, A.F.; de Castro, F.A.; Faccioli, L.H.; Antunes, L.M.G.; Sampaio, S.V. CR-LAAO, an L-amino acid oxidase from Calloselasma rhodostoma venom, as a potential tool for developing novel immunotherapeutic strategies against cancer. Sci. Rep. 2017, 7, srep42673. [Google Scholar] [CrossRef] [Green Version]
- Bregge-Silva, C.; Nonato, M.C.; de Albuquerque, S.; Ho, P.L.; de Azevedo, I.L.J.; Diniz, M.R.V.; Lomonte, B.; Rucavado, A.; Díaz, C.; Gutiérrez, J.M.; et al. Isolation and biochemical, functional and structural characterization of a novel l-amino acid oxidase from Lachesis muta snake venom. Toxicon 2012, 60, 1263–1276. [Google Scholar] [CrossRef]
- Wei, J.-F.; Yang, H.-W.; Wei, X.-L.; Qiao, L.-Y.; Wang, W.-Y.; He, S.-H. Purification, characterization and biological activities of the l-amino acid oxidase from Bungarus fasciatus snake venom. Toxicon 2009, 54, 262–271. [Google Scholar] [CrossRef]
- Naumann, G.B.; Silva, L.F.; Silva, L.; Faria, G.; Richardson, M.; Evangelista, K.; Kohlhoff, M.; Gontijo, C.M.; Navdaev, A.; de Rezende, F.F.; et al. Cytotoxicity and inhibition of platelet aggregation caused by an l-amino acid oxidase from Bothrops leucurus venom. Biochim. Biophys. Acta Gen. Subj. 2011, 1810, 683–694. [Google Scholar] [CrossRef] [Green Version]
- Stábeli, R.G.; Sant’Ana, C.B.; Ribeiro, P.H. Cytotoxic L-amino acid oxidase from Bothrops moojeni: Biochemical and functional characterization. Int. J. Biol. Macromol. 2007, 41, 132–140. [Google Scholar] [CrossRef]
- Izidoro, L.F.M.; Ribeiro, M.C.; Souza, G.R.; Sant’Ana, C.D.; Hamaguchi, A.; Homsi-Brandeburgo, M.I.; Goulart, L.; Beleboni, R.; Nomizo, A.; Sampaio, S.V.; et al. Biochemical and functional characterization of an l-amino acid oxidase isolated from Bothrops pirajai snake venom. Bioorganic Med. Chem. 2006, 14, 7034–7043. [Google Scholar] [CrossRef]
- Torii, S.; Naito, M.; Tsuruo, T. Apoxin I, a Novel Apoptosis-inducing Factor with L-Amino Acid Oxidase Activity Purified from Western Diamondback Rattlesnake Venom. J. Biol. Chem. 1997, 272, 9539–9542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanzawa, N.; Shintani, S.; Ohta, K.; Kitajima, S.; Ehara, T.; Kobayashi, H.; Kizaki, H.; Tsuchiya, T. Achacin induces cell death in HeLa cells through two different mechanisms. Arch. Biochem. Biophys. 2003, 422, 103–109. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, L.-J. ACTX-8, a cytotoxic l-amino acid oxidase isolated from Agkistrodon acutus snake venom, induces apoptosis in Hela cervical cancer cells. Life Sci. 2007, 80, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Alves, R.M.; Antonucci, G.A.; Paiva, H.H.; Cintra, A.C.O.; Franco, J.J.; Mendonça-Franqueiro, E.P.; Dorta, D.J.; Giglio, J.R.; Rosa, J.C.; Fuly, A.L.; et al. Evidence of caspase-mediated apoptosis induced by l-amino acid oxidase isolated from Bothrops atrox snake venom. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2008, 151, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.Y.; Lee, B.M.; Kim, Y.S. Characterization and cytotoxicity of l-amino acid oxidase from the venom of king cobra (Ophiophagus hannah). Int. J. Biochem. Cell Biol. 1997, 29, 911–919. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, W.T. Isolation and characterization of ACTX-6: A cytotoxic L-amino acid oxidase from Agkistrodon acutus snake venom. Nat. Prod. Res. 2008, 22, 554–563. [Google Scholar] [CrossRef]
- Treshalina, H.M.; Lukasheva, E.V.; Sedakova, L.A.; Firsova, G.A.; Guerassimova, G.K.; Gogichaeva, N.V.; Berezov, T.T. Anticancer enzyme L-lysine α-oxidase. Appl. Biochem. Biotechnol. 2000, 88, 267–273. [Google Scholar] [CrossRef]
- Podboronov, V.M.; Kuzovnikov, A.; Zaĭtseva, A.K.; Smirnova, I.P.; Berezov, T.T. Investigation of antitumor substance from Trichoderma. Antibiotics Chemother. 2011, 56, 3–6. [Google Scholar]
- Podboronov, V.M.; Kuzovnikov, A.E.; Zaĭtseva, A.K.; Smirnova, I.P. Preclinical trials of L-lysine-alpha-oxidase, an antitumor enzyme. Antibiotics Chemother. 2010, 55, 33–36. [Google Scholar]
- Perše, M. Oxidative stress in the pathogenesis of colorectal cancer: Cause or consequence? BioMed Res. Int. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wink, D.A.; Ridnour, L.A.; Hussain, S.P.; Harris, C.C. The reemergence of nitric oxide and cancer. Nitric Oxide 2008, 19, 65–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hileman, E.O.; Liu, J.; Albitar, M.; Keating, M.J.; Huang, P. Intrinsic oxidative stress in cancer cells: A biochemical basis for therapeutic selectivity. Cancer Chemother. Pharmacol. 2003, 53, 209–219. [Google Scholar] [CrossRef]
- Swayden, M.; Bekdash, A.; Fakhoury, I.; El-Atat, O.; Borjac-Natour, J.; El-Sibai, M.; Abi-Habib, R.J. Activation of autophagy following [HuArgI (Co)-PEG5000]-induced arginine deprivation mediates cell death in colon cancer cells. Hum. Cell 2020, 34, 152–164. [Google Scholar] [CrossRef]
- Al-Koussa, H.; Al-Haddad, M.; Abi-Habib, R.; El-Sibai, M. Human Recombinant Arginase I [HuArgI (Co)-PEG5000]-Induced Arginine Depletion Inhibits Colorectal Cancer Cell Migration and Invasion. Int. J. Mol. Sci. 2019, 20, 6018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okita, K.; Hara, Y.; Okura, H.; Hayashi, H.; Sasaki, Y.; Masuko, S.; Kitadai, E.; Masuko, K.; Yoshimoto, S.; Hayashi, N.; et al. Antitumor effects of novel mAbs against cationic amino acid transporter 1 (CAT1) on human CRC with amplified CAT1 gene. Cancer Sci. 2020, 112, 563–574. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Yang, A.Y.-P.; Chen, J.-Y.; Tsai, H.-H.; Lin, S.-H.; Tai, P.-C.; Huang, M.-H.; Hsu, W.-H.; Lin, A.M.-Y.; Yang, J.C.-H. Lysine Deprivation Induces AKT-AADAT Signaling and Overcomes EGFR-TKIs Resistance in EGFR-Mutant Non-Small Cell Lung Cancer Cells. Cancers 2021, 13, 272. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Noordam, L.; Ou, X.; Ma, B.; Li, Y.; Das, P.; Shi, S.; Liu, J.; Wang, L.; Li, P.; et al. The biological process of lysine-tRNA charging is therapeutically targetable in liver cancer. Liver Int. 2020, 41, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.-K.; Hong, S.-E.; Lee, D.-H.; Hong, J.; Park, I.-C.; Jin, H.-O. Lysine is required for growth factor-induced mTORC1 activation. Biochem. Biophys. Res. Commun. 2020, 533, 945–951. [Google Scholar] [CrossRef]
- Gogichaeva, N.V.; Lukasheva, E.V.; Gavrilova, E.M.; Smirnova, I.P.; Egorov, A.M.; Berezov, T.T. Synthesis of conjugates of L-lysine alpha-oxidase with antibodies. Vopr. Med. Khim. 2000, 46, 410–418. [Google Scholar]
- Ph 3 ADI-PEG 20 versus Placebo in Subjects with Advanced Hepatocellular Carcinoma Who Have Failed Prior Systemic Therapy. 2011. Available online: https://clinicaltrials.gov/ (accessed on 1 February 2021).
- Ph 2 Trial of ADI PEG 20 plus Concurrent Transarterial Chemoembolization (TACE) vs. TACE Alone in Patients with Un-Resectable Hepatocellular Carcinoma. 2013. Available online: https://clinicaltrials.gov/ (accessed on 9 December 2020).
- Pegylated Arginine Deiminase in Treating Patients with Metastatic Melanoma That Cannot Be Removed by Surgery. 2007. Available online: https://clinicaltrials.gov/ (accessed on 22 March 2021).
- Van der Sluis, I.M.; de Groot-Kruseman, H.; Te Loo, M.; Tissing, W.J.; van den Bos, C.; Kaspers, G.J.; Bierings, M.; Kollen, W.J.; Pieters, R.K.; König, T.; et al. Efficacy and safety of recombinant E. coli asparaginase in children with previously untreated acute lymphoblastic leukemia: A randomized multicenter study of the Dutch Childhood Oncology Group. Pediatr. Blood Cancer 2018, 65, e27083. [Google Scholar] [CrossRef]
- Silverman, L.B.; Gelber, R.D.; Dalton, V.K.; Asselin, B.L.; Barr, R.D.; Clavell, L.A.; Hurwitz, C.A.; Moghrabi, A.; Samson, Y.; Schorin, M.A.; et al. Improved outcome for children with acute lymphoblastic leukemia: Results of Dana-Farber Consortium Protocol 91-01. Blood 2001, 97, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- Egler, R.A.; Ahuja, S.P.; Matloub, Y. L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J. Pharmacol. Pharmacother. 2016, 7, 62–71. [Google Scholar] [CrossRef] [Green Version]
- Albertsen, B.K.; Grell, K.; Abrahamsson, J.; Lund, B.; Vettenranta, K.; Jónsson, G.; Frandsen, T.L.; Wolthers, B.O.; Heyman, M.; Schmiegelow, K. Intermittent Versus Continuous PEG-Asparaginase to Reduce Asparaginase-Associated Toxicities: A NOPHO ALL2008 Randomized Study. J. Clin. Oncol. 2019, 37, 1638–1646. [Google Scholar] [CrossRef] [PubMed]
- Hunault-Berger, M.; Leguay, T.; Huguet, F.; Leprêtre, S.; Deconinck, E.; Ojeda-Uribe, M.; Bonmati, C.; Escoffre-Barbe, M.; Bories, P.; Himberlin, C.; et al. A Phase 2 study of L-asparaginase encapsulated in erythrocytes in elderly patients with Philadelphia chromosome negative acute lymphoblastic leukemia: The GRASPALL/GRAALL-SA2-2008 study. Am. J. Hematol. 2015, 90, 811–818. [Google Scholar] [CrossRef] [Green Version]
- Hammel, P.; Fabienne, P.; Mineur, L.; Metges, J.-P.; Andre, T.; De La Fouchardiere, C.; Louvet, C.; El Hajbi, F.; Faroux, R.; Guimbaud, R.; et al. Erythrocyte-encapsulated asparaginase (eryaspase) combined with chemotherapy in second-line treatment of advanced pancreatic cancer: An open-label, randomized Phase IIb trial. Eur. J. Cancer 2020, 124, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Bachet, J.-B.; Gay, F.; Maréchal, R.; Galais, M.-P.; Adenis, A.; Salako, M.D.; Cros, J.; Demetter, P.; Svrcek, M.; Bardier-Dupas, A.; et al. Asparagine Synthetase Expression and Phase I Study With L-Asparaginase Encapsulated in Red Blood Cells in Patients with Pancreatic Adenocarcinoma. Pancreas 2015, 44, 1141–1147. [Google Scholar] [CrossRef]
- Pasut, G.; Sergi, M.; Veronese, F.M. Anti-cancer PEG-enzymes: 30 years old, but still a current approach. Adv. Drug Deliv. Rev. 2008, 60, 69–78. [Google Scholar] [CrossRef]
- Mishra, P.; Nayak, B.; Dey, R. PEGylation in anti-cancer therapy: An overview. Asian J. Pharm. Sci. 2016, 11, 337–348. [Google Scholar] [CrossRef] [Green Version]
- Dinndorf, P.A.; Gootenberg, J.; Cohen, M.H.; Keegan, P.; Pazdur, R. FDA Drug Approval Summary: Pegaspargase (Oncaspar®) for the First-Line Treatment of Children with Acute Lymphoblastic Leukemia (ALL). Oncologist 2007, 12, 991–998. [Google Scholar] [CrossRef]
- Yong, W.; Zheng, W.; Zhang, Y.; Zhu, J.; Wei, Y.; Zhu, D.; Li, J. L-Asparaginase—Based Regimen in the Treatment of Refractory Midline Nasal/Nasal-Type T/NK-Cell Lymphoma. Int. J. Hematol. 2003, 78, 163–167. [Google Scholar] [CrossRef]
- De Santo, C.; Cheng, P.; Beggs, A.; Egan, S.; Bessudo, A.; Mussai, F. Metabolic therapy with PEG-arginase induces a sustained complete remission in immunotherapy-resistant melanoma. J. Hematol. Oncol. 2018, 11, 1–5. [Google Scholar] [CrossRef]
- Chan, S.L.; Cheng, P.N.; Liu, A.M.; Chan, L.L.; Li, L.; Chu, C.M.; Chong, C.C.; Lau, Y.M.; Yeo, W.; Ng, K.K.; et al. A phase II clinical study on the efficacy and predictive biomarker of pegylated recombinant arginase on hepatocellular carcinoma. Investig. New Drugs 2021, 39, 1375–1382. [Google Scholar] [CrossRef]
- Feun, L.G.; Marini, A.; Walker, G.; Elgart, G.; Moffat, F.; Rodgers, S.E.; Wu, C.J.; You, M.; Wangpaichitr, M.; Kuo, M.T.; et al. Negative argininosuccinate synthetase expression in melanoma tumours may predict clinical benefit from arginine-depleting therapy with pegylated arginine deiminase. Br. J. Cancer 2012, 106, 1481–1485. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-J.; Jiang, S.S.; Hung, W.-C.; Borthakur, G.; Lin, S.-F.; Pemmaraju, N.; Jabbour, E.; Bomalaski, J.S.; Chen, Y.-P.; Hsiao, H.-H.; et al. A Phase II Study of Arginine Deiminase (ADI-PEG20) in Relapsed/Refractory or Poor-Risk Acute Myeloid Leukemia Patients. Sci. Rep. 2017, 7, 11253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ADI-PEG 20 in Combination with Gemcitabine and Docetaxel for the Treatment of Soft Tissue Sarcoma, Osteosarcoma, Ewing’s Sarcoma, and Small Cell Lung Cancer. 2018. Available online: https://clinicaltrials.gov/ (accessed on 28 February 2021).
- Dhankhar, R.; Gupta, V.; Kumar, S.; Kapoor, R.K.; Gulati, P. Microbial enzymes for deprivation of amino acid metabolism in malignant cells: Biological strategy for cancer treatment. Appl. Microbiol. Biotechnol. 2020, 104, 2857–2869. [Google Scholar] [CrossRef]
- Vachher, M.; Sen, A.; Kapila, R.; Nigam, A. Microbial therapeutic enzymes: A promising area of biopharmaceuticals. Curr. Res. Biotechnol. 2021, 3, 195–208. [Google Scholar] [CrossRef]
- Gay, F.; Aguera, K.; Sénéchal, K.; Tainturier, A.; Berlier, W.; Maucort-Boulch, D.; Honnorat, J.; Horand, F.; Godfrin, Y.; Bourgeaux, V. Methionine tumor starvation by erythrocyte-encapsulated methionine gamma-lyase activity controlled with per os vitamin B6. Cancer Med. 2017, 6, 1437–1452. [Google Scholar] [CrossRef]
Sources of LO | Molecular Mass, кDa | pH Optimum | Substrate Specifity | Km, mM | Reference | ||
---|---|---|---|---|---|---|---|
Substrate | Relative Activity, % | Specific Activity, U/mg | |||||
Trichoderma viride Y244–2 | 116 | 4.5–9.2 | L-Lys | 100 | 66 | 0.04 | [32] |
L-Orn | 18.2 | 0.44 | |||||
L-Phe | 8.3 | 14 | |||||
Trichoderma harzianum Rifai | 100–120 | 4.5–10 | L-Lys | 100 | 40 | 0.014 | [33] |
L-Orn | 5.1 | 0.5 | |||||
L-Arg | 5.9 | 0.36 | |||||
Trichoderma cf. aureoviride Rifai VKM F-4268D | 115–116 | 4.5–9.5 | L-Lys | 100 | 99 | 0.01 | [34] |
L-Orn | 8.3 | ||||||
L-Arg | 5.8 | ||||||
Trichoderma viride i4 | 110 | 8.0–9.0 | L-Lys | 100 | 90 | 0.026 | [35] |
L-Orn | 25 | 0.625 | |||||
L-Arg | 16 | 0.68 | |||||
Trichoderma viride (cloned to Streptomyces lividans TK 24) | 116 | ND | L-Lys | 100 | 80 | ND | [29] |
L-Arg | 6.9 | ||||||
L-Orn | 18.3 | ||||||
L-Phe | 1.7 | ||||||
L-Tyr | 1.4 | ||||||
Rhodococcus sp. AIU Z-35-1 | 100 | 8 | Nα-Z-L-lys L-Lys | 100 53 | 19.1 10.12 | 12.7 0.062 | [36] |
L-Arg | 61 | 0.42 | |||||
L-Orn | 88 | ||||||
Pseudomonas sp. AIU 813 | 110 | 7 | L-Lys | 100 | 1.16 | ND | [37] |
L-Orn | 31 | ||||||
L-Arg | 6 |
Sources of LO | Cell Line | IC50, mg/mL | Reference |
---|---|---|---|
Trichoderma cf. aureoviride Rifai VKM F-4268D | K562 | 3.2 × 10−8 | [23] |
LS174T | 5.6 × 10−7 | ||
HT29 | 8.2 × 10−4 | ||
SCOV3 | 9.9 × 10−7 | ||
PC3 | 2.6 × 10−6 | ||
MCF7 | 8.4 × 10−7 | ||
PC12 | ND | [50] | |
Trichoderma viride Y244-2 | L5178Y | 1.5 × 10−5 | [39] |
Sources of LO | Tumor Model | TGI, % | Range of Effective Doses, U/kg | Reference |
---|---|---|---|---|
Trichoderma viride Y244-2 | L1210 | ND | 70 | [39] |
Trichoderma harzianum Rifai | Hepatoma 22 A | * | 35–300 | [68] |
Ca755 | 95 | 200–350 | ||
Melanoma B16 | 81 | 350 | ||
AKATOL | 75 | 200–300 | ||
RSHM-5 | 79 | 200–300 | ||
Sarcoma 180 | 61 | 200–300 |
Sources of LO | Tumor Model | T/C, % | Reference |
---|---|---|---|
Trichoderma cf. aureoviride Rifai VKM F-4268D | HCT116 | 12 * | [23] |
SKBR3 | 49 | ||
LS174T | 37 * | ||
Melanoma Bro | 51 | ||
SKOV3 | 35 | ||
Hepatocellular carcinoma Alex | 54 | ||
T47D | 36 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukasheva, E.V.; Babayeva, G.; Karshieva, S.S.; Zhdanov, D.D.; Pokrovsky, V.S. L-Lysine α-Oxidase: Enzyme with Anticancer Properties. Pharmaceuticals 2021, 14, 1070. https://doi.org/10.3390/ph14111070
Lukasheva EV, Babayeva G, Karshieva SS, Zhdanov DD, Pokrovsky VS. L-Lysine α-Oxidase: Enzyme with Anticancer Properties. Pharmaceuticals. 2021; 14(11):1070. https://doi.org/10.3390/ph14111070
Chicago/Turabian StyleLukasheva, Elena V., Gulalek Babayeva, Saida Sh. Karshieva, Dmitry D. Zhdanov, and Vadim S. Pokrovsky. 2021. "L-Lysine α-Oxidase: Enzyme with Anticancer Properties" Pharmaceuticals 14, no. 11: 1070. https://doi.org/10.3390/ph14111070
APA StyleLukasheva, E. V., Babayeva, G., Karshieva, S. S., Zhdanov, D. D., & Pokrovsky, V. S. (2021). L-Lysine α-Oxidase: Enzyme with Anticancer Properties. Pharmaceuticals, 14(11), 1070. https://doi.org/10.3390/ph14111070