Insects as Diet and Therapy: Perspectives on Their Use for Combating Diabetes Mellitus in Tanzania
Abstract
:1. Introduction
2. Diabetes Mellitus
3. Diet and Diabetes
4. Traditional Medicine and Diabetes
5. Insects and Traditional Medicine
5.1. Entomophagy
5.2. Entomotherapy
5.3. Potential of Entomotherapy in the Combat against T2DM and Related Complicated Disorders
6. Perspectives on the Use of Insects to Prevent and/or Cure Diabetes in Tanzania
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tan, S.Y.; Mei Wong, J.L.; Sim, Y.J.; Wong, S.S.; Mohamed Elhassan, S.A.; Tan, S.H.; Ling Lim, G.P.; Rong Tay, N.W.; Annan, N.C.; Bhattamisra, S.K.; et al. Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 364–372. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; IDF: Brussels, Belgium, 2019. [Google Scholar]
- Sami, W.; Ansari, T.; Butt, N.S.; Hamid, M.R.A. Effect of diet on type 2 diabetes mellitus: A review. Int. J. Health Sci. 2017, 11, 65–71. [Google Scholar]
- Kayombo, E.J.; Mahunnah, R.L.A.; Uiso, F.C. Prospects and challenges of medicinal plants conservation and traditional medicine in Tanzania. Anthropology 2013, 1, 1000108. [Google Scholar] [CrossRef]
- Kolling, M.; Winkley, K.; von Deden, M. “For someone who’s rich, it’s not a problem”. Insights from Tanzania on diabetes health-seeking and medical pluralism among Dar es Salaam’s urban poor. Global. Health 2010, 6, 8. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, B.K.; Srivastava, A.K. Diabetes mellitus: Complications and therapeutics. Med. Sci. Monit. 2006, 12, RA130–RA147. [Google Scholar] [PubMed]
- ADA 2. Classification and Diagnosis of Diabetes. Diabetes Care 2015, 38, S8–S16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marrero, D.G. The Prevention of Type 2 Diabetes: An Overview. J. Diabetes Sci. Technol. 2009, 3, 756–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunkley, A.J.; Bodicoat, D.H.; Greaves, C.J.; Russell, C.; Yates, T.; Davies, M.J.; Khunti, K. Diabetes Prevention in the Real World: Effectiveness of Pragmatic Lifestyle Interventions for the Prevention of Type 2 Diabetes and of the Impact of Adherence to Guideline Recommendations. Diabetes Care 2014, 37, 922–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knowler, W.C.; Barrett-Connor, E.; Fowler, S.E.; Hamman, R.F.; Lachin, J.M.; Walker, E.A.; Nathan, D.M. Reduction in the Incidence of Type 2 Diabetes with Lifestyle Intervention or Metformin. N. Engl. J. Med. 2002, 346, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Jones, R.; Freeman, C.; Woods, H.B.; Gillett, M.; Goyder, E.; Payne, N. Can diabetes prevention programmes be translated effectively into real-world settings and still deliver improved outcomes? A synthesis of evidence. Diabet. Med. 2013, 30, 3–15. [Google Scholar] [CrossRef]
- Ackermann, R.T.; Finch, E.A.; Brizendine, E.; Zhou, H.; Marrero, D.G. Translating the Diabetes Prevention Program into the Community. Am. J. Prev. Med. 2008, 35, 357–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psaltopoulou, T.; Ilias, I.; Alevizaki, M. The Role of Diet and Lifestyle in Primary, Secondary, and Tertiary Diabetes Prevention: A Review of Meta-Analyses. Rev. Diabet. Stud. 2010, 7, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Yamada, S. Paradigm Shifts in Nutrition Therapy for Type 2 Diabetes. Keio J. Med. 2017, 66, 33–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and management of type 2 diabetes: Dietary components and nutritional strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef] [Green Version]
- Ojo, O. Dietary Intake and Type 2 Diabetes. Nutrients 2019, 11, 2177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Traditional Health Strategy: 2014–2023; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Cheng, D.M.; Kuhn, P.; Poulev, A.; Rojo, L.E.; Lila, M.A.; Raskin, I. In vivo and in vitro antidiabetic effects of aqueous cinnamon extract and cinnamon polyphenol-enhanced food matrix. Food Chem. 2012, 135, 2994–3002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gometi, A.S.; Ogugua, V.N.; Odo, C.E.; Joshua, P.E. Comparative effects of some medicinal plants on blood glucose concentration and lipid levels in alloxan-induced diabetic rats. African J. Biotechnol. 2014, 13, 786–791. [Google Scholar] [CrossRef] [Green Version]
- Kayombo, E.J.; Uiso, F.C.; Mahunnah, R. LA Experience on healthcare utilization in seven administrative regions of Tanzania. J. Ethnobiol. Ethnomed. 2012, 8, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moshi, M.J.; Mbwambo, Z.H. Experience of Tanzanian Traditional Healers in the Management of Non-insulin Dependent Diabetes Mellitus. Pharm. Biol. 2002, 40, 552–560. [Google Scholar] [CrossRef]
- Lenaerts, M.; Meersman, F.; Verheyen, G.R.; Van Miert, S. Consumer perception of insects in non-food products. J. Insects Food Feed 2019. [Google Scholar] [CrossRef]
- Tiencheu, B.; Womeni, H.M. Entomophagy: Insects as Food. In Insect Physiology and Ecology; InTech: London, UK, 2017. [Google Scholar]
- Rumpold, B.A.; Schlüter, O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013, 57, 802–823. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-K.; Yong, H.I.; Kim, Y.-B.; Kim, H.-W.; Choi, Y.-S. Edible Insects as a Protein Source: A Review of Public Perception, Processing Technology, and Research Trends. Food Sci. Anim. Resour. 2019, 39, 521–540. [Google Scholar] [CrossRef] [Green Version]
- Verheyen, G.R.; Ooms, T.; Vogels, L.; Vreysen, S.; Bovy, A.; Van Miert, S.; Meersman, F. Insects as an alternative source for the production of fats for cosmetics. J. Cosmet. Sci. 2018, 69, 187–202. [Google Scholar] [PubMed]
- Truzzi, C.; Giorgini, E.; Annibaldi, A.; Antonucci, M.; Illuminati, S.; Scarponi, G.; Riolo, P.; Isidoro, N.; Conti, C.; Zarantoniello, M.; et al. Fatty acids profile of black soldier fly (Hermetia illucens): Influence of feeding substrate based on coffee-waste silverskin enriched with microalgae. Anim. Feed Sci. Technol. 2020, 259, 114309. [Google Scholar] [CrossRef]
- Ritter, K.S. Cholesterol and insects. Food Insects Newsl. 1990, 3, 1–8. [Google Scholar]
- De Castro, R.J.S.; Ohara, A.; Aguilar, J.G.D.S.; Domingues, M.A.F. Nutritional, functional and biological properties of insect proteins: Processes for obtaining, consumption and future challenges. Trends Food Sci. Technol. 2018, 76, 82–89. [Google Scholar] [CrossRef]
- Ayensu, J.; Annan, R.A.; Edusei, A.; Lutterodt, H. Beyond nutrients, health effects of entomophagy: A systematic review. Nutr. Food Sci. 2019, 49, 2–17. [Google Scholar] [CrossRef]
- Van Huis, A.; Van Itterbeeck, J.; Klunder, H.; Mertens, E.; Halloran, A.; Muir, G.; Vantomme, P. Nutritional values of insects for human consumption. In Edible Insects: Future Prospects for Food and Feed Security; FAO: Rome, Italy, 2013; pp. 67–80. [Google Scholar]
- Ramos-Elorduy, J. Insects a hopeful food source. In Ecological Implications of Minilivestock. Potential of Insects, Rodents, Frogs and Snails.; Paoletti, M., Ed.; Science Publishers: Enfield, CT, USA, 2005; pp. 263–291. [Google Scholar]
- Womeni, H.M.; Linder, M.; Tiencheu, B.; Mbiapo, F.T.; Villeneuve, P.; Fanni, J.; Parmentier, M. Oils of insects and larvae consumed in Africa: Potential sources of polyunsaturated fatty acids. Oléagineux, Corps Gras, Lipides 2009, 16, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Mutungi, C.; Irungu, F.G.; Nduko, J.; Mutua, F.; Affognon, H.; Nakimbugwe, D.; Ekesi, S.; Fiaboe, K.K.M. Postharvest processes of edible insects in Africa: A review of processing methods, and the implications for nutrition, safety and new products development. Crit. Rev. Food Sci. Nutr. 2019, 59, 276–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Figueirêdo, R.E.C.R.; Vasconcellos, A.; Policarpo, I.S.; Alves, R.R.N. Edible and medicinal termites: A global overview. J. Ethnobiol. Ethnomed. 2015, 11, 29. [Google Scholar] [CrossRef] [Green Version]
- Meyer-Rochow, V.B. Therapeutic arthropods and other, largely terrestrial, folk-medicinally important invertebrates: A comparative survey and review. J. Ethnobiol. Ethnomed. 2017, 13, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherniack, E.P. Bugs as drugs, Part 1: Insects: The “new” alternative medicine for the 21st century? Altern. Med. Rev. 2010, 15, 124–135. [Google Scholar] [PubMed]
- Seabrooks, L.; Hu, L. Insects: An underrepresented resource for the discovery of biologically active natural products. Acta Pharm. Sin. B 2017, 7, 409–426. [Google Scholar] [CrossRef] [PubMed]
- Innocent, E. Trends and challenges towards integration of traditional medicine in formal health care system: Historical perspectives and An Appraisal of education curricula in Sub-Sahara Africa. J. Intercult. Ethnopharmacol. 2016, 5, 312. [Google Scholar] [CrossRef] [PubMed]
- Costa-Neto, E. Entomotherapy, or the medicinal use of insects. J. Ethnobiol. 2005, 25, 93–114. [Google Scholar] [CrossRef]
- Chen, X.; Feng, Y.; Chen, Z. Common edible insects and their utilization in China. Entomol. Res. 2009, 39, 299–303. [Google Scholar] [CrossRef]
- Zacour, A.C.; Silva, M.E.; Cecon, P.R.; Bambirra, E.A.; Vieira, E.C. Effect of Dietary Chitin on Cholesterol Absorption and Metabolism in Rats. J. Nutr. Sci. Vitaminol. 1992, 38, 609–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šimůnek, J.; Bartoňová, H. Effect of Dietary Chitin and Chitosan on Cholesterolemia of Rats. Acta Vet. Brno 2005, 74, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Nallely, M.; Esmeralda, V.; Merari, A.; Gisela, G.; Josefina, R.; Minarda, D.; Carlos, R. Is ingestion of Thasus gigas (Xamues) an alimentary culture or an auxiliary treatment for type II diabetes? African J. Tradit. Complement. Altern. Med. 2014, 11, 131. [Google Scholar] [CrossRef] [Green Version]
- Sherman, R.A. Maggot Therapy for Treating Diabetic Foot Ulcers Unresponsive to Conventional Therapy. Diabetes Care 2003, 26, 446–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danneels, E.L.; Rivers, D.B.; De Graaf, D.C. Venom Proteins of the Parasitoid Wasp Nasonia vitripennis: Recent Discovery of an Untapped Pharmacopee. Toxins 2010, 2, 494–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratcliffe, N.; Azambuja, P.; Mello, C.B. Recent Advances in Developing Insect Natural Products as Potential Modern Day Medicines. Evidence-Based Complement. Altern. Med. 2014, 2014, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puerto Galvis, C.E.; Vargas Méndez, L.Y.; Kouznetsov, V.V. Cantharidin-Based Small Molecules as Potential Therapeutic Agents. Chem. Biol. Drug Des. 2013, 82, 477–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pemberton, R.W. Insects and other arthropods used as drugs in Korean traditional medicine. J. Ethnopharmacol. 1999, 65, 207–216. [Google Scholar] [CrossRef]
- Van Huis, A. Medical and stimulating properties ascribed to arthropods and their products in sub-Saharan Africa. In Les Insectes Dans la Tradition Orale—Insects in Oral Literature and Traditions.; Motte-Florac, E., Thomas, J.M.C.P., Eds.; Peeters Publishers: Leuven, Belgium, 2002; pp. 367–382. [Google Scholar]
- Crespo, R.; Villaverde, M.L.; Girotti, J.R.; Güerci, A.; Juárez, M.P.; de Bravo, M.G. Cytotoxic and genotoxic effects of defence secretion of Ulomoides dermestoides on A549 cells. J. Ethnopharmacol. 2011, 136, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, D.D. Chitosan, cholesterol lowering, and caloric loss. Agro Food Ind. Hi. Tech. 2003, 14, 32–35. [Google Scholar]
- Figueiredo, A.C.; de Sanctis, D.; Gutierrez-Gallego, R.; Cereija, T.B.; Macedo-Ribeiro, S.; Fuentes-Prior, P.; Pereira, P.J.B. Unique thrombin inhibition mechanism by anophelin, an anticoagulant from the malaria vector. Proc. Natl. Acad. Sci. USA 2012, 109, E3649–E3658. [Google Scholar] [CrossRef] [Green Version]
- Lacroix, I.M.E.; Dávalos Terán, I.; Fogliano, V.; Wichers, H.J. Investigation into the potential of commercially available lesser mealworm (A. diaperinus) protein to serve as sources of peptides with DPP-IV inhibitory activity. Int. J. Food Sci. Technol. 2019, 54, 696–704. [Google Scholar] [CrossRef] [Green Version]
- Matheswaran, P.; Raja, L.; Gani, S.B. Anti-diabetic and anti-obesity effect of functionally active proteins obtained from seven edible insects. Int. J. Pharm. Sci. Res. 2020, 11, 4470–4478. [Google Scholar]
- Mousavi, S.M.; Imani, S.; Haghighi, S.; Mousavi, S.E.; Karimi, A. Effect of Iranian Honey bee (Apis mellifera) Venom on Blood Glucose and Insulin in Diabetic Rats. J. Arthropod. Borne. Dis. 2012, 6, 136–143. [Google Scholar]
- Prakash, S.; Bhargava, H.R. Apis cerana Bee Venom: It’s Anti-Diabetic and Anti-Dandruff Activity against Malassezia furfur. World Appl. Sci. J. 2014, 32, 343–348. [Google Scholar]
- Morgan, N.G.; Montague, W. Stimulation of insulin secretion from isolated rat islets of Langerhans by melittin. Biosci. Rep. 1984, 4, 665–671. [Google Scholar] [CrossRef]
- Hossen, M.S.; Gan, S.H.; Khalil, M.I. Melittin, a Potential Natural Toxin of Crude Bee Venom: Probable Future Arsenal in the Treatment of Diabetes Mellitus. J. Chem. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.-Y.; Zhao, J.-G.; Wei, Z.-G.; Zhang, Y.-Q. The renal protection of flavonoid-rich ethanolic extract from silkworm green cocoon involves in inhibiting TNF-α-p38 MAP kinase signalling pathway in type 2 diabetic mice. Biomed. Pharmacother. 2019, 118, 109379. [Google Scholar] [CrossRef] [PubMed]
- Sarasa Bharati, A.; Ali, M. Effect of crude extract of Bombyx mori coccoons in hyperlipidemia and atherosclerosis. J. Ayurveda Integr. Med. 2011, 2, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dettner, K. Potential Pharmaceuticals from Insects and Their Co-Occurring Microorganisms. In Insect Biotechnology; Springer: Dordrecht, The Netherlands, 2011; pp. 95–119. [Google Scholar]
- Kang, N.-H.; Lee, W.K.; Yi, B.-R.; Lee, H.-R.; Park, M.-A.; Park, S.-K.; Park, H.K.; Choi, K.-C. Risk of cardiovascular disease is suppressed by dietary supplementation with protamine and chitooligosaccharide in Sprague-Dawley rats. Mol. Med. Rep. 2013, 7, 127–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nongonierma, A.B.; FitzGerald, R.J. Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: A review. Innov. Food Sci. Emerg. Technol. 2017, 43, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Deacon, C.F.; Lebovitz, H.E. Comparative review of dipeptidyl peptidase-4 inhibitors and sulphonylureas. Diabetes Obes. Metab. 2016, 18, 333–347. [Google Scholar] [CrossRef] [Green Version]
- Elmarakby, A.A.; Sullivan, J.C. Relationship between Oxidative Stress and Inflammatory Cytokines in Diabetic Nephropathy. Cardiovasc. Ther. 2012, 30, 49–59. [Google Scholar] [CrossRef] [PubMed]
Edible Insect | Protein (%) | Fat (%) | Fiber (%) | NFE (%) | Ash (%) | Energy Content (Kcal/100 g) |
---|---|---|---|---|---|---|
Blattodea (cockroaches) | 57.30 | 29.90 | 5.31 | 4.53 | 2.94 | / |
Coleoptera (beetles, grubs) | 40.69 | 33.40 | 10.74 | 13.20 | 5.07 | 490.30 |
Diptera (flies) | 49.48 | 22.75 | 13.56 | 6.01 | 10.31 | 409.78 |
Hemiptera (true bugs) | 48.33 | 30.26 | 12.40 | 6.08 | 5.03 | 478.99 |
Hymenoptera (ants, bees) | 46.47 | 25.09 | 5.71 | 20.25 | 3.51 | 484.45 |
Isoptera (termites) | 35.34 | 32.74 | 5.06 | 22.84 | 5.88 | / |
Lepidoptera (butterflies, moths) | 45.38 | 27.66 | 6.60 | 18.76 | 4.51 | 508.89 |
Odonata (dragonflies, damselflies) | 55.23 | 19.83 | 11.79 | 4.63 | 8.53 | 431.33 |
Orthoptera (crickets, grasshoppers, locusts) | 61.32 | 13.41 | 9.55 | 12.98 | 3.85 | 426.25 |
Insect Order | General Examples | Selection of Diseases Treated |
---|---|---|
Hymenoptera | Bees, wasps, ants | Rheumatic pain, arthritis, headache, haemorrhoids, mumps, asthma, dizziness, colds, paralysis, ulcers, acne |
Coleoptera | Beetles | Kidney pain, rheumatism, ear and tooth aches, wound healing, hair growth |
Blattodea | Cockroaches | Regulate menstruation, control urination, renal colics, asthma, stop bleeding, heal bone fractures, remove swellings |
Phasmida | Walking stick | Asthma, upset stomach, muscle pain |
Diptera | Flies, mosquitoes | Eye cysts, baldness, wound healing, osteomyelitis |
Hemiptera | True bugs | Goiter, tuberculosis, cough, skin disease, liver, stomach, and kidney diseases |
Lepidoptera | Butterflies, moths | Asthma, earache, hemorrhage after delivery, shortness of breath, weak kidneys, impotence |
Orthoptera | Grasshoppers, crickets, katydids | Kidney, ulcerating, and fever complaints, venereal diseases, urinary problems, mental issues, wound healing, liver disorders, anaemia, dental caries |
Isoptera | Termites | Asthma, hoarseness and sinusitis, wounds, malnutrition, heart conditions, anaemia, anti-diarrhoea, tuberculosis, prevent miscarriages |
Species | Molecule | Examples | Use |
---|---|---|---|
Hymenoptera: sawfly | Phloroglucinol derivatives | Macrocarpal, grandinol | Antimicrobial action |
Hymenoptera: iron ants | Tetraponerines | Several structures identified | Cytotoxicity against tumor cell lines |
Hymenoptera: fire ants | Alkaloids | Solenopsin A | Antiangiogenic activity by selective inhibition of protein kinase B (AKT) cancer treatment |
Hymenoptera: red ants | Alkaloids | N-(2-hydroxyethyl)-benzamide | Antibacterial action |
Hymenoptera: Chinese black ants | Dopamine derivatives | Polyrhadopamines, trolline, etc. | Treatment for cardiovascular, neurological, oncological, and renal diseases; rheumatoid arthritis |
Hymenoptera: Chinese black ants | N-containing molecules | 5-(3-indolylmethyl)-nicotinamide, β-carboline-3-carboxamide, 3-hydroxypyridine, etc. | Rheumatoid arthritis therapy, kidney problems, anti-inflammatory action |
Hymenoptera: wasp | Polybiosides | Polybiosides α and β | Neuroactive effect/stimulation of neurons |
Catharsius molossus | N-acetyldopamine dimers | Molossusamides A, B, C | Anti-inflammation |
Coleoptera: tenebrionidae | Phenolics | Blapsols A-D; dopamine dimers | Treatment of pathogenic inflammation by inhibiting COX enzymes |
Coleoptera: bruchidae larvae | Lipids | Dorsamin-A763, A737, A765, A739, A767 | Antioxidant effects |
Coleoptera: Meloid beetles | Terpene-related compounds | Cantharidin, norcantharidin, 5,6-dehydronorcantharidin, hydroxycantharidinimide | Derivatives with less toxicity are used in tumor therapy; potential use as vasoconstrictor and positive inotrope for cardiac failure; treatment of warts and molluscum |
Blattodea: P. americana | Isocoumarins | Periplatins A-D | Cytotoxic to cancer cells; improvement in patients with sepsis |
Blattodea: Polyphaga plancyi | Phenolics/N-containing compounds | Plancyols A and B, plancypyrazine A, plancyamide B | Treatment of cancer |
Hemiptera: Chinese stinkbug | N-acetyl-dopamine derivatives | Aspongamide A, aspongopusamides A-D | Chronic kidney disease; COX2 inhibition |
Hemiptera: Chinese stinkbug | Sesquiterpenoids and other small molecules | Aspongnoids A-D, asponguanines A-D, aspongadenines A-B, aspongpyrazines A-B, aspongester A | Promotion of proliferation of neural stem cells |
Orthoptera: Texas grasshopper | Alkaloids | Pancratistatin, narciclasine, ungeremine | Anticancer agents |
Lepidoptera: Taiwan butterfly | Phenanthrene dicarboxylic acid | Papilistatin | Cytotoxicity against pancreatic cancer cells |
Insect | Substance | Disorder | Mechanism | Reference |
---|---|---|---|---|
Ants | / | Diabetes | Diagnostic value if ants feed on a person’s urine | van Huis, 2002 [50] |
Xamues (Thasus gigas) | Whole insect | Diabetes | / | Nallely et al., 2014 [44] |
Beetles (Ulomoides dermestoides) | Whole insect | Diabetes | / | Crespo et al., 2011 [51] |
All insects | Chitin/chitosan | CVD | Total and LDL cholesterol lowering effect | Gallagher, 2003 [52] |
Anopheles mosquitoes | Anopheline | Cardiac disease | Antithrombotics | Figueiredo et al., 2012 [53] |
Lesser mealworm (A. diaperinus) | Bioactive peptides | Diabetes, obesitas | Inhibition of DPP-IV | Lacroix et al., 2019 [54] |
Cricket, locust, silkworm, bamboo worm, house fly, mealworm, weaver ant | Bioactive peptides | Diabetes, obesitas | Inhibition of α-glucosidase and α-lipase | Matheswaran et al., 2020 [55] |
Bees (Apis mellifera) | Venom | Diabetes | Increase in insulin level | Mousavi et al., 2012 [56] |
Bees (Apis cerana) | Bee stings | Diabetes | Lowering blood glucose, triglyceride, and cholesterol levels | Prakash and Bhargava, 2014 [57]; Seabrooks and Hu, 2017 [38] |
Bees | Mellitin | Diabetes | Stimulation of pancreatic beta cells to increase insulin secretion | Morgan et al., 1984 [58]; Hossen et al., 2017 [59] |
Silkworm cocoon | Ethanol extract | Diabetic nephropathy | Reduction in oxidative stress and fibrosis | Wang et al., 2019 [60] |
Silkworm cocoon | Ethanol extract | Hypercholesterolemia and atherosclerosis | Lipid lowering capability and lowering extent of atherosclerotic lesions | Ali and Arumugam, 2011 [61] |
Ants (Pogonomyrmex badius) | Cholesteryl ester transfer protein inhibitor | CHD | Raises HDL and lowers LDL | Dettner, 2011 [62] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verheyen, G.R.; Pieters, L.; Maregesi, S.; Van Miert, S. Insects as Diet and Therapy: Perspectives on Their Use for Combating Diabetes Mellitus in Tanzania. Pharmaceuticals 2021, 14, 1273. https://doi.org/10.3390/ph14121273
Verheyen GR, Pieters L, Maregesi S, Van Miert S. Insects as Diet and Therapy: Perspectives on Their Use for Combating Diabetes Mellitus in Tanzania. Pharmaceuticals. 2021; 14(12):1273. https://doi.org/10.3390/ph14121273
Chicago/Turabian StyleVerheyen, Geert René, Luc Pieters, Sheila Maregesi, and Sabine Van Miert. 2021. "Insects as Diet and Therapy: Perspectives on Their Use for Combating Diabetes Mellitus in Tanzania" Pharmaceuticals 14, no. 12: 1273. https://doi.org/10.3390/ph14121273
APA StyleVerheyen, G. R., Pieters, L., Maregesi, S., & Van Miert, S. (2021). Insects as Diet and Therapy: Perspectives on Their Use for Combating Diabetes Mellitus in Tanzania. Pharmaceuticals, 14(12), 1273. https://doi.org/10.3390/ph14121273