Metabolite Profiling of Methanolic Extract of Gardenia jaminoides by LC-MS/MS and GC-MS and Its Anti-Diabetic, and Anti-Oxidant Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield, Total Phenol and Total Flavonoids Contents
2.2. Antioxidant Activities
2.3. Enzyme Inhibitory Activities
2.4. Cytotoxicity
2.5. Effect of MeOH-E on Cell Viability and Glucose Uptake in HepG2 Cell Line
Fluorescent Assay
2.6. Metabolite Profiling of the MeOH-E of G. jasminoides
2.6.1. Tentative Identification of Compounds by LC-MS/MS
Iridoids
Monoterpenoids
Flavonoids
Carotenoids
Organic Acids and Others
2.6.2. Tentative Identification of the Compounds by GC-MS
2.7. In Silico Screening of Enzyme Inhibitors
2.7.1. Protein and Ligand Preparation
2.7.2. Molecular Docking
Molecular Interaction with α-Amylase
Molecular Interaction with α-Glucosidase
3. Materials and Methods
3.1. Chemicals, Cell Line, and Maintenance
3.2. Preparation of Desiccative Ripe Fruits Extract
3.3. Antioxidant Activities
3.4. Enzyme Inhibition Activities
3.5. Cell Culture Experiments
3.5.1. Cytotoxicity
3.5.2. Determination of Glucose Uptake
3.6. UHPLC-QTOF-MS/MS Analysis
3.7. Gas Chromatography Analysis
3.8. Molecular Docking
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behl, T.; Kotwani, A. Anti-hyperglycemic effect of Terminalia catappa fruit extract in streptozotocin-induced diabetic rats. Int. J. Pharm. Pharm. Sci. 2017, 9, 212. [Google Scholar] [CrossRef]
- Apoorva, S.M.; Sridhar, N.; Suchetha, A. Prevalence and severity of periodontal disease in type 2 diabetes mellitus (non-insulin-dependent diabetes mellitus) patients in Bangalore city: An epidemiological study. J. Indian Soc. Periodontol. 2013, 17, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Ram Niwas, J.; Gyan Chand, J. Evaluation of Antidiabetic Activity of Hydroalcoholic Extract of Cassia fistula Linn. pod in Streptozotocin-Induced Diabetic Rats. Pharmacogn. J. 2017, 9, 599–606. [Google Scholar]
- Fargion, S.; Dongiovanni, P.; Guzzo, A.; Colombo, S.; Valenti, L.; Fracanzani, A.L. Iron and insulin resistance. Aliment. Pharmacol. Ther. 2005, 22, 61–63. [Google Scholar] [CrossRef]
- Teng, H.; Yuan, B.; Gothai, S.; Arulselvan, P.; Song, X.; Chen, L. Dietary triterpenes in the treatment of type 2 diabetes: To date. Trends Food Sci. Technol. 2018, 72, 34–44. [Google Scholar] [CrossRef]
- Cade, W.T. Diabetes-Related Microvascular and Macrovascular Diseases in the Physical Therapy Setting. Phys. Ther. 2008, 88, 1322–1335. [Google Scholar] [CrossRef] [Green Version]
- Chawla, R.; Chawla, A.; Jaggi, S. Microvasular and macrovascular complications in diabetes mellitus: Distinct or continuum? Indian J. Endocrinol. Metab. 2016, 20, 546–551. [Google Scholar] [CrossRef]
- Yu, Z.; Yin, Y.; Zhao, W.; Liu, J.; Chen, F. Anti-diabetic activity peptides from albumin against α-glucosidase and α-amylase. Food Chem. 2012, 135, 2078–2085. [Google Scholar] [CrossRef]
- Khanal, P.; Patil, B.M. α-Glucosidase inhibitors from Duranta repens modulate p53 signaling pathway in diabetes mellitus. Adv. Tradit. Med. 2020, 20, 1–12. [Google Scholar] [CrossRef]
- Wang, P.-C.; Zhao, S.; Yang, B.-Y.; Wang, Q.; Kuang, H. Anti-diabetic polysaccharides from natural sources: A review. Carbohydr. Polym. 2016, 148, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Aispuro-Pérez, A.; López-Ávalos, J.; García-Páez, F.; Montes-Avila, J.; Picos-Corrales, L.A.; Ochoa-Terán, A.; Bastidas, P.; Montaño, S.; Calderón-Zamora, L.; Osuna-Martínez, U.; et al. Synthesis and molecular docking studies of imines as α-glucosidase and α-amylase inhibitors. Bioorganic Chem. 2020, 94, 103491. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Report on Traditional and Complementary Medicine; WHO: Geneva, Switzerland, 2019; ISBN 978-92-4-151543-6. [Google Scholar]
- Chen, L.; Li, M.; Yang, Z.; Tao, W.; Wang, P.; Tian, X.; Li, X.; Wang, W. Gardenia jasminoides Ellis: Ethnopharmacology, phytochemistry, and pharmacological and industrial applications of an important traditional Chinese medicine. J. Ethnopharmacol. 2020, 257, 112829. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yang, C.; Song, F.; Liu, Z.; Liu, S. The therapeutic effectiveness of Gardenia jasminoides on type 2 diabetes rats: Mass spectrometry-based metabolomics approach. J. Agric. Food Chem. 2020, 68, 9673–9682. [Google Scholar] [CrossRef] [PubMed]
- Stasiak, N.; Kukuła-Koch, W.; Głowniak, K. Modern industrial and pharmacological applications of indigo dye and its de-rivatives—A review. Acta Pol. Pharm. Drug Res. 2014, 71, 215–221. [Google Scholar]
- Xiao, W.; Li, S.; Wang, S.; Ho, C.-T. Chemistry and bioactivity of Gardenia jasminoides. J. Food Drug Anal. 2017, 25, 43–61. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-L.; Shi, B.-Y.; Xiang, H.; Hou, W.-J.; Qin, X.-M.; Tian, J.-S.; Du, G. 1H NMR-based metabolic profiling of liver in chronic unpredictable mild stress rats with genipin treatment. J. Pharm. Biomed. Anal. 2015, 115, 150–158. [Google Scholar] [CrossRef]
- Wang, G.-F.; Wu, S.-Y.; Xu, W.; Jin, H.; Zhu, Z.-G.; Li, Z.-H.; Tian, Y.; Zhang, J.-J.; Rao, J.-J.; Wu, S.-G. Geniposide inhibits high glucose-induced cell adhesion through the NF-κB signaling pathway in human umbilical vein endothelial cells. Acta Pharmacol. Sin. 2010, 31, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.Q.; Cormier, F.; Farnworth, E.; Tong, A.V.H.; Van Calsteren, M.-R. Antioxidant Properties of Crocin from Gardenia jasminoides Ellis and Study of the Reactions of Crocin with Linoleic Acid and Crocin with Oxygen. J. Agric. Food Chem. 2000, 48, 1455–1461. [Google Scholar] [CrossRef]
- Higashino, S.; Sasaki, Y.; Giddings, J.C.; Hyodo, K.; Sakata, S.F.; Matsuda, K.; Horikawa, Y.; Yamamoto, J. Crocetin, a Carotenoid from Gardenia jasminoides Ellis, Protects against Hypertension and Cerebral Thrombogenesis in Stroke-prone Spontaneously Hypertensive Rats. Phytother. Res. 2014, 28, 1315–1319. [Google Scholar] [CrossRef]
- Dorman, H.; Peltoketo, A.; Hiltunen, R.; Tikkanen, M. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceae herbs. Food Chem. 2003, 83, 255–262. [Google Scholar] [CrossRef]
- Juma, B.F.; Majinda, R.R.T. Constituents of Gardenia volkensii: Their brine shrimp lethality and DPPH radical scavenging properties. Nat. Prod. Res. 2007, 21, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Debnath, T.; Park, P.-J.; Nath, N.C.D.; Samad, N.B.; Park, H.W.; Lim, B. Antioxidant activity of Gardenia jasminoides Ellis fruit extracts. Food Chem. 2011, 128, 697–703. [Google Scholar] [CrossRef]
- Sayd, S.S.; Hanan, A.A.; Taie, H.A.A.; Taha, L.S. Micropropagation, antioxidant activity, total phenolics and flavonoids con-tent of Gardenia jasminoides Ellis as affected by growth regulators. Int. J. Acad. Res. 2010, 2, 184–191. [Google Scholar]
- Gowd, V.; Bao, T.; Wang, L.; Huang, Y.; Chen, S.; Zheng, X.; Cui, S.; Chen, W. Antioxidant and antidiabetic activity of blackberry after gastrointestinal digestion and human gut microbiota fermentation. Food Chem. 2018, 269, 618–627. [Google Scholar] [CrossRef]
- Hua, D.; Luo, W.; Duan, J.; Jin, D.; Zhou, X.; Sun, C.; Wang, Q.; Shi, C.; Jiang, Z.; Wang, R.; et al. Screening and identification of potent α-glycosidase inhibitors from Gardenia jasminoides Ellis. S. Afr. J. Bot. 2018, 119, 377–382. [Google Scholar] [CrossRef]
- Saravana, P.S.; Cho, Y.-N.; Patil, M.P.; Cho, Y.-J.; Kim, G.-D.; Park, Y.B.; Woo, H.-C.; Chun, B.-S. Hydrothermal degradation of seaweed polysaccharide: Characterization and biological activities. Food Chem. 2018, 268, 179–187. [Google Scholar] [CrossRef]
- Hao, S.; Wang, J.; Li, S.; Shang, F.; Qin, Y.; Wu, T.; Bao, X.; Cao, Q.; Wang, C.; Sun, B. Preparation of Gardenia red pigment and its antineoplastic activity in multiple tumor cells. Food Biosci. 2020, 35, 100582. [Google Scholar] [CrossRef]
- Moritome, N.; Kishi, Y.; Fujii, S. Properties of red pigments prepared from geniposidic acid and amino acids. J. Sci. Food Agric. 1999, 79, 810–814. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Chelliah, R.; Shanmugam, S.; Varukattu, N.B.; Oh, D.-H.; Kathiresan, K.; Wang, M.-H. Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. J. Photochem. Photobiol. B Biol. 2018, 185, 126–135. [Google Scholar] [CrossRef]
- Wu, X.; Liu, K.; Liu, P.-C.; Liu, R. Dual AO/EB Staining to Detect Apoptosis in Osteosarcoma Cells Compared with Flow Cytometry. Med. Sci. Monit. Basic Res. 2015, 21, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Hu, X.-F.; Xin, M.-M.; Liu, H.-B.; Sun, L.; Morris-Natschke, S.L.; Chen, Y.; Lee, K.-H. Antidiabetic potential of the ethyl acetate extract of Physalis alkekengi and chemical constituents identified by HPLC-ESI-QTOF-MS. J. Ethnopharmacol. 2018, 225, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Xue, J.; Dai, Y.; Liu, H.; Chen, N.; Jia, L.; Huang, J. Inhibition of human hepatocellular carcinoma HepG2 by phthalocyanine photosensitiser PHOTOCYANINE: ROS production, apoptosis, cell cycle arrest. Eur. J. Cancer 2012, 48, 2086–2096. [Google Scholar] [CrossRef]
- Ando, T.; Nagumo, M.; Ninomiya, M.; Tanaka, K.; Linhardt, R.J.; Koketsu, M. Synthesis of coumarin derivatives and their cytoprotective effects on t -BHP-induced oxidative damage in HepG2 cells. Bioorganic Med. Chem. Lett. 2018, 28, 2422–2425. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Sun, Y.; Liu, Y.; Wang, X.; Chen, M.; Miao, F.; Zhang, W.; Yu, X.; Jin, J. Low molecular weight fluorescent probes with good photostability for imaging RNA-rich nucleolus and RNA in cytoplasm in living cells. Biomaterials 2014, 35, 2103–2112. [Google Scholar] [CrossRef]
- Zhang, L.; Mizumoto, K.; Sato, N.; Ogawa, T.; Kusumoto, M.; Niiyama, H.; Tanaka, M. Quantitative determination of apoptotic death in cultured human pancreatic cancer cells by propidium iodide and digitonin. Cancer Lett. 1999, 142, 129–137. [Google Scholar] [CrossRef]
- El Sayed, A.M.; Basam, S.M.; El-Naggar, E.-M.B.A.; Marzouk, H.S.; El-Hawary, S. LC–MS/MS and GC–MS profiling as well as the antimicrobial effect of leaves of selected Yucca species introduced to Egypt. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Kivilompolo, M.; Obůrka, V.; Hyötyläinen, T. Comparison of GC–MS and LC–MS methods for the analysis of antioxidant phenolic acids in herbs. Anal. Bioanal. Chem. 2007, 388, 881–887. [Google Scholar] [CrossRef]
- Yang, Z.-R.; Wang, Z.-H.; Tang, J.-F.; Yan, Y.; Yue, S.-J.; Feng, W.-W.; Shi, Z.-Y.; Meng, X.-T.; Peng, C.; Wang, C.-Y.; et al. UPLC-QTOF/MSE and Bioassay Are Available Approaches for Identifying Quality Fluctuation of Xueshuantong Lyophilized Powder in Clinic. Front. Pharmacol. 2018, 9, 633. [Google Scholar] [CrossRef]
- Jeong, M.S.; Park, S.; Han, E.J.; Park, S.Y.; Kim, M.J.; Jung, K.; Cho, S.-H.; Kim, S.-Y.; Yoon, W.-J.; Ahn, G.; et al. Pinus thunbergii PARL leaf protects against alcohol-induced liver disease by enhancing antioxidant defense mechanism in BALB/c mice. J. Funct. Foods 2020, 73, 104116. [Google Scholar] [CrossRef]
- Fu, Z.; Ling, Y.; Li, Z.; Chen, M.; Sun, Z.; Huang, C. HPLC-Q-TOF-MS/MS for analysis of major chemical constituents of Yinchen-Zhizi herb pair extract. Biomed. Chromatogr. 2014, 28, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Green, I.R.; Saleem, M.; Raza, M.L.; Nazir, M. Therapeutic Potential of Iridoid Derivatives: Patent Review. Inventions 2019, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Liu, M.; Wen, Q.; He, M.; Ouyang, H.; Chen, L.; Li, J.; Feng, Y.; Zhong, G.; Yang, S. Screening of anti-complement active ingredients from Eucommia ulmoides Oliv. branches and their metabolism in vivo based on UHPLC-Q-TOF/MS/MS. J. Chromatogr. B 2019, 1124, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, Y.; Zhang, C.-X.; Huang, W.-Z.; Ding, G.; Xiao, W.; Bi, Y.-A.; Xiao, W. Research on the change of chemical composition in productive process of Re Du Ning Injections by HPLC/Q-TOF MS. Biomed. Chromatogr. 2015, 30, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, X.; Yan, X.; An, L.; Luo, K.; Shao, M.; Jiang, Y.; Xie, R.; Feng, F. An untargeted metabolomics-driven approach based on LC–TOF/MS and LC–MS/MS for the screening of xenobiotics and metabolites of Zhi-Zi-Da-Huang decoction in rat plasma. J. Pharm. Biomed. Anal. 2015, 115, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, S.; Xing, J.; Liu, Z.; Song, F. Characterization of interaction property of multi-components in Gardenia jasminoides with aldose reductase by microdialysis combined with liquid chromatography coupled to mass spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 87–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Liu, S.; Zhang, X.; Xing, J.; Liu, Z.; Song, F. A strategy for identification and structural characterization of compounds from Gardenia jasminoides by integrating macroporous resin column chromatography and liquid chromatography-tandem mass spectrometry combined with ion-mobility spectrometry. J. Chromatogr. A 2016, 1452, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Dong, Q.; Liu, M.; Li, S.; Liu, T.; Wang, X.-G.; Niu, L.-Y. Screening and identification of multiple constituents and their metabolites of Zhi-zi-chi decoction in rat urine and bile by ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Biomed. Chromatogr. 2017, 31, e3978. [Google Scholar] [CrossRef]
- Wang, S.-C.; Tseng, T.-Y.; Huang, C.-M.; Tsai, T.-H. Gardenia herbal active constituents: Applicable separation procedures. J. Chromatogr. B 2004, 812, 193–202. [Google Scholar] [CrossRef]
- He, W.; Liu, X.; Xu, H.; Gong, Y.; Yuan, F.; Gao, Y. On-line HPLC-ABTS screening and HPLC-DAD-MS/MS identification of free radical scavengers in Gardenia (Gardenia jasminoides Ellis) fruit extracts. Food Chem. 2010, 123, 521–528. [Google Scholar] [CrossRef]
- Joo, Y.H.; Nam, M.H.; Chung, N.; Lee, Y.K. UPLC-QTOF-MS/MS screening and identification of bioactive compounds in fresh, aged, and browned Magnolia denudata flower extracts. Food Res. Int. 2020, 133, 109192. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, N.; Wang, Z.; Qi, Z.; Zhu, H.; Zheng, B.; Li, P.; Liu, J. Nontargeted Metabolomic Analysis of Four Different Parts of Platycodon grandiflorum Grown in Northeast China. Molecules 2017, 22, 1280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; He, M.; Gao, H.; Guo, S.; Jia, J.; Ouyang, H.; Feng, Y.; Yang, S. Strategy for rapid screening of antioxidant and anti-inflammatory active ingredients in Gynura procumbens (Lour.) Merr. based on UHPLC–Q-TOF–MS/MS and characteristic ion filtration. Biomed. Chromatogr. 2019, 33, e4635. [Google Scholar] [CrossRef] [PubMed]
- Breitmaier, E. Hemi- and Monoterpenes. In Terpenes: Flavors, Fragrances, Pharmaca, Pheromones; Wiley: Hoboken, NJ, USA, 2006; pp. 10–23. [Google Scholar] [CrossRef]
- Chen, Q.C.; Youn, U.; Min, B.-S.; Bae, K. Pyronane Monoterpenoids from the Fruit of Gardenia jasminoides. J. Nat. Prod. 2008, 71, 995–999. [Google Scholar] [CrossRef]
- Yu, Y.; Xie, Z.-L.; Gao, H.; Ma, W.-W.; Dai, Y.; Wang, Y.; Zhong, Y.; Yao, X.-S. Bioactive Iridoid Glucosides from the Fruit of Gardenia jasminoides. J. Nat. Prod. 2009, 72, 1459–1464. [Google Scholar] [CrossRef]
- Akihisa, T.; Watanabe, K.; Yamamoto, A.; Zhang, J.; Matsumoto, M.; Fukatsu, M. Melanogenesis Inhibitory Activity of Monoterpene Glycosides from Gardeniae Fructus. Chem. Biodivers. 2012, 9, 1490–1499. [Google Scholar] [CrossRef]
- Peng, K.; Yang, L.; Zhao, S.; Chen, L.; Zhao, F.; Qiu, F. Chemical constituents from the fruit of Gardenia jasminoides and their inhibitory effects on nitric oxide production. Bioorganic Med. Chem. Lett. 2013, 23, 1127–1131. [Google Scholar] [CrossRef]
- Machida, K.; Oyama, K.; Ishii, M.; Kakuda, R.; Yaoita, Y.; Kikuchi, M. Studies of the Constituents of Gardenia Species. II. Terpenoids from Gardeniae Fructus. Chem. Pharm. Bull. 2000, 48, 746–748. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Yang, Z.L.; Zhang, L.H.; Liu, S.J.; Zhang, X.T. Determination of geniposide, crocin and crocetin in different pro-cessing products of fructus Gardeniae by HPLC-ELSD. J. Chin. Med. Mater. 2011, 34, 687–690. [Google Scholar]
- Uekusa, Y.; Sugimoto, N.; Sato, K.; Yun, Y.S.; Kunugi, A.; Yamazaki, T.; Tanamoto, K.-I. Neocrocin A: A novel crocetin glycoside with a unique system for binding sugars isolated from Gardenia yellow. Chem. Pharm. Bull. 2007, 55, 1643–1646. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Li, R.; Tang, W.-J.; Meng, G.; Hu, X.-Y.; Wu, T.-N. Antidepressant-like effect of geniposide on chronic unpredictable mild stress-induced depressive rats by regulating the hypothalamus–pituitary–adrenal axis. Eur. Neuropsychopharmacol. 2015, 25, 1332–1341. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Chellia, R.; Hu, X.; Kathiresan, K.; Oh, D.-H.; Wang, M.-H. Eradication of Helicobacter pylori through the inhibition of urease and peptide deformylase: Computational and biological studies. Microb. Pathog. 2019, 128, 236–244. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, M.; Senthilkumar, A.; Venkatesalu, V. Antibacterial and antifungal efficacy of fatty acid methyl esters from the leaves of Sesuvium portulacastrum L. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 775–780. [Google Scholar] [PubMed]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Rashid, S.; Nafees, S.; Hasan, S.K.; Shahid, A.; Majed, F.; Sultana, S. Protective effect of Chlorogenic acid against methotrexate induced oxidative stress, inflammation and apoptosis in rat liver: An experimental approach. Chem. Interact. 2017, 272, 80–91. [Google Scholar] [CrossRef]
- Mccarty, M.F. A chlorogenic acid-induced increase in GLP-1 production may mediate the impact of heavy coffee consumption on diabetes risk. Med. Hypotheses 2005, 64, 848–853. [Google Scholar] [CrossRef]
- Ardestani, A.; Yazdanparast, R. Inhibitory effects of ethyl acetate extract of Teucrium polium on in vitro protein glycoxidation. Food Chem. Toxicol. 2007, 45, 2402–2411. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Slinkard, L.; Singleton, V.L. Total phenol analyses: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Cano, A.; Hernández-Ruíz, J.; García-Cánovas, F.; Acosta, M.; Arnao, M.B. An end-point method for estimation of the total antioxidant activity in plant material. Phytochem. Anal. 1998, 9, 196–202. [Google Scholar] [CrossRef]
- Sathiyaseelan, A.; Saravanakumar, K.; Mariadoss, A.V.A.; Wang, M.-H. Biocompatible fungal chitosan encapsulated phytogenic silver nanoparticles enhanced antidiabetic, antioxidant and antibacterial activity. Int. J. Biol. Macromol. 2020, 153, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-M.; Wang, M.-H.; Rhee, H.-I. A novel α-glucosidase inhibitor from pine bark. Carbohydr. Res. 2004, 339, 715–717. [Google Scholar] [CrossRef] [PubMed]
- Kandra, L.; Zajácz, Á.; Remenyik, J.; Gyémánt, G. Kinetic investigation of a new inhibitor for human salivary α-amylase. Biochem. Biophys. Res. Commun. 2005, 334, 824–828. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Mariadoss, A.V.A.; Sathiyaseelan, A.; Wang, M.-H. Synthesis and characterization of nano-chitosan capped gold nanoparticles with multifunctional bioactive properties. Int. J. Biol. Macromol. 2020, 165, 747–757. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Vivek, R.; Boopathy, N.S.; Yaqian, L.; Kathiresan, K.; Chen, J. Anticancer potential of bioactive 16-methylheptadecanoic acid methyl ester derived from marine Trichoderma. J. Appl. Biomed. 2015, 13, 199–212. [Google Scholar] [CrossRef]
- Chen, L.; Teng, H.; Cao, H. Chlorogenic acid and caffeic acid from Sonchus oleraceus Linn synergistically attenuate insulin resistance and modulate glucose uptake in HepG2 cells. Food Chem. Toxicol. 2019, 127, 182–187. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L.; Song, H. The potential beneficial effects of phenolic compounds isolated from A. pilosa Ledeb on insulin-resistant hepatic HepG2 cells. Food Funct. 2016, 7, 4400–4409. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Jeevithan, E.; Hu, X.; Chelliah, R.; Oh, D.-H.; Wang, M.-H. Enhanced anti-lung carcinoma and anti-biofilm activity of fungal molecules mediated biogenic zinc oxide nanoparticles conjugated with β-D-glucan from barley. J. Photochem. Photobiol. B Biol. 2020, 203, 111728. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Wang, M.-H. Biogenic silver embedded magnesium oxide nanoparticles induce the cytotoxicity in human prostate cancer cells. Adv. Powder Technol. 2019, 30, 786–794. [Google Scholar] [CrossRef]
- Sakthivel, R.; Malar, D.S.; Devi, K.P. Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential. Biomed. Pharmacother. 2018, 105, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, M.; Senthilkumar, P.; Kalimuthu, K.; Chinnadurai, V.; Vasantharaj, S.; Ad, P. Phytochemical and pharmacological profiling of Turnera subulata Sm., a vital medicinal herb. Ind. Crop. Prod. 2018, 124, 822–833. [Google Scholar] [CrossRef]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef] [PubMed]
Samples | Yield of the Extract (%) | Total Phenol (µg of TAE/g of Extract) | Total Flavonoids (µg of QE/g of Extract |
---|---|---|---|
MeOH-E | 2.45 b | 769.47 ± 3.74 b | 487.54 ± 1.19 b |
H2O-E | 1.58 a | 632.15 ± 1.25 a | 347.00 ± 2.49 a |
Samples | Inhibition Concentration (IC50:µg.mL−1) | Activity (µg Extract/µg AAEs) | Activity (µg Extract/µg ACEs) | |||||
---|---|---|---|---|---|---|---|---|
ABTS Radical | DPPH Radical | α-Amylase Inhibition | α-Glucosidase Inhibition | ABTS Radical | DPPH Radical | α-Amylase Inhibition | α-Glucosidase Inhibition | |
MeOH-E | 120.5 ± 1.09 a | 274.9 ± 1.42 a | 432.05 ± 0.51 a | 798.25 ± 0.84 a | 9.82 ± 0.62 | 6.42 ± 0.26 | 9.02 ± 0.25 | 6.52 ± 0.15 |
H2O-E | 262.5 ± 0.18 b | 573.1 ± 0.85 b | 784.02 ± 0.88 b | 1052.23 ± 1.25 b | 13.20 ± 1.25 | 9.22 ± 0.81 | 15.22 ± 0.55 | 12.52 ± 0.61 |
Component Name | RT (min) | Formula | Observed m/z [M–H]− | Mass Error (ppm) | Response | MS/MS Fragmentation (m/z) | References |
---|---|---|---|---|---|---|---|
Iridoids | |||||||
Geniposidic acid | 1.04 | C16H22O10 | 373.1142 | 0.4 | 6013 | 193.0507 | [44,45] |
Shanzhiside methyl ester | 1.06 | C17H26O11 | 405.1402 | 0.0 | 1994 | 229.0722, 391.1251 | [45] |
6β-Hydroxygeniposide | 1.43 | C17H24O11 | 403.1249 | 1.4 | 273,632 | 205.0511, 223.0615, 241.0721 | [46] |
Gardenoside | 1.69 | C17H24O11 | 403.1238 | 0.4 | 1146 | 207.0664, 225.0770 | [45] |
Genipin gentiobioside | 1.70 | C23H34O15 | 549.1828 | 0.4 | 464,390 | 207.0664, 225.0770 | [45] |
Genipin | 2.00 | C11H14O5 | 225.0770 | 0.2 | 81,760 | 193.0506, 207.0664 | [44,46] |
Geniposide | 2.00 | C17H24O10 | 387.1300 | 0.5 | 1,952,147 | 207.0664, 225.0770 | [45,46] |
Coumaroylgenipin gentiobioside | 2.81 | C32H40O17 | 695.2191 | 0.2 | 301,727 | 225.0768, 469.1354 | [45,46] |
Feruloylgenipin gentiobioside | 2.89 | C33H42O18 | 725.2300 | 0.2 | 108,903 | 193.0507, 225.0768 | [47] |
Monoterpenoides | |||||||
Jasminoside F isomers | 1.25 | C16H26O9 | 361.1506 | 0.5 | 36,284 | 137.0975, 181.0872, 199.0973 | [45] |
Jasminoside D | 1.47 | C16H26O8 | 345.1558 | 1.0 | 171,766 | 165.0922, 183.1027 | [48] |
Jasminoside B | 1.66 | C16H26O8 | 345.1599 | 0.1 | 37,456 | 151.0764, 165.0921, 169.0870 | [46] |
Jasminoside J | 1.66 | C16H24O7 | 327.1446 | −1.1 | 2058 | 151.0764, 165.0921 | [49] |
Jasminodiol | 1.96 | C10H16O3 | 183.1029 | 0.2 | 2722 | 135.0817 | [48] |
Gardenate A | 1.99 | C12H18O6 | 257.1033 | 0.3 | 104 | 225.0770 | [50] |
Picrocrocinic acid | 2.07 | C16H26O8 | 345.1554 | −0.1 | 47,270 | 165.0921 | [45] |
Jasminoside H | 3.00 | C22H36O12 | 491.2123 | −0.3 | 30,153 | 167.1076, 323.0976 | [46] |
Crocusatin C | 3.64 | C10H16O2 | 167.1083 | 0.2 | 260 | 137.0973 | [45,46,48] |
Jasminoside A/E | 3.67 | C16H26O7 | 329.1606 | 0.1 | 3985 | 167.1079 | [48] |
6′-Sinapoyljasminoside C | 3.92 | C27H34O11 | 533.2021 | −1.4 | 2024 | 165.0918, 205.0507 | [48] |
Methyl dihydrojasmonate | 4.36 | C13H22O3 | 225.1495 | −0.5 | 241 | 181.1596 | Pubchem |
2-Hydroxyethylgardenamide A | 6.69 | C13H17NO5 | 266.1039 | 0.5 | 155 | - | Pubchem |
Flavonoids | |||||||
Rutin | 2.28 | C27H30O16 | 609.1464 | 0.3 | 16,687 | 300.0278 | [47] |
Quercetin-3-O-β-D-glucopyranoside | 2.42 | C21H20O12 | 463.0884 | 0.2 | 3003 | 300.027 | [47] |
Carotenoids | |||||||
Crocetin | 2.67 | C20H24O4 | 327.1589 | −1.3 | 844 | 283.1704 | [51] |
Crocin A | 3.95 | C44H64O24 | 975.3707 | −0.8 | 64,605 | 327.1603, 651.2661 | [47,51] |
Organic acids and others | |||||||
Quinic acid | 0.81 | C7H12O6 | 191.0563 | 1.2 | 85,121 | 137.0242, 173.0459 | [52] |
Trimethoxy-O-glucopyranoside | 1.08 | C15H22O9 | 391.1249 | 0.9 | 54,704 | 167.0716 | Pubchem |
4-(2-Hydroxyethyl)-2-methoxyphenyl β-d-glucopyranoside | 1.37 | C15H22O8 | [M+COOH]− 375.1298 | 0.3 | 2140 | 151.0763, 167.0713 | Pubchem |
Caffeoylquinic acid | 1.44 | C16H18O9 | 353.0876 | −0.5 | 217 | 161.0248 | [45] |
Protocatechuic acid | 1.51 | C7H6O4 | 153.0193 | −0.2 | 11,003 | 109.0294 | [45] |
Chlorogenic acid | 1.70 | C16H18O9 | 353.0878 | 0.0 | 4552 | 161.0248, 191.0562 | [46,48] |
Dicaffeoylquinic acid | 2.79 | C25H24O12 | 515.1196 | 0.2 | 6085 | 179.0350, 191.0559 | [47] |
Linolenic acid | 10.53 | C18H30O2 | 277.2174 | 0.2 | 1586 | - | [53,54] |
n-Pentadecanal | 10.74 | C15H30O | 225.2217 | −1.3 | 4866 | - | [53] |
Linoleic acid | 11.60 | C18H32O2 | 279.233 | 0.2 | 162,838 | - | [54] |
Acetylursolic acid | 12.71 | C32H50O4 | 497.3634 | −0.5 | 3297 | - | Pubchem |
Palmitic acid | 12.72 | C16H32O2 | 255.2331 | 0.6 | 10,687 | - | [53,54] |
Ethyl palmitate | 12.96 | C18H34O2 | 281.2488 | 0.8 | 38,097 | - | [53] |
S.No | Compound | α-Amylase | α-Glucosidase | ||||
---|---|---|---|---|---|---|---|
No. H Bonds | H Bond Interacting Amino Acids | Binding Affinity (kcal/mol) | No. H Bonds | H Bond Interacting Amino Acids | Binding Affinity (kcal/mol) | ||
1 | Quinic acid | 3 | Arg252 | −5.7 | 4 | His623, Leu761, Val760, Met269 | −6.3 |
2 | Jasminoside F | 2 | His 299, Gln63 | −8.5 | 5 | Thr473, Asn476, Arg102 | −7.8 |
3 | 4-(2-Hydroxyethyl)-2-methoxyphenyl β-d-glucopyranoside | 2 | His299, Lys200 | −6.9 | 2 | Glu759, His490 | −7.3 |
4 | Jasminoside D | - | - | 0 | - | - | 0 |
5 | Protocatechuic acid | 3 | Arg421, Arg398 | −5.5 | 2 | Glu654, Ala655 | −5.9 |
6 | Jasminoside B | 2 | His299, Gln63 | −7.7 | 6 | Arg102, Tyr104,Gly241,Arg103, Asn476 | −7.3 |
7 | Jasminoside J | - | - | −8.1 | 2 | Glu762, Leu761 | −7.3 |
8 | Chlorogenic acid | 6 | Arg421,Gly403,Arg398, Ser289 | −8.7 | 5 | Met269, Glu759, Val760, Tyr266 | −8.2 |
9 | Genipin | 2 | Arg195, His299 | −6.6 | 1 | Val760 | −6.4 |
10 | Crocusatin C | 2 | His305, Gln63 | −5.9 | 3 | Glu762, Met269, Leu761 | −5.8 |
11 | Jasminoside A | 2 | Arg195, His299 | −8.7 | 4 | Val760, Leu761, Glu762 | −7.8 |
12 | Thymine | 6 | Gly403, Arg398, Arg421 | −5.3 | 3 | Glu759, Ser757, Asp753 | −5.1 |
13 | 3,5-Dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one | 4 | Ala310, Gly309, Asn301, Arg346 | −5.5 | 4 | Arg317, Met314, Asn323 | −5.1 |
14 | 3-Carene | - | - | −5.5 | - | - | −5.3 |
15 | 2-Methylphenoxyacetic acid | 1 | Gln63 | −5.6 | 3 | Leu761, Val760, Glu759 | −5.7 |
16 | 2-Amino-3-hydroxybenzoic acid | 2 | His299, Asp197 | −5.6 | 5 | Asn323, Leu311, Met314, Arg317 | −5.3 |
17 | 2,6-Dimethyl-3-(methoxy-methyl)-p-benzoquinone | 2 | His185, Ala128 | −5.5 | 2 | Leu761, Met269 | −5.5 |
18 | Tetradecanoic acid | - | - | −5.8 | - | - | −5.7 |
19 | Methyl palmitate | 2 | His299, Asp197 | −6.1 | 1 | His301 | −6.4 |
20 | Hexadecanoic acid | - | - | −5.8 | 1 | Glu759 | −6.2 |
21 | Methyl linoleate | 1 | Asp197 | −6.5 | 1 | Asn430 | −6.3 |
22 | Methyl elaidate | 1 | Asp197 | −6.2 | 1 | Asn430 | −6.2 |
23 | (9Z,12Z)-Octadeca-9,12-dienoic acid | 3 | Asn105, Ala106 | −6.3 | 1 | Arg491 | −6.5 |
24 | Octadecanoic acid | 2 | Asn105, Ala106 | −6.2 | 1 | His580 | −6 |
25 | Acarbose derived trisaccharide | 11 | Thr6, Arg10, Gly9, Gln7, Gly334, Arg421, Gln404 | −8.3 | 8 | Trp39, Cys40, Ala13, Pro14, Asp11, Arg237, Trp179 | −8.7 |
26 | Acarbose | 3 | His299, gln63, Thr163 | −8.3 | 6 | Trp39, Cys40, Pro14, Ala13, Arg237, Asp11 | −8.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saravanakumar, K.; Park, S.; Sathiyaseelan, A.; Kim, K.-N.; Cho, S.-H.; Mariadoss, A.V.A.; Wang, M.-H. Metabolite Profiling of Methanolic Extract of Gardenia jaminoides by LC-MS/MS and GC-MS and Its Anti-Diabetic, and Anti-Oxidant Activities. Pharmaceuticals 2021, 14, 102. https://doi.org/10.3390/ph14020102
Saravanakumar K, Park S, Sathiyaseelan A, Kim K-N, Cho S-H, Mariadoss AVA, Wang M-H. Metabolite Profiling of Methanolic Extract of Gardenia jaminoides by LC-MS/MS and GC-MS and Its Anti-Diabetic, and Anti-Oxidant Activities. Pharmaceuticals. 2021; 14(2):102. https://doi.org/10.3390/ph14020102
Chicago/Turabian StyleSaravanakumar, Kandasamy, SeonJu Park, Anbazhagan Sathiyaseelan, Kil-Nam Kim, Su-Hyeon Cho, Arokia Vijaya Anand Mariadoss, and Myeong-Hyeon Wang. 2021. "Metabolite Profiling of Methanolic Extract of Gardenia jaminoides by LC-MS/MS and GC-MS and Its Anti-Diabetic, and Anti-Oxidant Activities" Pharmaceuticals 14, no. 2: 102. https://doi.org/10.3390/ph14020102
APA StyleSaravanakumar, K., Park, S., Sathiyaseelan, A., Kim, K. -N., Cho, S. -H., Mariadoss, A. V. A., & Wang, M. -H. (2021). Metabolite Profiling of Methanolic Extract of Gardenia jaminoides by LC-MS/MS and GC-MS and Its Anti-Diabetic, and Anti-Oxidant Activities. Pharmaceuticals, 14(2), 102. https://doi.org/10.3390/ph14020102