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Abstract: This study investigates the role of transient receptor potential ankyrin 1 (TRPA1) in murine
temporomandibular joint (TMJ) inflammatory hyperalgesia and the influence of the NLR family
pyrin domain-containing 3 (NLRP3) inflammasome. Two distinct murine models of TMJ pain
and inflammation (zymosan and CFA) were established. Spontaneous pain-like behaviours were
observed as unilateral front paw cheek wipes. Ipsilateral cheek blood flow was used as a measure
of ongoing inflammation, which, to our knowledge, is a novel approach to assessing real-time
inflammation in the TMJ. Joint tissue and trigeminal ganglia were collected for ex vivo investigation.
Both zymosan and CFA induced a time-dependent increase in hyperalgesia and inflammation
biomarkers. Zymosan induced a significant effect after 4 h, correlating with a significantly increased
IL-1β protein expression. CFA (50 µg) induced a more sustained response. The TRPA1 receptor
antagonist A967079 significantly inhibited hyper-nociception. The NLRP3 inhibitor MCC950 similarly
inhibited hyper-nociception, also attenuating inflammatory markers. In the trigeminal ganglia, CFA-
induced CGRP expression showed trends of inhibition by A967079, whilst lba1 immunofluorescence
was significantly inhibited by A967079 and MCC950, where the effect of TRPA1 inhibition lasted
up to 14 days. Our results show that stimulation of TRPA1 is key to the TMJ pain. However, the
inflammasome inhibitor exhibited similar properties in attenuating these pain-like behaviours, in
addition to some inflammatory markers. This indicates that in addition to the therapeutic targeting of
TRPA1, NLRP3 inhibition may provide a novel therapeutic strategy for TMJ inflammation and pain.

Keywords: temporomandibular arthritis; TRPA1; NLRP; inflammasome; mouse

1. Introduction

The temporomandibular joints (TMJ) encompass the joint area that connects the
mandibular condyle (jaw) to the temporal bone (skull), consisting of an articular disc
and the glenoid fossa. Temporomandibular disorders (TMD) are a heterogenous group
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of conditions affecting the TMJ and surrounding areas, characterized by chronic joint
and muscle pain, limited jaw movement, and clicking [1]. About 30% of TMD sufferers
report the painful form of the disorders, of which 65% reported recurrent pain, mainly
affecting both the joint and muscle areas [2,3]. The pathophysiology of TMDs is complex
and not well understood, although it is thought that one of the main mechanisms of TMD
is inflammation, associated with TMD arthritis, that occurs in a similar manner to the
development of rheumatoid arthritis (RA) [2]. Despite the recent success in the discovery
of novel anti-arthritic treatments, there are no specific drugs available for the treatment
of TMD, with some patients failing to respond to available anti-inflammatory therapies,
indicating an unmet need for new treatments. The non-selective cation channel transient
receptor potential ankyrin 1 (TRPA1) is localized to approximately 65–70% of C and Aδ-
fiber nociceptive sensory neurons that also express the TRP vanilloid 1 (TRPV1) [4]. These
neurons release CGRP and are involved in the pain pathway [5,6]. We have previously
shown a direct link between TRPA1 and the pain associated with joint inflammation [7,8]
in our murine models of knee joint arthritis, and also an involvement of IL-1β in the
hyper-nociception pathways [9]. By comparison, murine models of TMJ are limited and
the sensory mechanisms involved in TMD are poorly characterized. The models have
historically been acute rather than mimicking the prolonged periods of pain that are
observed in humans. We have established two murine models of TMD to investigate the
influence of TRPA1 and potential links with inflammatory hyperalgesia.

In addition to painful symptoms, TMJ arthritis is also strongly associated with in-
creased inflammatory markers, such as IL-1β in the saliva [10] and the joints of TMD
patients [11], which has been correlated with pain severity [11], although this is controver-
sial [12]. Additionally, the IL-1Ra gene variant was recently associated with increased risk
of developing TMD; hence, mechanisms driving IL-1β production and release are potential
targets for TMD treatment [13]. The production of mature IL-1β requires the activation of
two pathways: (i) pattern recognition receptors such as Toll-like receptors (TLRs) increase
pro-IL-1β expression through NF-κB activation, and (ii) subsequent inflammasome activa-
tion which converts pro-IL-1β (~35 kDa) to mature IL-1β (17 kDa), resulting in its release
from the cells and pro-inflammatory effects. NLRP3 Inflammasome is an intracellular
multiprotein complex, which is activated by danger signals and has recently been shown to
be a promising target in inflammation models of pain and gouty arthritis [14,15]. However,
precisely how the NLRP3 inflammasome is activated in various disease conditions remains
poorly understood. Signals that initiate inflammasome formation can be delivered by
environmental irritants or self-derived molecules associated with cell damage [16]. Hence,
it is possible that communication via ion channels, such as the polymodal TRPA1, which
is activated by a wide range of external and endogenous products generated by tissue
damage [17,18], contributes to inflammasome activation. At present it is not known if the
NLRP3 inflammasome may contribute to TMJ arthritis or the role of TRPA1 activation, if
any, in inflammatory TMJ arthritis. In this study, we have used two inflammatory models
to mimic the acute and longer-term TMJ pain and inflammation. The first is zymosan (yeast
cell walls) with an inflammatory pathology that is significant after 4 h [19,20]. Zymosan
has recently been justified for use in a rat TMD model [20]. We measured spontaneous
nociceptive sensation, observed here by front paw wiping of the face [21], and to our knowl-
edge, ipsilateral cheek blood flow is a novel indicator of real-time inflammation. As our
group has previously characterized CFA inflammation to induce TRPA1-dependent joint
inflammatory arthritis in mice (>14 days) [7], we also established a CFA-induced chronic
TMD model. Whilst both models exhibited TRPA1-dependent pain, we also revealed a
role for the NLRP3 inflammasome through the use of the selective NLRP3 inflammasome
inhibitor MCC950.
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2. Results
2.1. Zymosan Mediates Acute Pain and Inflammation in Murine TMJs

The model was initially characterized by ensuring that intra-articular (i.a.) injection
of zymosan into the TMJ caused reproducible responses in the mouse. Zymosan (30 µg
i.a.) produced an increase in unilateral front paw cheek wipes (associated with painful
sensations) 2–4 h post-injection (Figure 1A,B) in the ipsilateral cheek when compared to
the saline-treated group. This compared with a slight, but not significant, increase in front
paw wiping observed in the contralateral side (Figure 1A,B). By comparison, no significant
changes in hind paw cheek scratching were observed in response to this dose of zymosan
(Figure 1C,D). These results highlighted that this treatment induced a painful, but not
itching, phenotype. Of note, other doses of zymosan (10 µg or 100 µg) failed to induce any
significant pain-like behaviours and were not further investigated. Hence, zymosan (30 µg)
was herein used to induced TMJ inflammation and pain in further experiments.

To determine if the zymosan injection was indeed mediating inflammation in the TMJ
and surrounding muscular areas, Evans blue dye, which binds non-covalently to plasma
albumin, was used to determine areas where inflammatory oedema formation had occurred
(Figure 1E, red arrow). Indeed, 4 h following zymosan (i.a. 30 µg), oedema (blue areas)
was observed in the muscular areas around the TMJ, in the ipsilateral, but not contralateral
side; however, it was not possible to quantify this localised oedema formation. Saline (i.a.)
did not induce oedema on either side, confirming the specific inflammatory response to
zymosan injection and not to needlestick injury. To further characterize inflammation in
the area, cheek blood flow was measured using the laser speckle technique (FLPI). Indeed,
increased cheek blood flow was observed at 4 h following zymosan (30 µg) injection in the
ipsilateral cheek, further confirming the development of inflammation with this treatment
regime (Figure 1F). The duration of zymosan-induced pain was ipsilateral-specific during
the first 3 days following injection, before the results became variable and the contralateral
side began to show cheek wiping (Figure 1G,H). In contrast, there were no significant
differences in cheek scratching (Figure 1I,J), confirming the specificity of this response to
pain-like sensations over the entire 7-day period.

To confirm inflammation, Western blots were performed in the collected TMJ samples
for pro-IL-1β and mature IL-1β. Pro-IL-1β and mature IL-1β expression was significantly
increased 4 h post-30 µg zymosan injection and the signal was reduced from 24 h onwards
(Figure 1K,L). Hence, zymosan (30 µg i.a.) and the 4 h timepoint were chosen as the acute
TMJ model to investigate the inflammation and pain for future experiments.

2.2. TRPA1 and NLRP3 Antagonists Have Differential Effects on Zymosan-Mediated Spontaneous
Behaviours and Inflammation

Pre-treatments with either a TRPA1 antagonist (A967079) or NLRP3 antagonist
(MCC950) resulted in a significant reduction in zymosan-induced front paw cheek wiping
as we predicted, indicative of analgesic activity. In contrast, no effects were observed in
hind paw scratching, suggesting that the effects were specific for the pain sensation, and
not due to the treatments affecting general motor functions or activities. Both antagonists
reduced the pain-associated behaviours to a similar extent (Figure 2A,B). By comparison,
although there was a trend of decreases in the blood flow response in both MCC950- and
A967079-treated mice, only that in MCC950-treated mice reached significance after 4 h,
indicative of an effect in inhibiting the inflammatory component (Figure 2C). There was a
significant increase in Pro-IL-1β protein expression in the vehicle-treated zymosan group,
with minimal expression observed in mature IL-1β (Figure 2D,E). There were trends, but
not a significant reduction in Pro-IL-1β expression with both TRPA1 and NLRP3 antagonist
treatments (Figure 2D).
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Figure 1. Intraarticular (i.a.) zymosan into the TMJ mediated increase in pain-like spontaneous behaviours and blood
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flow in vivo. (A) Number of unilateral front paw cheek wipe, (C) number of unilateral hind paw cheek scratch over
30 min at 2 h or 4 h post-zymosan injection; (B,D) Area under the curves (AUC) of the corresponding behaviour graphs;
(E) representative images of oedema formation 4 h post-zymosan injection visualized using the Evans blue dye (red arrow);
(F) Cheek blood flow as measured by the Full Field Perfusion Imager (FLPI) 4 h following zymosan injection; (G) Numbers
of unilateral front paw cheek wipe and (I) unilateral hind paw cheek scratch over 30 min at various timepoints following i.a.
zymosan injection; (H,J) AUCs of the corresponding graphs, (K) Pro-IL1β and (L) mature IL-1β Western blots in the TMJ
samples. Data represent mean ± SEM, n = 6−7 animals per group. Data analysed by one-way ANOVA (K,L) or two-way
ANOVA (repeated measures for A,C,G,I) with Bonferroni’s post hoc test.* p < 0.05, ** p < 0.01, *** p < 0.001 for saline vs.
zymosan, ## p < 0.01, ### p < 0.001 between zymosan ipsi vs. contra.

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 2. The distinct effects of a TRPA1 antagonist (A967079) or an NLRP3 antagonist (MCC950) on the observed spon-
taneous behaviors and blood flow in the acute 4 h zymosan model. Number of (A) unilateral front paw cheek wipe and 
(B) unilateral hind paw cheek scratch in response to saline or zymosan when pre-treated with vehicle (10% DMSO, 10% 
Tween-80 in saline), A967079 (100mg/kg, i.p.) or MCC950 (10mg/kg, i.p.), (C) cheek blood flow as measured by the FLPI, 
(D) Pro-IL1β and (E) mature IL-1β Western blots of the TMJ samples. Data represent mean ± SEM, n = 7−14 animals per 
group. Data analysed by two-way ANOVA with Bonferroni’s post hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001 between 
saline vs. zymosan as indicated, # p < 0.05, ## p < 0.01, ### p < 0.001 between the indicated groups. 

2.3. Complete Freund’s Adjuvant (CFA) Injection into the TMJ Induced Sustained Spontaneous 
Pain and Increased Blood Flow in Mice 

To characterize a more clinically relevant model, we investigated a longer-term 
model of TMJ pain and inflammation by injecting CFA into the TMJ and observing the in 
vivo parameters over 2 weeks. Two different doses were initially tested to determine the 
best concentration of CFA to produce a robust pain and inflammatory response. CFA (50 
µg) induced a significant increase in spontaneous pain behaviours, but not scratching be-
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minimal changes were observed in response to CFA (10 µg) injection (Figure 3A–F). The 
protein expression was studied over 14 days and there was a trend towards increased Pro-

Figure 2. The distinct effects of a TRPA1 antagonist (A967079) or an NLRP3 antagonist (MCC950) on the observed
spontaneous behaviors and blood flow in the acute 4 h zymosan model. Number of (A) unilateral front paw cheek wipe
and (B) unilateral hind paw cheek scratch in response to saline or zymosan when pre-treated with vehicle (10% DMSO, 10%
Tween-80 in saline), A967079 (100mg/kg, i.p.) or MCC950 (10mg/kg, i.p.), (C) cheek blood flow as measured by the FLPI,
(D) Pro-IL1β and (E) mature IL-1β Western blots of the TMJ samples. Data represent mean ± SEM, n = 7−14 animals per
group. Data analysed by two-way ANOVA with Bonferroni’s post hoc test. * p < 0.05, ** p < 0.01, *** p < 0.001 between
saline vs. zymosan as indicated, # p < 0.05, ## p < 0.01, ### p < 0.001 between the indicated groups.



Pharmaceuticals 2021, 14, 1073 6 of 17

2.3. Complete Freund’s Adjuvant (CFA) Injection into the TMJ Induced Sustained Spontaneous
Pain and Increased Blood Flow in Mice

To characterize a more clinically relevant model, we investigated a longer-term model
of TMJ pain and inflammation by injecting CFA into the TMJ and observing the in vivo
parameters over 2 weeks. Two different doses were initially tested to determine the
best concentration of CFA to produce a robust pain and inflammatory response. CFA
(50 µg) induced a significant increase in spontaneous pain behaviours, but not scratching
behaviours (Figure 3A–D), as well as increased cheek blood flow (Figure 3E–F), whereas
minimal changes were observed in response to CFA (10 µg) injection (Figure 3A–F). The
protein expression was studied over 14 days and there was a trend towards increased
Pro-IL-1β and mature IL-1β expression with CFA (50 µg) (Figure 3G,H). Due to the minimal
effects observed on the contralateral side, our future studies focused on the hyperalgesia
and inflammation on the ipsilateral side.
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behaviours and cheek blood flow over 14 days. The numbers of (A) unilateral front paw cheek wipe and (C) unilateral
hind paw cheek scratch observed over 30 min. AUC for the (B) front paw cheek wipe and (D) hind paw cheek scratch
calculated over the 14 days. (E) Cheek blood flow measured using the FLPI and (F) AUC of the cheek blood flow calculated
over 14 days, (G) ProIL-1β and (H) mature IL-1β Western blots on TMJ samples. Data represent mean ± SEM, n = 6−7
animals per group. Data analysed by two-way ANOVA (repeated measures for figures (A,C,E) with Bonferroni’s post hoc
test. * p < 0.05, ** p < 0.01 between IFA and CFA, # p < 0.05 between ipsi vs. contra.

2.4. TRPA1 and NLRP3 Antagonists Inhibit the Spontaneous Pain Mediated by CFA, However,
Have Differential Effects on Cheek Blood Flow and Inflammatory Markers

The effects of the TRPA1 and NLRP3 antagonists, which previously showed significant
reduction in pain-like behaviours and inflammatory markers in response to the acute
zymosan treatment in the TMJ were then investigated in a more sustained model of CFA-
induced TMJ. The administration of the antagonists was adapted to daily treatments to
achieve efficacy. The repeated treatments with either a TRPA1 antagonist (A967079 i.p.)
or an NLRP3 antagonist (MCC950 i.p.) resulted in significant reduction in the front paw
cheek wipe on the ipsilateral side (Figure 4A,B) in each case when compared with vehicle.
No significant effects on the scratching behaviours were evident (Figure 4C,D), consistent
with the observations during the CFA model characterization (Figure 3). While there is a
consistent increase in the cheek blood flow in response to CFA injection over the 14-day
observation, neither of the treatments had any significant effect on blood flow, although
a trend of reduction was observed in the A967079-, but not the MCC950-, treated group
(Figure 4E,F).

To further characterize the inflammatory response in the CFA model, we measured
IL-1β expression and release at days 5 and 14. Pro-IL-1β protein expression showed a more
significant increase at day 5 post-CFA treatment, a significant reduction with MCC950
and an inhibitory trend with A967079 (Figure 5A). Although the levels of mature IL-1β
were raised with CFA, no significant reductions were observed with MCC950 treatment
(Figure 5B). At day 14, a lower and more variable expression of Pro-IL-1β and mature
IL-1β was observed, but there was no significant inhibitory effect of MCC950 or A967079
(Figure 5C,D). We noticed no change in NLRP3 expression at this time point too (Supple-
mentary Figure S1).

2.5. TRPA1 and NLRP3 Antagonists Modify CFA-Induced Iba1+ Expression in the Trigeminal
Ganglia of Treated Mice

It has been established that the orofacial pain linked to TMJ is associated with the
upregulation in activity of trigeminal nociceptors. To further understand mechanisms in-
volving the trigemino-sensory system, we characterized the protein and mRNA expression
of Iba1, the macrophage marker, and CGRP, indicative of neuronal sensitization, in the
trigeminal ganglia. Our results showed that Iba1 protein expression increased significantly
in the TGs of CFA-treated animals at day 5, while the mRNA expression of this target
showed a slight trend of increase at day 14 (Figure 6A,C). Indeed, both MCC950 and
A967079 treatments significantly inhibited Iba1 expression at day 5 (Figure 6A), although
only A967079 significantly inhibited its expression on day 14 (Figure 6C). On the other
hand, the CGRP expression appeared to be slightly increased in the CFA-treated group at
day 5, with minimal changes observed in the mRNA at day 14 (Figure 6B,D). Both MCC950
and A967079 showed some trends to reduce CGRP expression at day 5, albeit not signifi-
cantly, while minimal effects were observed at day 14 (Figure 6B,D). These results suggest
that Iba1+ macrophages may play an important role in contributing to the CFA-induced
hyperalgesia, and it can be partially targeted by both NLRP3 and TRPA1 antagonists.
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mediated pain-like behaviours and have differential effects on cheek blood flow. The numbers of ipsilateral (A) unilateral
front paw cheek wipe and (C) hind paw cheek scratch observed over 30 min. The changes in cheek blood flow was
observed at various timepoints (E). The AUC for (B) front paw cheek wipe, (D) hind paw cheek scratch, and (F) cheek blood
flow. Data represent mean ± SEM, n = 7−8 animals per group. Data analysed by two-way repeated measures ANOVA
(A,C,E) or one-way ANOVA (B,D,F) with Bonferroni’s post hoc test. * p < 0.05, ** p < 0.01, **** p < 0.0001 IFA vs. CFA,
# p < 0.05, ### p < 0.001, #### p < 0.0001 CFA/VEH vs. CFA/MCC950 in the timepoint reading or between indicated groups,
$$ p < 0.01, $$$ p < 0.001 between CFA/VEH vs. CFA/A967079 in the timepoint reading.
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antagonists, showing that only A967079 significantly reduced CGRP expression in CFA treated mice. (C) Iba1 mRNA 

Figure 6. The effect on distinct alteration of CGRP and Iba1 protein and mRNA expression in TG collected at different
timepoints post-CFA treatment. (A) Representative images and quantification of Iba1+ staining in naïve, IFA and CFA-
treated animals collected at day 5 in absence or presence of the NLRP3 (MCC950) and TRPA1 (A967079) antagonists,
showing significant reduction in Iba1 with both inhibitors (B) Representative images and quantification of CGRP+ staining
in naïve, IFA and CFA-treated animals collected at day 5 in presence or absence of NLRP3 (MCC950) and TRPA1 (A967079)
antagonists, showing that only A967079 significantly reduced CGRP expression in CFA treated mice. (C) Iba1 mRNA
expression and (D) CGRP mRNA expression in TGs of IFA- or CFA-treated animals in absence of the NLRP3 (MCC950) and
TRPA1 (A967079) antagonists. The TGs were collected at 14 days post-CFA treatment. n = 7−8 animals. The white arrows
highlight the Iba1+ (green) or CGRP+ (red) staining. Scale bar = 75 µm. Data represent mean ± SEM, ordinary one-way
ANOVA with Tukey’s multiple comparisons test. Per group, * p < 0.05, *** p < 0.001.
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3. Discussion

In the present study, we used two distinct unilateral models of TMJ inflammatory
hyperalgesia, relevant to arthritis and obtained similar results to show: (i) ipsilateral pain-
related behaviours (hyper-nociception) as measured by monitoring front paw wiping,
(ii) increased markers of TMJ inflammation as measured by a non-invasive technique to
measure cheek skin blood flow as well as pro-IL1β/mature IL-1β expression, and (iii) for
the first time, we show a dependence of the hyper-nociception and inflammatory phases
on TRPA1 and NLRP3 in mouse TMD models. In these studies, it was important to give
the TRPA1 antagonist and the inflammasome inhibitor that were investigated systemically,
as our research is aimed at searching for new therapeutic agents for this disease, where
there is an unmet clinical need.

Among other TRP channels, TRPA1 plays an important role in inflammatory
pain [22,23]. To investigate the involvement of TRPA1 in these models, we utilized the se-
lective TRPA1 antagonist (A967079). We have previously shown that the TRPA1 antagonist
acts over 5 days to modulate a cutaneous inflammation in a murine model associated with
pain-related behaviours [24,25]. In our current study, pre-treatment with the TRPA1 antag-
onist inhibited the hyper-nociception associated with paw wiping in both the zymosan and
CFA models studied. This emphasizes the importance of neuronal TRPA1 in mediating
TMD-induced pain. However, there seems to be a distinct difference between the effects of
TRPA1 antagonist in the acute zymosan model versus in the longer-term CFA model. In the
acute model, the TRPA1 antagonist was less effective in altering the inflammatory markers,
be it in the functional (blood flow) measurement or in terms of the IL-1β pathway. This is in
keeping with the knowledge from both our group and others that TRPA1 is an environmen-
tal sensor, stimulated by a range of noxious stimuli to activate CGRP-containing sensory
neurons leading to mechano-transduction and pain signalling [22,26]. Importantly, the
pharmacological blockade of TRPA1 attenuates the inflammatory hyperalgesia observed
in murine models of knee joint arthritis [7,8]. Indeed, it has been suggested that TRPA1
antagonists are promising as novel therapeutic agents that target pain relief [22]. There are
no studies, to our knowledge, where a murine model of TMJ inflammatory hyperalgesia
has been investigated for a selective role for TRPA1. We used two models here in order
to confirm the relevance of TRPA1 in TMD-induced pain/arthritis. Independently, a com-
bined TRPA1 antagonist and the selective inhibitor of the N-type voltage-gated calcium
channels has very recently been shown to attenuate TRPA1-mediated facial grooming in a
CFA-induced rat TMJ model [27], and our results build on that finding. A link between
zymosan and TRPA1-induced nociception is also established in inflammatory models
associated with pain [28,29]. Furthermore, it has been reported that pain is linked to
zymosan-induced TLR2/6 activation of inflammation pathways [30,31]. By comparison,
CFA-induced inflammatory hyperalgesia has been established to be linked to TRPA1 pain
activated via stimulating cell-mediated immunity [32].

We then questioned whether the inflammasome may be involved in TMJ-induced
inflammatory hyperalgesia associated with arthritis. It was established that the NLRP3
inflammasome plays a central role in the uncompromising pain associated with gouty
arthritis [33] in 2016, and also in arthritic-type components of Chikungunya disease [34],
while recently it has been shown to play a role in migraines [35]. In the current study, the
NLRP3 inflammasome inhibitor MCC950, which acts selectively to block the conformation
of active NLRP3 proteins [36], inhibited both the acute and chronic hyper-nociception, and
of importance, showed similar efficacy to the TRPA1 antagonist in these in vivo models.
Additionally, MCC950 also showed some inhibitory effects on inflammatory symptoms.
On realizing these results, we considered that mechanistic links between the TRPA1 and
inflammasome pathways may exist. To pursue this line of enquiry, we investigated whether
IL-1 levels were raised in these models. We showed that NLRP3 inhibition significantly
reduced pro-IL-1β generation in the TMJs of the zymosan model at 4 h and mature IL-1β
production at 5 days in the CFA model, suggesting a reduction in ILB in acute rather than
chronic CFA models. Although the effect of TRPA1 antagonist showed similar trends of
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reduction in both models, it is less significant. Hence, our findings suggest that both TRPA1
and NLRP3 may be overlapping in their mechanisms driving TMJ inflammation and pain
via an IL-1β-mediated pathway.

We next investigated the trigeminal ganglia, which innervates the oro-facial sensory
nerves, and which are known to be activated as well as sensitized by CFA in rats [37]. We
collected the ganglia after 5 days and 14 days from the CFA model to learn more about the
potential influence of treatment with the TRPA1 antagonist and inflammasome inhibitor.
The CFA model showed a trend of increased levels of the major sensory neuropeptide
CGRP and Iba1 expression, both of which are indicative of neuronal sensitization and
inflammation, which have been associated with pain. Interestingly, the TRPA1 antago-
nist was able to inhibit both Iba1 expression (a marker of microglia and inflammation,
macrophages) and CGRP, to a less significant extent, on days 5 and 14. This is consistent
with the finding that CGRP expression showed trends of reduction by the TRPA1 antagonist
and that TRPA1 activation mediates nociception via CGRP release [22,26], although to our
knowledge, this is the first study to link the application of TRPA1 antagonist and the mod-
ulation of Iba1 expression in the trigeminal ganglia. In contrast, the NLRP3 antagonist only
had a significant effect on Iba1 expression over the 5 days post CFA treatment. MCC950
was previously shown to be able to reduce CGRP and IL-1β expression in the trigeminal
ganglia of a murine migraine model [35] and reduce Iba1 expression in the hippocampus
of aged mice with neurocognitive disorders [38]. Our study is the first to indicate that
MCC950 is able to modulate the expression of Iba1 expression in the trigeminal ganglia
and a possible mechanism in contributing to TMD-associated pain.

4. Materials and Methods
4.1. In Vivo Induction of Temporomandibular Joint (TMJ) Inflammation and Arthritis

All animal procedures were carried out in accordance with the UK Home Office
Animals (Scientific Procedures) Act 1986 and the ARRIVE guidelines. A total of 140 mice
were used in this study. This study was approved by the King’s College Animal Care
and Ethics Committee. Male CD1 mice (6–8 weeks, Charles River, Harlow, UK) were
used in this study. All mice were maintained in a climatically controlled environment
(22 ◦C) and exposed to a 12/12h light/dark cycle. All recovery procedures were performed
under 2% isoflurane (Isocare; Animalcare, York, UK) with 2% oxygen. All procedures
were terminated by cervical dislocation. The animals were randomized at the start of the
procedure, while the investigators were blinded to the treatment groups. The areas around
the TMJ were shaved and acute TMJ inflammation and pain was induced ipsilaterally by
intraarticular (i.a.) injection of 10 µL of Zymosan A (10, 30, or 100 µg from S. cerevisiae;
Sigma-Aldrich, Gillingham, UK) or vehicle (saline) using a BD Microfine+ 30 G × 8 mm
needle attached to an insulin syringe (Beckton, Dickinson, West Sussex, UK) into the TMJ
capsule, as previously described [39]. The zymosan model was investigated and tested
for a maximum of 7 days. For the chronic model of TMJ inflammation, 10 µL of Complete
Freund’s Adjuvant (CFA, 5 mg/mL, Chondrex, US or 1 mg/mL stock, Sigma-Aldrich,
Gillingham, UK) or vehicle control (Incomplete Freund’s Adjuvant/IFA) was injected
ipsilaterally using the same technique. Subsequent measurements were carried out for up
to 14 days before terminating the study.

4.1.1. Blood Flow Measurement of the TMJ and Surrounding Areas

To provide an estimation of the inflammation, blood flow was measured in an area
around the mouse cheek area under recovery anaesthesia using the Full Field Laser Perfu-
sion Imager (FLPI; Moor Instruments, Axminster, UK) in real time. Mouse body temper-
ature was maintained at 36 ◦C using a homeothermic mat throughout the measurement.
The scanner was placed 20 cm above the cheek. The scanner emitted a laser that penetrated
to a 1–2 mm depth of the measured area and was successfully used to measure the blood
flow in mouse knee joints [8]. The settings used were as follows: high resolution capture
(25 frames, 1 s/frame), gain: auto, exposure: 8.3 ms. The imaging was initiated after
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~2 min or later following the shaving of the cheek area. The blood flow was measured
until a stable blood flow reading was obtained for 5 min continuously and the mean blood
flux units (proportional to the blood flow) were calculated using the MoorFLPI Review
3.0 software (Moor Instruments) for the last 2 min of measurement. Regions of interest
were highlighted with a line around the treated area and kept consistent throughout the
measurement period.

4.1.2. Spontaneous Behaviour Observations

Mice were acclimatized to the procedure room for at least 1 h before observations and
baseline measurements were taken over 2 days to habituate them before disease induction.
The baseline readings over 2 days were averaged as “day 0” values. The observations were
carried out in a see-through behaviour chamber (20 × 20 × 14 cm3, Ugo Basile, Gemonio
VA, Italy) where the animals were allowed to further habituate to the observation chamber
for 15 min before recording the observation. Spontaneous behaviours were recorded for
30 min at each timepoint, observing for behaviours indicative of pain (unilateral front paw
cheek wiping) and itch (unilateral hind paw cheek scratching) as previously described [21].

4.1.3. Pharmacological Treatments

For the acute zymosan studies, the same vehicle (10% DMSO, 10% Tween-80 in
saline) was used for both A967079 (Alomone Labs, Israel) ((1E,3E)-1-(4-Fluorophenyl)-2-
methyl-1-pentene-3-one oxime), a selective TRPA1 antagonist [40], or MCC950 (Insight
Biosciences, UK) (N-[[(1,2,3,5,6,7-hexahydro-s-indacen-4-yl)amino]carbonyl]-4-(1-hydroxy-
1-methylethyl)-2-furansulfonamide), a selective NLRP3 antagonist [41]. The drugs were
administered (i.p., 100 mg/kg) 30 min prior to the injection of zymosan. For longer-term
CFA studies, A967079 or MCC950 was administered i.p. at 100 mg/kg or 10 mg/kg,
respectively, 30 min prior to CFA injection at day 0. A967079 was then administered
once daily at 60 mg/kg i.p. thereafter, while MCC950 was administered i.p. once daily
(10 mg/kg) on days 1, 2, then every 2 days thereafter until the end of the study period.
These respective treatment regimens were chosen as they previously showed to be effective
in various pain and inflammatory murine models [40,41].

4.1.4. Using the Evans Blue Dye for Observing the Development of Oedema in the TMJ

To determine the formation of oedema in the TMJ, the mice were anaesthetized under
recovery anaesthesia. Plasma extravasation was quantified using Evans Blue, a dye that
binds to plasma albumin, to indicate oedema formation in the affected area. Mice received
Evans Blue (25%; 2.5 mg/g of animals, i.v.), prior to being shaved in the cheek area and
receiving i.a. injection of either zymosan or saline in the ipsilateral cheeks [42]. The
contralateral cheeks received no treatment. The mice were allowed to recover for 4 h
before terminating the study and the facial region was dissected to visualize the area where
oedema had formed.

4.2. Western Blotting

The TMJs were homogenized in SDS lysis buffer (50 mM Tris base pH 6.8, 10% glyc-
erol, 2% SDS) containing a HALT protease/phosphatase inhibitor cocktail (Thermo Fisher
Scientific, Loughborough, UK). The TMJ samples were homogenized using a hand-held ho-
mogenizer (Ultra Turrax T25, IKA Laboratories, Oxford, UK) at maximum speed for 2 min,
cooled after 30 s of homogenization. This cycle was repeated until the tissues were fully pul-
verized. The samples were then centrifuged, and supernatants were collected and assayed.
A total of 50 µg of protein per sample was prepared and ran in an electrophoresis chamber
(Thermo Fisher Scientific, Loughborough, UK) and was transferred and immobilised onto
Immun-Blot® PVDF membranes (Bio-Rad Laboratories, Hertfordshire, UK) at 30 V for 1 h.
Non-specific binding was blocked in 5% BSA before the membrane was washed in PBS
containing 0.1% Tween-20 between incubations. Membranes were incubated in primary
antibodies overnight at 4 ◦C and secondary antibodies at RT for 1 h. The membrane was
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then incubated with 1ml of enhanced chemiluminscence solution (Luminata Crescendo
Western HRP substrate, Millipore, Watford, UK) and was developed in the G-Box Gel
Documentation System (Syngene International, Bengaluru, India). Chemiluminescence
images were captured with Syngene 2D Gel Imaging software and densitometry analyses
were performed on the ImageJ software with arbitrary intensity values expressed as a ratio
to the values for GAPDH loading control. Rat mAb anti-human/mouse NLRP3/NALP3
(MAB7578, 1:1000, R&D Systems, Abingdon, UK) Goat pAb anti-mouse IL1β/IL-1F2
antibody (AF-401-NA, 1:800, R&D Systems, Abingdon, UK) Anti-mouse glyceraldehyde-3-
phosphate dehydrogenase mAb were used for loading control (GAPDH; AM4300; 1:2000,
Thermo Fisher Scientific, Loughborough, UK). The secondary antibody (HRP-conjugated)
used was: (1) goat anti-mouse IgG antibody (AP132P, 1:2000, Millipore, Watford, UK).

4.3. Quantitative rt-PCR

RNA extraction was performed in the trigeminal ganglia from Zymosan and CFA
models. Trigeminal ganglia were homogenised using the stainless steel bead-based TissueL-
yser II system (Qiagen, Manchester, UK) and total RNA was extracted using the RNAEasy
kit (Qiagen, Manchester, UK), according to the manufacturer’s instructions. The RNA
concentration as well as quality were measured using the Nanodrop 2000 Spectropho-
tometer where absorbance ratios for the A260/280 and A260/230 values between 1.8–2.2
were deemed acceptable. A total of 500 ng of RNA was reverse transcribed using the
Superscript ViLO cDNA synthesis reagent (Invitrogen, Loughborough UK). qPCR was
performed in triplicate using the 7900HT Real-Time PCR instrument (Applied Biosystems,
Massachusetts, USA). PowerUp SYBR Green Master Mix kit (Thermo Fisher Scientific,
Loughborough, UK) was used, and the reaction settings used were as per manufacturer’s
instructions. The melt curve was analysed to ensure product specificity after each amplifi-
cation. Primers design was performed according to the MIQE guidelines [43] and details
previously described [44].

4.4. Immunofluorescence Staining

Trigeminal ganglia (TGs) were dissected and fixed in 4% paraformaldehyde for 4 h at
4 ◦C before being stored in 20% sucrose solution overnight at 4 ◦C. These samples were then
embedded into OCT and blocks were stored at −80 ◦C until further processing. Sections of
20 µm were processed on a cryostat (CM1900, Leica Biosystems, Milton Keynes, UK). Sec-
tions were allowed to dry for 1 h at room temperature before rinsing the slides in TBS-0.25%
tween 20 (TBST) for 10 min. The sections were then permeabilized in TBST-0.3% Triton-X
for 30 min before further rinsing and blocking in 10% goat serum in TBST for 1 h at room
temperature. Primary antibodies used were rabbit anti-Iba1 (1:500, 019-19741, Wako Chem,
Osaka, Japan) and sheep anti-CGRP (1:100, BML-CA1137-0100, Enzo Life Sciences, Exeter,
UK) and were incubated overnight at 4 ◦C. Following rinsing, sections were incubated
at room temperature for 1–2 h in secondary antibodies: AlexaFluor®488 Goat anti-rabbit
IgG (1:200, A11008, Thermo Fisher Scientific, Loughborough, UK), AlexaFluor®594 donkey
anti-sheep IgG (1:200, A11016, Thermo Fisher Scientific, Loughborough, UK) before a final
rinse and mounting the coverslips using the ProLong™ Gold Antifade mountant with
DAPI (P36931, Thermo Fisher Scientific, Loughborough, UK) and slides were allowed to
dry overnight at room temperature. The sections were imaged on the Leica DM5500 mi-
croscope (Leica Biosystems, Milton Keynes, UK) and the acquisition parameters remained
constant for all of the imaged samples.

4.5. Quantification of Iba1 and CGRP Immunofluorescence

Iba1 and CGRP immunofluorescence intensity for each treatment group was quantified
using the Fiji Image J software. All images were taken at ×20 magnification and exposure
settings were kept constant to ensure that reliable comparisons could be made between
treatment groups. Images were first de-speckled to reduce noise. Images were then
converted to greyscale and upper and lower thresholds were set to exclude background
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and bright artefacts. Particle analysis was used to measure the mean pixel intensity across
all images.

4.6. Statistics

Data were represented as mean ± SEM and were analysed on Prism 8 software
(GraphPad Software, San Diego, CA, USA). Repeated measures, one-way, or two-way
ANOVA was performed with Bonferroni’s or Tukey post hoc test, as appropriate. A value
of p < 0.05 was considered statistically significant. The area under the curve analysis was
calculated on the Prism 5 software (GraphPad Software, San Diego, CA, USA) and the unit
was defined as No. of events.day (for the behavioural observations) or flux.day (for the
cheek blood flow). For experiments involving drug treatments, we used the same vehicle
group, as the drugs were made up in the same vehicle and this allowed us to reduce the
number of mice used overall, according to the 3Rs principles.

5. Conclusions

In conclusion, both NLRP3 and TRPA1 have a critical but distinct role in the pain
observed in this model. The results clearly demonstrate that TRPA1 is key in mediating the
hyper-nociception acting mainly within the neuronal component of the orofacial sensory
nerves and is in keeping with the concept that TRPA1 plays a primary role in mediating
TMD-induced pain. We made the discovery that the inflammasome inhibitor MCC950 has
a similar inhibitory effect on hyper-nociception and a more significant role in altering the
underlying IL-1β-mediated inflammation in the TMJ, which then activates the appropri-
ate sensory nerve pathways that contribute to pain. Thus, we identify drug targets for
two pathways that ameliorate the hyper-nociception during both the development and
maintenance phases in these models, each important for further investigation, particularly
the formation of the inflammasome, in addition to the activation of the sensory nerves by
TRPA1.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14111073/s1, Figure S1: Western blotting for NLRP3 expression in CFA-injected TMJs
collected at days 5 or 14 in response to repeated treatments with a TRPA1 antagonist (A967079) or an
NLRP3 antagonist (MCC950). A, B) NLRP3 in TMJs collected at days 5 or 14; Figure S2: Proposed
cross talks of TRPA1 and NLRP3 inflammasome in CFA induced TMJ inflammation and pain.
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