Prevalence and Significance of Hypermetabolic Lymph Nodes Detected by 2-[18F]FDG PET/CT after COVID-19 Vaccination: A Systematic Review and a Meta-Analysis
Abstract
:1. Introduction
2. Results
2.1. Literature Rearch
2.2. Qualitative Synthesis (Systematic Review)
2.3. Quantitative Synthesis (Meta-Analysis)
3. Discussion
4. Materials and Methods
4.1. Search Strategy
4.2. Study Selection
4.3. Data Extraction
4.4. Quality Assessment
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Abdulla, Z.A.; Al-Bashir, S.M.; Al-Salih, N.S.; Aldamen, A.A.; Abdulazeez, M.Z. A Summary of the SARS-CoV-2 Vaccines and Technologies Available or under Development. Pathogens 2021, 10, 788. [Google Scholar] [CrossRef] [PubMed]
- Sadarangani, M.; Marchant, A.; Kollmann, T.R. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat. Rev. Immunol. 2021, 21, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Katal, S.; Pouraryan, A.; Gholamrezanezhad, A. COVID-19 vaccine is here: Practical considerations for clinical imaging applications. Clin. Imaging 2021, 76, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Seban, R.D.; Champion, L.; Yeh, R.; Schwartz, L.H.; Dercle, L. Assessing immune response upon systemic RNA vaccination on [18F]-FDG PET/CT for COVID-19 vaccine and then for immuno-oncology? Eur. J. Nucl. Med. Mol. Imaging 2021, 1–2. [Google Scholar] [CrossRef]
- McIntosh, L.J.; Bankier, A.A.; Vijayaraghavan, G.R.; Licho, R.; Rosen, M.P. COVID-19 Vaccination-Related Uptake on FDG PET/CT: An Emerging Dilemma and Suggestions for Management. AJR Am. J. Roentgenol. 2021. [Google Scholar] [CrossRef]
- McIntosh, L.J.; Rosen, M.P.; Mittal, K.; Whalen, G.F.; Bathini, V.G.; Ali, T.; Edmiston, K.L.; Walsh, W.V.; Gerber, J.M. Coordination and optimization of FDG PET/CT and COVID-19 vaccination; Lessons learned in the early stages of mass vaccination. Cancer Treat. Rev. 2021, 98, 102220. [Google Scholar] [CrossRef]
- Treglia, G. Diagnostic Performance of 18F-FDG PET/CT in Infectious and Inflammatory Diseases according to Published Meta-Analyses. Contrast Media Mol. Imaging 2019, 2019, 3018349. [Google Scholar] [CrossRef] [Green Version]
- Tamburello, A.; Treglia, G.; Albano, D.; Bertagna, F.; Giovanella, L. Prevalence and clinical significance of focal incidental 18F-FDG uptake in different organs: An evidence-based summary. Clin. Transl. Imaging 2017, 5, 525–532. [Google Scholar] [CrossRef]
- Treglia, G.; Cuzzocrea, M.; Muoio, B.; Elzi, L. PET findings after COVID-19 vaccination: Keep Calm and Carry On. Clin. Transl. Imaging 2021, 9, 209–214. [Google Scholar] [CrossRef]
- Adin, M.E.; Isufi, E.; Kulon, M.; Pucar, D. Association of COVID-19 mRNA Vaccine With Ipsilateral Axillary Lymph Node Reactivity on Imaging. JAMA Oncol. 2021, e211794. [Google Scholar] [CrossRef]
- Bernstine, H.; Priss, M.; Anati, T.; Turko, O.; Gorenberg, M.; Steinmetz, A.P.; Groshar, D. Axillary Lymph Nodes Hypermetabolism After BNT162b2 mRNA COVID-19 Vaccination in Cancer Patients Undergoing 18F-FDG PET/CT: A Cohort Study. Clin. Nucl. Med. 2021, 46, 396–401. [Google Scholar] [CrossRef]
- Cohen, D.; Krauthammer, S.H.; Wolf, I.; Even-Sapir, E. Hypermetabolic lymphadenopathy following administration of BNT162b2 mRNA Covid-19 vaccine: Incidence assessed by [18F]FDG PET-CT and relevance to study interpretation. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1854–1863. [Google Scholar] [CrossRef]
- Cohen, D.; Hazut Krauthammer, S.; Cohen, Y.C.; Perry, C.; Avivi, I.; Herishanu, Y.; Even-Sapir, E. Correlation between BNT162b2 mRNA Covid-19 vaccine-associated hypermetabolic lymphadenopathy and humoral immunity in patients with hematologic malignancy. Eur. J. Nucl. Med. Mol. Imaging 2021, 1–10. [Google Scholar] [CrossRef]
- Eifer, M.; Tau, N.; Alhoubani, Y.; Kanana, N.; Domachevsky, L.; Shams, J.; Keret, N.; Gorfine, M.; Eshet, Y. Covid-19 mRNA Vaccination: Age and Immune Status and its Association with Axillary Lymph Node PET/CT Uptake. J. Nucl. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Eshet, Y.; Tau, N.; Alhoubani, Y.; Kanana, N.; Domachevsky, L.; Eifer, M. Prevalence of Increased FDG PET/CT Axillary Lymph Node Uptake Beyond 6 Weeks after mRNA COVID-19 Vaccination. Radiology 2021, 210886. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, D.G.; Jang, S.; Johnson, D.R.; Takahashi, H.; Navin, P.J.; Broski, S.M.; Thorpe, M.P.; Johnson, G.B.; Young, J.R. Frequency and Characteristics of Nodal and Deltoid FDG and 11C-Choline Uptake on PET Imaging Performed After COVID-19 Vaccination. AJR Am. J. Roentgenol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.; Hyun, C.Y.; Choi, Y.H.; Choi, J.Y.; Lee, K.H.; Cho, Y.S. COVID-19 Vaccination-Associated Lymphadenopathy on FDG PET/CT: Distinctive Features in Adenovirus-Vectored Vaccine. Clin. Nucl. Med. 2021. [Google Scholar] [CrossRef] [PubMed]
- Skawran, S.; Gennari, A.G.; Dittli, M.; Treyer, V.; Muehlematter, U.J.; Maurer, A.; Burger, I.A.; Mader, C.; Messerli, O.; Grünig, H.; et al. [18F]FDG uptake of axillary lymph nodes after COVID-19 vaccination in oncological PET/CT: Frequency, intensity, and potential clinical impact. Eur. Radiol. 2021, 1–9. [Google Scholar] [CrossRef]
- Delgado Bolton, R.C.; Calapaquí Terán, A.K.; Erba, P.A.; Giammarile, F. Medical imaging in times of pandemic: Focus on the cornerstones of successful imaging. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1724–1725. [Google Scholar] [CrossRef]
- Treglia, G. The role of 18F-FDG PET for COVID-19 infection: Myth versus reality. Clin. Transl. Imaging 2020, 1–2. [Google Scholar] [CrossRef]
- Annunziata, S.; Delgado Bolton, R.C.; Kamani, C.H.; Prior, J.O.; Albano, D.; Bertagna, F.; Treglia, G. Role of 2-[18F]FDG as a Radiopharmaceutical for PET/CT in Patients with COVID-19: A Systematic Review. Pharmaceuticals 2020, 13, 377. [Google Scholar] [CrossRef]
- Burger, I.A.; Husmann, L.; Hany, T.F.; Schmid, D.T.; Schaefer, N.G. Incidence and intensity of F-18 FDG uptake after vaccination with H1N1 vaccine. Clin. Nucl. Med. 2011, 36, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Coates, E.E.; Costner, P.J.; Nason, M.C.; Herrin, D.M.; Conant, S.; Herscovitch, P.; Sarwar, U.N.; Holman, L.; Mitchell, J.; Yamshchikov, G.; et al. Lymph Node Activation by PET/CT Following Vaccination With Licensed Vaccines for Human Papillomaviruses. Clin. Nucl. Med. 2017, 42, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Iyengar, S.; Chin, B.; Margolick, J.B.; Sabundayo, B.P.; Schwartz, D.H. Anatomical loci of HIV-associated immune activation and association with viraemia. Lancet 2003, 362, 945–950. [Google Scholar] [CrossRef]
- Nakata, J.; Isohashi, K.; Morimoto, S.; Itou, R.; Kamiya, T.; Matsuura, A.; Nakajima, H.; Fujiki, F.; Nishida, S.; Hasii, Y.; et al. Enhanced immune reaction resulting from co-vaccination of WT1 helper peptide assessed on PET-CT. Medicine 2020, 99, e22417. [Google Scholar] [CrossRef] [PubMed]
- Panagiotidis, E.; Exarhos, D.; Housianakou, I.; Bournazos, A.; Datseris, I. FDG uptake in axillary lymph nodes after vaccination against pandemic (H1N1). Eur. Radiol. 2010, 20, 1251–1253. [Google Scholar] [CrossRef] [PubMed]
- Shirone, N.; Shinkai, T.; Yamane, T.; Uto, F.; Yoshimura, H.; Tamai, H.; Imai, T.; Inoue, M.; Kitano, S.; Kichikawa, K.; et al. Axillary lymph node accumulation on FDG-PET/CT after influenza vaccination. Ann. Nucl. Med. 2012, 26, 248–252. [Google Scholar] [CrossRef]
- Thomassen, A.; Lerberg Nielsen, A.; Gerke, O.; Johansen, A.; Petersen, H. Duration of 18F-FDG avidity in lymph nodes after pandemic H1N1v and seasonal influenza vaccination. Eur. J. Nucl. Med. Mol. Imaging 2011, 38, 894–898. [Google Scholar] [CrossRef] [PubMed]
- Win, Z.; Weiner, J.; Listanco, A.; Patel, N.; Sharma, R.; Greenwood, A.; Maertzdorf, J.; Mollenkopf, H.J.; Pizzoferro, K.; Cole, T.; et al. Systematic Evaluation of Kinetics and Distribution of Muscle and Lymph Node Activation Measured by 18F-FDG- and 11C-PBR28-PET/CT Imaging, and Whole Blood and Muscle Transcriptomics After Immunization of Healthy Humans with Adjuvanted and Unadjuvanted Vaccines. Front. Immunol. 2021, 11, 613496. [Google Scholar] [CrossRef]
- Steinberg, J.; Thomas, A.; Iravani, A. 18F-fluorodeoxyglucose PET/CT findings in a systemic inflammatory response syndrome after COVID-19 vaccine. Lancet 2021, 397, e9. [Google Scholar] [CrossRef]
- Brown, A.; Shah, S.; Dluzewski, S.; Musaddaq, B.; Wagner, T.; Szyszko, T.; Wan, S.; Groves, A.; Mokbel, K.; Malhotra, A. Unilateral axillary adenopathy following COVID-19 vaccination: A multimodality pictorial illustration and review of current guidelines. Clin. Radiol. 2021, 76, 553–558. [Google Scholar] [CrossRef] [PubMed]
- D’Auria, D.; Fulgione, L.; Romeo, V.; Stanzione, A.; Maurea, S.; Brunetti, A. Ultrasound and shear-wave elastography patterns of COVID-19 mRNA vaccine-related axillary, supra and subclavicular lymphadenopathy. Clin. Transl. Imaging 2021, 1–7. [Google Scholar] [CrossRef]
- McInnes, M.D.F.; Moher, D.; Thombs, B.D.; McGrath, T.A.; Bossuyt, P.M.; PRISMA-DTA Group; Clifford, T.; Cohen, J.F.; Deeks, J.J.; Gatsonis, C.; et al. Preferred Reporting Items for a Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies: The PRISMA-DTA Statement. JAMA 2018, 319, 388–396. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.A.; Alabousi, M.; Skidmore, B.; Korevaar, D.A.; Bossuyt, P.M.M.; Moher, D.; Thombs, B.; McInnes, M.D.F. Recommendations for reporting of systematic reviews and meta-analyses of diagnostic test accuracy: A systematic review. Syst. Rev. 2017, 6, 194. [Google Scholar] [CrossRef]
- Sadeghi, R.; Treglia, G. Systematic reviews and meta-analyses of diagnostic studies: A practical guideline. Clin. Transl. Imaging 2017, 5, 83–87. [Google Scholar] [CrossRef]
- Study Quality Assessment Tools. Available online: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools (accessed on 30 June 2021).
Authors | Country | Study Design | Type of Patients Evaluated | No. of Patients Evaluated with 2-[18F]FDG PET/CT | Mean Age | Male % | Type of COVID-19 Vaccine (Manufacturer) | 2-[18F]FDG PET/CT after First Dose of COVID-19 Vaccine | 2-[18F]FDG PET/CT after Second Dose of COVID-19 Vaccine | Time between COVID-19 Vaccination and PET/CT Scan (Days) |
---|---|---|---|---|---|---|---|---|---|---|
Adin et al. [10] | USA | R | Patients with previous recent COVID-19 vaccination who underwent 2-[18F]FDG PET/CT for oncological or other indications | 68 | 75 | 47% | mRNA vaccine (Moderna and Pfizer) | 41 (60%) | 27 (40%) | 1–47 |
Bernstine et al. [11] | Israel | R | Patients with previous recent COVID-19 vaccination who underwent 2-[18F]FDG PET/CT for oncological indications | 650 | 69 | 46% | mRNA vaccine (Pfizer) | 394 (61%) | 256 (39%) | NR |
Cohen et al. [12] | Israel | R | Patients with previous recent COVID-19 vaccination who underwent 2-[18F]FDG PET/CT for oncological or other indications | 728 | 69 | 43% | mRNA vaccine (Pfizer) | 346 (48%) | 382 (52%) | NR |
Cohen et al. [13] | Israel | R | Patients with previous recent COVID-19 vaccination who underwent 2-[18F]FDG PET/CT for evaluation of hematological malignancy | 137 | 68.5 | 55% | mRNA vaccine (Pfizer) | 51 (37%) | 86 (63%) | 5–30 |
Eifer et al. [14] | Israel | R | Patients with previous recent COVID-19 vaccination who underwent PET/CT with several radiotracers for oncological or other indications | 377 | 67 | 51% | mRNA vaccine (Pfizer) | 301 (80%) | 76 (20%) | 1–34 |
Eshet et al. [15] | Israel | R | Patients with previous COVID-19 vaccination who underwent 2-[18F]FDG PET/CT for oncological or other indication beyond 6 weeks after vaccination | 169 | 65 | 51% | mRNA vaccine (Pfizer) | 0 | 169 (100%) | 42–71 |
Schroeder et al. [16] | USA | R | Patients with previous recent COVID-19 vaccination who underwent 2-[18F]FDG or radiolabeled choline PET/CT for oncological indications | 54 | 76 | 64% | mRNA vaccine (Moderna and Pfizer) | NR | NR | 1–42 |
Shin et al. [17] | Korea | R | Healthy subjects with previous recent COVID-19 vaccination who underwent 2-[18F]FDG PET/CT for cancer screening | 31 | 45 | 35% | Adenovirus-vectored vaccine (AstraZeneca) | NR | NR | 1–29 |
Skawran et al. [18] | Switzerland | R | Patients with previous recent COVID-19 vaccination who underwent 2-[18F]FDG PET/CT for oncological indications | 140 | 67 | 72% | mRNA vaccine (Moderna and Pfizer) | 48 (34%) | 92 (66%) | 0–48 |
Authors | Hybrid Imaging Modality and PET/CT Scanner | Fasting before 2-[18F]FDG Injection | Mean Injected 2-[18F]FDG Activity | Time Interval between 2-[18F]FDG Injection and Image Acquisition | Image Analysis |
---|---|---|---|---|---|
Adin et al. [10] | NR | 4–6 h | NR | 1 h | Visual |
Bernstine et al. [11] | PET/CT (contrast enhanced CT) using GE Discovery 710 | NR | 185–370 MBq | NR | Visual and semi-quantitative (SUVmax) |
Cohen et al. [12] | PET/CT (contrast enhanced CT) using GE Discovery 690 or GE Discovery MI | NR | 3.7 MBq/kg | 1 h | Visual and semi-quantitative (SUVmax) |
Cohen et al. [13] | PET/CT (contrast enhanced CT) using GE Discovery 690 or GE Discovery MI | NR | 3.7 MBq/kg | 1 h | Visual and semi-quantitative (SUVmax) |
Eifer et al. [14] | PET/CT (low dose CT) using Philips Vereos | 2–6 h | 5.18 MBq/kg | 1 h | Visual and semi-quantitative (SUVmax) |
Eshet et al. [15] | PET/CT (low dose CT) using Philips Vereos | NR | NR | NR | Visual and semi-quantitative (SUVmax) |
Schroeder et al. [16] | PET/CT (low dose CT) using GE Discovery 690, GE Discovery 710, GE Discovery MI or Siemens Biograph Vision 600 | 11 h | 437 MBq | 1 h | Visual and semi-quantitative (SUVmax) |
Shin et al. [17] | PET/CT (low dose CT) using GE Discovery STE | At least 6 h | 5 MBq/kg | 1 h | Visual and semi-quantitative (SUVmax) |
Skawran et al. [18] | PET/CT (low dose CT) using GE Discovery MI | At least 4 h | 1.5–3.1 MBq/kg | 1 h | Visual and semi-quantitative (SUVmax) |
Authors | All Cases Evaluated with 2-[18F]FDG PET/CT after COVID-19 Vaccine | Cases Evaluated with 2-[18F]FDG PET/CT after the First Dose of COVID-19 Vaccine | Cases Evaluated with 2-[18F]FDG PET/CT after the Second Dose of COVID-19 Vaccine | ||||
---|---|---|---|---|---|---|---|
HALNs Present | HALNs Absent | Uptake at Injection Site of COVID-19 Vaccine | HALNs Present | HALNs Absent | HALNs Present | HALNs Absent | |
Adin et al. [10] | 9/68 (13%) | 59/68 (87%) | 8/68 (12%) | 2/41 (5%) | 39/41 (95%) | 7/27 (26%) | 20/27 (74%) |
Bernstine et al. [11] | 168/650 (26%) | 482/650 (74%) | 52/168 (31%) | 57/394 (14%) | 337/394 (86%) | 111/256 (43%) | 145/256 (57%) |
Cohen et al. [12] | 332/728 (46%) | 396/728 (54%) | 99/266 (37%) | 126/346 (36%) | 220/346 (64%) | 206/382 (54%) | 176/382 (46%) |
Cohen et al. [13] | 43/137 (31%) | 94/137 (69%) | NA | 13/51 (25%) | 38/51 (75%) | 30/86 (35%) | 56/86 (65%) |
Eifer et al. [14] | 170/377 (45%) | 207/377 (55%) | 98/377 (26%) | NA | NA | NA | NA |
Eshet et al. [15] | 49/169 (29%) | 120/169 (71%) | NA | NA | NA | 49/169 (29%) | 120/169 (71%) |
Schroeder et al. [16] | 4/54 (7%) | 50/54 (93%) | 8/55 (15%) | NA | NA | NA | NA |
Shin et al. [17] | 28/31 (90%) | 3/31 (10%) | 22/30 (73%) | NA | NA | NA | NA |
Skawran et al. [18] | 75/140 (54%) | 65/140 (46%) | NA | 27/48 (56%) | 21/48 (44%) | 48/92 (52%) | 44/92 (48%) |
Pooled values (95%CI) | 37% (27–47%) | 63% (53–73%) | 30% (20–41%) | 26% (13–42%) | 74% (58–87%) | 41% (32–50%) | 59% (50–68%) |
Heterogeneity (I2) | High (95%) | High (95%) | High (90%) | High (95%) | High (95%) | High (87%) | High (87%) |
Egger’s test (publication bias) | p = 0.8 (absent) | p = 0.8 (absent) | p = 0.6 (absent) | p = 0.5 (absent) | p = 0.5 (absent) | p = 0.3 (absent) | p = 0.3 (absent) |
Authors and Year | Target of Vaccination | Time Interval from Vaccine Injection to 2-[18F]FDG PET/CT Scan (Days) | Cases Evaluated with 2-[18F]FDG PET/CT after Vaccination | ||
---|---|---|---|---|---|
HyperMetabolic LN Present | HyperMetabolic LN Present | Uptake at Injection Site of Vaccine | |||
Burger et al. 2011 [22] | Influenza | 1–30 | 17/58 (29%) | 41/58 (71%) | 17/58 (29%) |
Coates et al. 2017 [23] | Papillomavirus | 8–37 | 15/15 (100%) | 0/15 (0%) | NA |
Iyenga et al. 2003 [24] | Influenza | 3–5 | 7/8 (87%) | 1/8 (13%) | NA |
Nakata et al. 2021 [25] | Anti-cancer | 1–1159 | NA | NA | 33/37 (89%) |
Panagiotidis et al. 2010 [26] | Influenza | 2–18 | 10/10 (100%) | 0/10 (0%) | NA |
Shirone et al. 2012 [27] | Influenza | <7 or ≥7 | 4/83 (5%) | 79/83 (95%) | NA |
Thomassen et al. 2011 [28] | Influenza | 1–330 | NA | NA | NA |
Win et al. 2021 [29] | Several types of viruses | 1–10 | 38/53 (72%) | 15/53 (28%) | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treglia, G.; Cuzzocrea, M.; Giovanella, L.; Elzi, L.; Muoio, B. Prevalence and Significance of Hypermetabolic Lymph Nodes Detected by 2-[18F]FDG PET/CT after COVID-19 Vaccination: A Systematic Review and a Meta-Analysis. Pharmaceuticals 2021, 14, 762. https://doi.org/10.3390/ph14080762
Treglia G, Cuzzocrea M, Giovanella L, Elzi L, Muoio B. Prevalence and Significance of Hypermetabolic Lymph Nodes Detected by 2-[18F]FDG PET/CT after COVID-19 Vaccination: A Systematic Review and a Meta-Analysis. Pharmaceuticals. 2021; 14(8):762. https://doi.org/10.3390/ph14080762
Chicago/Turabian StyleTreglia, Giorgio, Marco Cuzzocrea, Luca Giovanella, Luigia Elzi, and Barbara Muoio. 2021. "Prevalence and Significance of Hypermetabolic Lymph Nodes Detected by 2-[18F]FDG PET/CT after COVID-19 Vaccination: A Systematic Review and a Meta-Analysis" Pharmaceuticals 14, no. 8: 762. https://doi.org/10.3390/ph14080762
APA StyleTreglia, G., Cuzzocrea, M., Giovanella, L., Elzi, L., & Muoio, B. (2021). Prevalence and Significance of Hypermetabolic Lymph Nodes Detected by 2-[18F]FDG PET/CT after COVID-19 Vaccination: A Systematic Review and a Meta-Analysis. Pharmaceuticals, 14(8), 762. https://doi.org/10.3390/ph14080762