RP-18 TLC Chromatographic and Computational Study of Skin Permeability of Steroids
Abstract
:1. Introduction
2. Results and Discussion
- A.
- Equation (1), developed and validated in our earlier research [36]:log Kp(1) = −1.39 (±0.18) − 0.35 (±0.03) (N + O) + 0.15 (±0.04) log D − 0.23 (±0.06) HD(n = 60, R2 = 0.83, R2adj. = 0.82, F = 92.3, p < 0.01, se = 0.44)
- B.
- EpiSuite software (DERMWIN v. 2 module) (log KpEPI), recommended by the US Environmental Protection Agency and related to the widely recognized Potts’ model of skin permeability [10]:log Kp = −2.80 + 0.66 log Pow − 0.0056 Mw (R2 = 0.66)
- C.
- PreADMET 2.0 software [38] (log Kppre)
(n = 16, R2 = 0.99, R2adj = 0.98, RMSECV = 0.21, F = 229.0, p < 0.01, se = 0.18)
(n = 16, R2 = 0.99, R2adj. = 0.78, RMSECV = 0.31, F = 174.8, p < 0.01, se = 0.22)
(n = 16, R2 = 0.90, R2adj.= 0.86, RMSECV = 0.60, F = 23.6, p < 0.01, se = 0.45)
3. Materials and Methods
3.1. Chemicals
3.2. Thin Layer Chromatography
3.3. Calculated Molecular Descriptors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, M.E.; Blankschtein, D.; Langer, R. Permeation of steroids through human skin. J. Pharm. Sci. 1995, 84, 1144–1146. [Google Scholar] [CrossRef]
- Scheuplein, R.J.; Blank, I.H.; Brauner, G.J.; MacFarlane, D.J. Percutaneous Absorption of Steroids. J. Investig. Derm. 1969, 52, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, G.; Chen, L.; Han, L. An Evaluation of Mathematical Models for Predicting Skin Permeability. J. Pharm. Sci. 2008, 97, 584–598. [Google Scholar] [CrossRef]
- Abraham, M.; Martins, F.; Mitchell, R.C. Algorithms for Skin Permeability Using Hydrogen Bond Descriptors: The Problem of Steroids. J. Pharm. Pharmacol. 1997, 49, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Todo, H. Transdermal Permeation of Drugs in Various Animal Species. Pharmaceutics 2017, 9, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neupane, R.; Boddu, S.H.S.; Renukuntla, J.; Babu, R.J.; Tiwari, A.K. Alternatives to Biological Skin in Permeation Studies: Current Trends and Possibilities. Pharmaceutics 2020, 12, 152. [Google Scholar] [CrossRef] [Green Version]
- El Tayar, N.; Tsai, R.-S.; Testa, B.; Carrupt, P.-A.; Hansch, C.; Leo, A. Percutaneous Penetration of Drugs: A Quantitative Structure–Permeability Relationship Study. J. Pharm. Sci. 1991, 80, 744–749. [Google Scholar] [CrossRef]
- Anderson, B.D.; Raykar, P.V. Solute Structure-Permeability Relationships in Human Stratum Corneum. J. Investig. Dermatol. 1989, 93, 280–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barratt, M.D. Quantitative Structure-Activity Relationships for Skin Permeability. Toxicol. Vitr. 1995, 9, 27–37. [Google Scholar] [CrossRef]
- Potts, R.O.; Guy, R.H. Predicting Skin Permeability. Pharm. Res. 1992, 9, 663–669. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Chen, C.-P.; Chen, C.-C. Predicting Skin Permeability of Chemical Substances Using a Quantitative Structure-Activity Relationship. Procedia Eng. 2012, 45, 875–879. [Google Scholar] [CrossRef]
- Neely, B.J.; Madihally, S.V.; Robinson, R.L.; Gasem, K.A.M. Nonlinear Quantitative Structure-Property Relationship Modeling of Skin Permeation Coefficient. J. Pharm. Sci. 2009, 98, 4069–4084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, H.; Ten Berge, W.; Cronin, M.T. Quantitative Structure–Activity Relationships (QSARs) for the Prediction of Skin Permeation of Exogenous Chemicals. Chemosphere 2002, 48, 603–613. [Google Scholar] [CrossRef]
- Potts, R.O.; Guy, R.H. A Predictive Algorithm for Skin Permeability: The Effects of Molecular Size and Hydrogen Bond Activity. Pharm. Res. 1995, 12, 1628–1633. [Google Scholar] [CrossRef] [PubMed]
- Alonso, C.; Carrer, V.; Espinosa, S.; Zanuy, M.; Córdoba, M.; Vidal, B.; Domínguez, M.; Godessart, N.; Coderch, L.; Pont, M. Prediction of the Skin Permeability of Topical Drugs Using in Silico and in Vitro Models. Eur. J. Pharm. Sci. 2019, 136, 104945. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, D.; Corish, J.; Hayes, B. Modelling Skin Permeability in Risk Assessment––The Future. Chemosphere 2004, 55, 1309–1314. [Google Scholar] [CrossRef]
- Geinoz, S.; Guy, R.H.; Testa, B.; Carrupt, P.-A. Quantitative Structure-Permeation Relationships (QSPeRs) to Predict Skin Permeation: A Critical Evaluation. Pharm. Res. 2004, 21, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Mitragotri, S.; Anissimov, Y.G.; Bunge, A.L.; Frasch, H.F.; Guy, R.H.; Hadgraft, J.; Kasting, G.B.; Lane, M.E.; Roberts, M.S. Mathematical Models of Skin Permeability: An Overview. Int. J. Pharm. 2011, 418, 115–129. [Google Scholar] [CrossRef] [Green Version]
- Moss, G.P.; Dearden, J.C.; Patel, H.; Cronin, M.T.D. Quantitative Structure–Permeability Relationships (QSPRs) for Percutaneous Absorption. Toxicol. Vitr. 2002, 16, 299–317. [Google Scholar] [CrossRef]
- Wilschut, A.; Ten Berge, W.F.; Robinson, P.J.; McKone, T.E. Estimating Skin Permeation. The Validation of Five Mathematical Skin Permeation Models. Chemosphere 1995, 30, 1275–1296. [Google Scholar] [CrossRef]
- Jevric, L.R.; Podunavac Kuzmanovic, S.O.; Svarc Gajic, J.V.; Kovacevic, S.; Jovanovic, B.Z. RP-HPTLC Retention Datain Correlation with the In-Silico ADME Properties of a Series of s-Triazine Derivatives. Iran. J. Pharm. Res. 2014, 13, 1203–1211. [Google Scholar] [CrossRef]
- Kovačević, S.; Jevrić, L.R.; Podunavac Kuzmanović, S.O.; Lončar, E.S. Prediction of In Silico ADME Properties of 1,2-O-Isopropylidene Aldohexose Derivatives. Iran. J. Pharm. Res. 2014, 13, 899–907. [Google Scholar] [CrossRef]
- Barbato, F.; Cappello, B.; Miro, A.; La Rotonda, M.; Quaglia, F. Chromatographic Indexes on Immobilized Artificial Membranes for the Prediction of Transdermal Transport of Drugs. II Farmaco 1998, 53, 655–661. [Google Scholar] [CrossRef]
- Hidalgo-Rodríguez, M.; Soriano-Meseguer, S.; Fuguet, E.; Ràfols, C.; Rosés, M. Evaluation of the Suitability of Chromatographic Systems to Predict Human Skin Permeation of Neutral Compounds. Eur. J. Pharm. Sci. 2013, 50, 557–568. [Google Scholar] [CrossRef]
- Lazaro, E.; Rafols, C.; Abraham, M.H.; Rosés, M. Chromatographic Estimation of Drug Disposition Properties by Means of Immobilized Artificial Membranes (IAM) and C18 Columns. J. Med. Chem. 2006, 49, 4861–4870. [Google Scholar] [CrossRef]
- Nasal, A.; Sznitowska, M.; Buciński, A.; Kaliszan, R. Hydrophobicity Parameter from High-Performance Liquid Chromatography on an Immobilized Artificial Membrane Column and Its Relationship to Bioactivity. J. Chromatogr. A 1995, 692, 83–89. [Google Scholar] [CrossRef]
- Turowski, M.; Kaliszan, R. Keratin Immobilized on Silica as a New Stationary Phase for Chromatographic Modelling of SkinPermeation. J. Pharm. Biomed. Anal. 1997, 15, 1325–1333. [Google Scholar] [CrossRef]
- Waters, L.J.; Shahzad, Y.; Stephenson, J. Modelling Skin Permeability with Micellar Liquid Chromatography. Eur. J. Pharm. Sci. 2013, 50, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Pla, J.J.; Martín-Biosca, Y.; Sagrado, S.; Villanueva-Camañas, R.M.; Medina-Hernández, M.J. Evaluation of the PH Effect of Formulations on the Skin Permeability of Drugs by Biopartitioning Micellar Chromatography. J. Chromatogr. A 2004, 1047, 255–262. [Google Scholar] [CrossRef]
- Martínez-Pla, J.J.; Martín-Biosca, Y.; Sagrado, S.; Villanueva-Camañas, R.M.; Medina-Hernández, M.J. Biopartitioning Micellar Chromatography to Predict SkinPermeability. Biomed. Chromatogr. 2003, 17, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement Strategies for Transdermal Drug DeliverySystems: Current Trends and Applications. Drug Deliv. Transl. Res. 2021. [Google Scholar] [CrossRef]
- Akhtar, N.; Singh, V.; Yusuf, M.; Khan, R.A. Non-Invasive Drug Delivery Technology: Development and Current Status of Transdermal Drug Delivery Devices, Techniques and Biomedical Applications. Biomed. Eng. Biomed. Tech. 2020, 65, 243–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobańska, A.W.; Wanat, K.; Brzezińska, E. Prediction of the Blood-Brain Barrier Permeability Using RP-18 Thin Layer Chromatography. Open Chem. 2019, 17, 43–56. [Google Scholar] [CrossRef]
- Pyzowski, J.; Brzezińska, E.; Sobańska, A.W. RP-18 Chromatographic-Based Study of the Blood—Brain Barrier Permeability of Selected Sunscreens and Preservatives. JPC J. Planar Chromatogr. Mod. TLC 2017, 30, 275–284. [Google Scholar] [CrossRef]
- Sobańska, A.W.; Brzezińska, E. Application of RP-18 Thin-Layer Chromatography and Quantitative Structure–Activity Relationship Analysis for the Prediction of the Blood–Brain Barrier Permeation. JPC J. Planar Chromatogr. Mod. TLC 2016, 29, 287–298. [Google Scholar] [CrossRef]
- Sobańska, A.W.; Robertson, J.; Brzezińska, E. Application of RP-18 TLC Retention Data to the Prediction of the Transdermal Absorption of Drugs. Pharmaceuticals 2021, 14, 147. [Google Scholar] [CrossRef] [PubMed]
- Sobańska, A.W.; Hekner, A.; Brzezińska, E. RP-18 HPLC analysis of drugs’ ability to cross the blood-brain barrier. J. Chem. 2019, 2019, e5795402. [Google Scholar] [CrossRef]
- PreADMET, 209, Veritas A Hall, Yonsei University 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea. Available online: https://preadmet.bmdrc.kr/adme/ (accessed on 22 June 2021).
- Klimová, Z.; Hojerová, J.; Pažoureková, S. Current Problems in the Use of Organic UV Filters to Protect Skin from Excessive Sun Exposure. Acta Chim. Slovaca 2013, 6, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.D.; Higuchi, W.I.; Raykar, P.V. Heterogeneity Effects on Permeability–Partition Coefficient Relationships in Human Stratum Corneum. Pharm. Res. 1988, 5, 566–573. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Lian, G.; Han, L. Determination of Partition and Binding Properties of Solutes to Stratum Corneum. Int. J. Pharm. 2010, 398, 114–122. [Google Scholar] [CrossRef]
- Johnson, M.E.; Blankschtein, D.; Langer, R. Evaluation of Solute Permeation through the Stratum Corneum: Lateral Bilayer Diffusion as the Primary Transport Mechanism. J. Pharm. Sci. 1997, 86, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.C.; Wang, G.P.; Wang, Y.F.; Liang, W.Q.; Yu, Q.S.; Chow, M.S.S. Limitation of Potts and Guy’s Model and a Predictive Algorithm for Skin Permeability Including the Effects of Hydrogen-Bondon Diffusivity. Pharmazie 2004, 59, 282–285. [Google Scholar] [PubMed]
- Abraham, M.H.; Chadha, H.S.; Mitchell, R.C. The Factors That Influence Skin Penetration of Solutes. J. Pharm. Pharmacol. 1995, 47, 8–16. [Google Scholar] [CrossRef]
- Ciura, K.; Nowakowska, J.; Pikul, P.; Struck-Lewicka, W.; Markuszewski, M.J. A Comparative Quantitative Structure-Retention Relationships Study for Lipophilicity Determination of Compounds with a Phenanthrene Skeletonon Cyano-, Reversed Phase-, and Normal Phase-Thin Layer Chromatography Stationary Phases. J. AOAC Int. 2015, 98, 345–353. [Google Scholar] [CrossRef]
- Karadžić, M.Ž.; Jevrić, L.R.; Mandić, A.I.; Markov, S.L.; Podunavac-Kuzmanović, S.O.; Kovačević, S.Z.; Nikolić, A.R.; Oklješa, A.M.; Sakač, M.N.; Penov-Gaši, K.M. Chemometrics Approach Based on Chromatographic Behavior, in Silico Characterization and Molecular Docking Study of Steroid Analogs with Biomedical Importance. Eur. J. Pharm. Sci. 2017, 105, 71–81. [Google Scholar] [CrossRef]
- Soczewiński, E.; Wachtmeister, C.A. The Relation between the Composition of Certain Ternary Two-Phase Solvent Systems and RM Values. J. Chromatogr. A 1962, 7, 311–320. [Google Scholar] [CrossRef]
- Lien, E.J.; Gaot, H. QSAR Analysis of Skin Permeability of Various Drugs in Manas Compared to in Vivo and in Vitro Studies in Rodents. Pharm. Res. 1995, 12, 583–587. [Google Scholar] [CrossRef]
- Clark, D.E. Rapid Calculation of Polar Molecular Surface Area and Its Application to the Prediction of Transport Phenomena. 1. Prediction of Intestinal Absorption. J. Pharm. Sci. 1999, 88, 807–814. [Google Scholar] [CrossRef]
- Clark, D.E. Rapid Calculation of Polar Molecular Surface Area and Its Application to the Prediction of Transport Phenomena. 2. Prediction of Blood–Brain Barrier Penetration. J. Pharm. Sci. 1999, 88, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Bate-Smith, E.C.; Westall, R.G. Chromatographic Behaviour and Chemical Structure, I. Some Naturally Occuring PhenolicSubstances. Biochim. Biophys. Acta 1950, 4, 427–440. [Google Scholar] [CrossRef]
logKpEPI | logKppre | logKpexp | logKp(1) | logKp(3) | logKp(4) | logKp(5) | logKp(6) | logKp(7) | logKp(8) | logKp(9) | logKp(10) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | −3.72 | −3.88 | −4.19 | −3.55 | −3.75 | −3.57 | −4.06 | −3.57 | −3.47 | −3.30 | −3.46 | −3.56 |
2 | −3.77 | −4.71 | −4.79 | −3.62 | −3.65 | −3.45 | −4.22 | −3.39 | −3.35 | −3.10 | −3.46 | −3.44 |
3 | −2.00 | −2.15 | −1.36 | −1.47 | −1.87 | −1.48 | −2.04 | −1.57 | −1.48 | −1.51 | −1.33 | −1.68 |
4 | −3.75 | −4.24 | −4.35 | −3.25 | −3.63 | −3.41 | −4.29 | −3.33 | −3.31 | −3.03 | −3.46 | −3.39 |
5 | −2.24 | −2.49 | −2.44 | −1.75 | −2.49 | −1.80 | −2.64 | −1.94 | −1.73 | −1.82 | −1.44 | −1.84 |
6 | −4.11 | −4.42 | −4.41 | −3.54 | −3.07 | −2.76 | ||||||
7 | −3.46 | −4.23 | −3.26 | −2.98 | −2.75 | −2.86 | ||||||
8 | −1.78 | −2.35 | −2.82 | −1.62 | −1.44 | −2.30 | ||||||
9 | −2.55 | −2.97 | −3.22 | −2.23 | −2.04 | −2.26 | ||||||
10 | −2.20 | −3.42 | −3.22 | −2.38 | −2.15 | −2.88 | ||||||
11 | −2.74 | −3.42 | −3.34 | −2.15 | −2.04 | −2.27 | ||||||
12 | −2.22 | −2.54 | −2.65 | −1.78 | −1.44 | −2.03 | ||||||
13 | −2.70 | −3.90 | −4.12 | −3.29 | −2.75 | −4.07 | ||||||
14 | −1.67 | −2.72 | −2.21 | −1.91 | −1.56 | −2.45 | ||||||
15 | −2.80 | −4.05 | −4.39 | −2.68 | −2.26 | −3.04 | ||||||
16 | −3.85 | −4.54 | −5.00 | −3.38 | −3.35 | −2.83 | ||||||
17 | −4.44 | −4.42 | −4.59 | −4.90 | −5.18 | −4.61 | ||||||
18 | −4.20 | −4.24 | −4.17 | −4.35 | −4.38 | −3.67 | ||||||
19 | −3.75 | −3.53 | −3.68 | −4.27 | −4.59 | −3.54 | ||||||
20 | −4.00 | −3.63 | −3.20 | −4.59 | −4.98 | −3.95 | ||||||
21 | −3.47 | −2.45 | −2.74 | −4.43 | −4.98 | −4.33 | ||||||
22 | −4.10 | −3.43 | −3.05 | −4.26 | −4.38 | −4.05 | ||||||
23 | −3.63 | −3.11 | −3.04 | −4.13 | −4.38 | −4.23 | ||||||
24 | −3.29 | −3.26 | −2.47 | −3.49 | −3.67 | −3.26 | ||||||
25 | −3.26 | −2.35 | −2.27 | −4.12 | −4.59 | −3.92 | ||||||
26 | −2.41 | −1.82 | −1.74 | −3.24 | −3.67 | −3.64 | ||||||
27 | −1.90 | −1.35 | −1.21 | −3.08 | −3.67 | −3.90 | ||||||
28 | −1.28 | −2.33 | −1.71 | −1.25 | −1.63 | −2.07 | −1.58 | −1.51 | −1.28 | −1.77 | −2.51 | |
29 | −3.62 | −4.13 | −3.57 | −3.69 | −3.42 | −4.24 | −3.30 | −3.46 | −3.15 | −3.67 | −3.14 | |
30 | −2.85 | −2.81 | −2.10 | −2.67 | −2.19 | −2.79 | −2.21 | −2.30 | −2.25 | −2.25 | −1.96 | |
31 | −3.67 | −3.35 | −3.34 | −3.89 | −3.24 | −4.30 | −3.11 | −3.40 | −3.14 | −3.56 | −2.52 | |
32 | −1.58 | −2.03 | −1.69 | −1.56 | −1.48 | −2.19 | −1.44 | −1.49 | −1.32 | −1.66 | −1.85 | |
33 | −2.27 | −2.19 | −1.70 | −1.99 | −1.74 | −2.18 | −1.87 | −1.63 | −1.68 | −1.44 | −2.16 | |
34 | −0.58 | −1.28 | −1.36 | −0.72 | −1.36 | −1.46 | −1.30 | −1.31 | −1.07 | −1.66 | −2.36 | |
35 | −3.64 | −3.68 | −2.31 | −3.53 | −2.81 | −3.76 | −2.73 | −3.05 | −2.86 | −3.14 | −2.05 | |
36 | −4.10 | −4.19 | −3.34 | −4.09 | −2.96 | −3.70 | −3.04 | −3.20 | −3.27 | −2.90 | −1.89 | |
37 | −6.35 | −4.98 | −7.56 | −6.34 | −7.54 | −5.15 | −7.68 | −7.44 | −7.35 | −7.25 | −7.57 | |
38 | −1.95 | −1.32 | −1.70 | −2.16 | −1.83 | −2.17 | −2.01 | −1.73 | −1.85 | −1.44 | −2.17 | |
39 | −1.44 | −2.39 | −1.60 | −2.99 | −1.64 | −1.54 | −1.48 | −1.44 | −1.59 | |||
40 | −4.05 | −4.69 | −3.73 | −5.31 | −3.55 | −3.86 | −3.53 | −4.05 | −2.71 | |||
41 | −2.14 | −3.63 | −2.08 | −4.80 | −1.88 | −2.18 | −1.86 | −2.37 | −1.11 | |||
42 | −2.04 | −3.20 | −1.71 | −4.23 | −1.60 | −1.73 | −1.53 | −1.77 | −0.99 | |||
43 | −2.84 | −2.91 | −1.77 | −4.79 | −1.47 | −1.70 | −1.19 | −2.15 | −1.41 | |||
44 | −3.67 | −3.29 | −2.56 | −3.62 | −2.55 | −2.62 | −2.51 | −2.58 | −2.13 | |||
45 | −3.81 | −3.13 | −2.68 | −5.72 | −2.04 | −2.76 | −1.75 | −3.92 | −2.29 | |||
46 | −2.54 | −2.94 | −1.89 | −3.48 | −1.90 | −1.88 | −1.82 | −1.77 | −1.52 |
log P | MW | PSA | FRB | HD | HA | R | VM | α | N + O | logD | RM | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Dexamethasone | 1.87 | 392.5 | 94.8 | 5 | 3 | 5 | 100.2 | 296.2 | 39.7 | 5 | 1.87 | −0.35 |
2 | Hydrocortisone (HC) | 1.43 | 362.5 | 94.8 | 5 | 3 | 4 | 95.6 | 281.4 | 37.9 | 5 | 1.43 | −0.33 |
3 | Progesterone | 4.04 | 314.5 | 34.1 | 1 | 0 | 2 | 91.0 | 289.0 | 36.6 | 2 | 4.04 | 0.60 |
4 | Prednisolone | 1.49 | 360.4 | 94.8 | 5 | 3 | 5 | 95.5 | 274.7 | 37.9 | 4 | 1.49 | −0.33 |
5 | Estrone | 3.69 | 270.4 | 37.3 | 1 | 1 | 2 | 78.1 | 232.2 | 30.9 | 2 | 3.69 | 0.09 |
6 | Aldosterone | 0.46 | 360.4 | 83.8 | 4 | 2 | 5 | 93.7 | 272.1 | 37.1 | 5 | 0.46 | |
7 | Corticosterone | 1.76 | 346.5 | 74.6 | 4 | 2 | 4 | 94.0 | 284.3 | 37.3 | 4 | 1.76 | |
8 | Pregnenolone | 4.52 | 316.5 | 37.3 | 2 | 1 | 2 | 92.4 | 290.0 | 36.6 | 2 | 4.52 | |
9 | 17-α-Hydroxyprogesterone | 2.89 | 330.5 | 54.4 | 2 | 1 | 3 | 92.6 | 286.1 | 36.7 | 3 | 2.89 | |
10 | 17-α-Hydroxypregnenolone | 3.38 | 332.5 | 57.5 | 3 | 2 | 3 | 93.9 | 287.2 | 37.2 | 3 | 3.38 | |
11 | Deoxycorticosterone | 3.41 | 330.5 | 54.4 | 3 | 1 | 3 | 92.5 | 286.3 | 36.7 | 3 | 3.41 | |
12 | Testosterone | 3.48 | 288.4 | 37.3 | 1 | 1 | 2 | 83.1 | 257.0 | 33.0 | 2 | 3.48 | |
13 | Cortexolone | 1.74 | 346.5 | 74.6 | 2 | 4 | 2 | 94.1 | 283.4 | 37.3 | 4 | 2.74 | |
14 | Estradiol | 4.13 | 272.4 | 40.5 | 2 | 2 | 2 | 79.5 | 232.6 | 31.5 | 2 | 4.13 | |
15 | Estriol | 2.94 | 288.4 | 60.7 | 3 | 3 | 3 | 81.1 | 229.6 | 32.2 | 3 | 2.94 | |
16 | Cortisone | 1.44 | 360.4 | 91.7 | 4 | 2 | 5 | 94.2 | 280.3 | 37.3 | 5 | 1.44 | |
17 | HC succinamate | 1.45 | 461.6 | 144.0 | 9 | 4 | 8 | 118.2 | 351.8 | 46.8 | 8 | 1.45 | |
18 | HC N,N-dimethylsuccinate | 2.05 | 489.6 | 121.2 | 9 | 2 | 8 | 127.7 | 386.8 | 50.6 | 8 | 2.05 | |
19 | HC methylsuccinate | 2.53 | 476.6 | 127.2 | 10 | 2 | 8 | 120.9 | 370.4 | 47.9 | 8 | 2.53 | |
20 | HC hemisuccinate | 2.13 | 462.5 | 138.2 | 9 | 3 | 8 | 116.1 | 345.6 | 46.0 | 8 | 1.95 | |
21 | HC pimelate | 3.07 | 504.6 | 138.2 | 12 | 3 | 8 | 130.0 | 393.9 | 51.5 | 8 | 2.99 | |
22 | HC pimelamate | 2.61 | 531.7 | 121.2 | 12 | 2 | 8 | 141.6 | 435.0 | 56.1 | 8 | 2.61 | |
23 | HC 6-hydroxyhexanoate | 2.63 | 476.6 | 121.1 | 12 | 3 | 7 | 125.2 | 381.0 | 49.6 | 7 | 2.63 | |
24 | HC propionate | 3.05 | 418.5 | 100.9 | 7 | 2 | 6 | 109.8 | 335.4 | 43.5 | 6 | 3.04 | |
25 | HC methylpimelate | 3.53 | 518.6 | 127.2 | 13 | 2 | 8 | 134.8 | 418.7 | 53.4 | 8 | 3.53 | |
26 | HC hexanoate | 4.64 | 460.6 | 100.9 | 10 | 2 | 6 | 123.7 | 383.7 | 49.0 | 6 | 4.64 | |
27 | HC octanoate | 5.70 | 488.7 | 100.9 | 12 | 2 | 6 | 132.9 | 415.9 | 52.7 | 6 | 5.70 | |
28 | Estradiol benzoate | 6.24 | 376.5 | 46.53 | 4 | 1 | 3 | 109.3 | 317.6 | 43.3 | 3 | 6.24 | 0.91 |
29 | HC acetate | 2.51 | 404.5 | 100.9 | 6 | 2 | 6 | 105.2 | 319.3 | 41.7 | 6 | 2.51 | −0.12 |
30 | Deoxycortisone acetate | 4.53 | 372.5 | 60.4 | 4 | 0 | 4 | 102.1 | 324.3 | 40.5 | 4 | 4.53 | 0.41 |
31 | Cortisone acetate | 2.53 | 402.5 | 97.7 | 5 | 1 | 6 | 103.8 | 318.2 | 41.1 | 6 | 2.53 | −0.12 |
32 | Testosterone propionate | 4.90 | 344.5 | 43.4 | 3 | 0 | 3 | 97.3 | 311.2 | 38.6 | 3 | 4.90 | 0.85 |
33 | Methyltestosterone | 4.02 | 302.5 | 37.3 | 1 | 1 | 2 | 87.8 | 273.0 | 34.8 | 2 | 4.02 | 0.41 |
34 | Testosterone enanthate | 7.03 | 400.6 | 43.4 | 7 | 0 | 3 | 115.9 | 375.9 | 45.9 | 3 | 7.03 | 1.38 |
35 | Spironolactone | 3.12 | 416.6 | 85.7 | 2 | 0 | 4 | 112.7 | 335.8 | 44.7 | 4 | 3.12 | 0.14 |
36 | Eplerenone | 1.05 | 414.5 | 78.9 | 2 | 0 | 6 | 106.1 | 315.7 | 42.1 | 6 | 1.05 | −0.21 |
37 | Digoxin | 0.85 | 780.9 | 203.1 | 13 | 6 | 14 | 196.4 | 572.3 | 77.9 | 14 | 0.85 | −0.91 |
38 | Tibolone | 4.02 | 312.5 | 37.3 | 1 | 1 | 2 | 90.0 | 274.2 | 35.7 | 2 | 4.02 | 0.33 |
39 | Ibuprofen | 37.3 | 1 | 200.3 | 0.08 | ||||||||
40 | Ranitidine | 111.6 | 2 | 265.5 | −0.66 | ||||||||
41 | Aspirin | 63.6 | 1 | 139.6 | −0.50 | ||||||||
42 | Methylparaben | 46.5 | 1 | 124.8 | −0.41 | ||||||||
43 | Salicylic acid | 57.5 | 2 | 100.4 | −0.37 | ||||||||
44 | Indomethacin | 69.6 | 1 | 269.6 | −0.07 | ||||||||
45 | Piroxicam | 108 | 2 | 212.0 | 0.00 | ||||||||
46 | Naproxen | 46.5 | 1 | 192.3 | −0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobanska, A.W.W.; Robertson, J.; Brzezińska, E. RP-18 TLC Chromatographic and Computational Study of Skin Permeability of Steroids. Pharmaceuticals 2021, 14, 600. https://doi.org/10.3390/ph14070600
Sobanska AWW, Robertson J, Brzezińska E. RP-18 TLC Chromatographic and Computational Study of Skin Permeability of Steroids. Pharmaceuticals. 2021; 14(7):600. https://doi.org/10.3390/ph14070600
Chicago/Turabian StyleSobanska, Anna W. Weronika, Jeremy Robertson, and Elżbieta Brzezińska. 2021. "RP-18 TLC Chromatographic and Computational Study of Skin Permeability of Steroids" Pharmaceuticals 14, no. 7: 600. https://doi.org/10.3390/ph14070600
APA StyleSobanska, A. W. W., Robertson, J., & Brzezińska, E. (2021). RP-18 TLC Chromatographic and Computational Study of Skin Permeability of Steroids. Pharmaceuticals, 14(7), 600. https://doi.org/10.3390/ph14070600