New 2,3-Benzodiazepine Derivative: Synthesis, Activity on Central Nervous System, and Toxicity Study in Mice
Abstract
:1. Introduction
2. Results
2.1. Chemical Synthesis
2.2. VBZ102 Effect in the Experimental Anxiety Tests
2.2.1. Acute Treatment
Open Field Test
Light–Dark Box Test
2.2.2. Chronic Treatment
Open Field Test
Light–Dark Box Test
2.3. Evolution of VBZ102 Side Effects on Memory
Novel Object Recognition
2.4. Toxicity
Biochemical Parameters
2.5. Histological Examination
3. Discussion
4. Materials and Methods
4.1. Chemical Synthesis
4.1.1. General Experimental Procedures
4.1.2. 4-Phenyl-2,3,4,5-tetrahydro-1H-2,3-benzodiazepin-1-one (2a)
4.1.3. 4-(4’-Methoxyphenyl)-2,3,4,5-tetrahydro-1H-2,3-benzodiazepin-1-one (2b)
4.1.4. 4-(2,5-Dimethoxyphenyl)-2,3,4,5-tetrahydro-1H-2,3-benzodiazepin-1-one (2c)
4.2. Animals
4.3. Anxiety: Acute and Subacute Treatment
4.3.1. Acute Treatment
4.3.2. Subacute Treatment
4.4. Behavioral Tests
4.4.1. Open Field Test
4.4.2. Light–Dark Box Test (LDB)
4.4.3. Novel Object Recognition Test
4.5. Toxicity
4.5.1. Biochemical Parameters
4.5.2. Histological Examination
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Souza Schmitt, R.L. Revisão Sistemática e Meta-Análise do Uso de Antidepressivos no Transtorno de Ansiedade Generalizada. Universidade Federal do Rio Grande do Sul. 2003. Available online: https://lume.ufrgs.br/handle/10183/6167 (accessed on 17 August 2021).
- Andreatini, R.; Boerngen-Lacerda, R.; Zorzetto Filho, D. Tratamento farmacológico do transtorno de ansiedade generalizada: Perspectivas futuras. Braz. J. Psychiatry 2001, 23, 233–242. [Google Scholar] [CrossRef] [Green Version]
- Katzman, M.A. Aripiprazole: A clinical review of its use for the treatment of anxiety disorders and anxiety as a comorbidity in mental illness. J. Affect. Disord. 2011, 128, S11–S20. [Google Scholar] [CrossRef]
- Horváth, E.J.; Horváth, K.; Hámori, T.; Fekete, M.I.K.; Sólyom, S.; Palkovits, M. Anxiolytic 2,3-benzodiazepines, their specific binding to the basal ganglia. Prog. Neurobiol. 2000, 60, 309–342. [Google Scholar] [CrossRef]
- Jensen, R.A.; Martinez, J.L.; Vasquez, B.J.; McGaugh, J.L. Benzodiazepines alter acquisition and retention of an inhibitory avoidance response in mice. Psychopharmacology 1979, 64, 125–126. [Google Scholar] [CrossRef] [PubMed]
- Roth, T.; Roehrs, T.; Wittig, R.; Zorick, F. Benzodiazepines and memory. Br. J. Clin. Pharmacol. 1984, 18, 45S–49S. [Google Scholar] [CrossRef] [Green Version]
- Sangshetti, J.N.; Chouthe, R.S.; Jadhav, M.R.; Sakle, N.S.; Chabukswar, A.; Gonjari, I.; Darandale, S.; Shinde, D.B. Green synthesis and anxiolytic activity of some new dibenz-[1,4] diazepine-1-one analogues. Arab. J. Chem. 2017, 10, S1356–S1363. [Google Scholar] [CrossRef] [Green Version]
- Galloway, W.R.J.D.; Isidro-Llobet, A.; Spring, D.R. Diversity-oriented synthesis as a tool for the discovery of novel biologically active small molecules. Nat. Commun. 2010, 1, 80. [Google Scholar] [CrossRef] [Green Version]
- Hung, A.W.; Ramek, A.; Wang, Y.; Kaya, T.; Wilson, J.A.; Clemons, P.A.; Young, D.W. Route to three-dimensional fragments using diversity-oriented synthesis. Proc. Natl. Acad. Sci. USA 2011, 108, 6799–6804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrison, C.N.; Prosser, K.E.; Stokes, R.W.; Cordes, A.; Metzler-Nolte, N.; Cohen, S.M. Expanding medicinal chemistry into 3D space: Metallofragments as 3D scaffolds for fragment-based drug discovery. Chem. Sci. 2020, 11, 1216–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szénási, G.; Vegh, M.; Szabo, G.; Kertesz, S.; Kapus, G.; Albert, M.; Greff, Z.; Ling, I.; Barkoczy, J.; Simig, G.; et al. 2,3-Benzodiazepine-type AMPA receptor antagonists and their neuroprotective effects. Neurochem. Int. 2008, 52, 166–183. [Google Scholar] [CrossRef]
- Pascuzzi, R.M.; Shefner, J.; Chappell, A.S.; Bjerke, J.S.; Tamura, R.; Chaudhry, V.; Clawson, L.; Haas, L.; Rothstein, J.D. A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis. Amyotroph. Lateral. Scler. 2010, 11, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Khabarov, K.M.; Kharaneko, O.I.; Bogza, S.L. 2,3-Benzodiazepine-1-thione in the synthesis of substituted and hetero-annelated 2,3-benzodiazepines. Chem. Heterocycl. Compd. 2009, 45, 468–474. [Google Scholar] [CrossRef]
- Sizonenko, E.S.; Kobrakov, I.K.; Popov, V.Y.; Suikov, S.Y.; Bogza, S.L. Synthesis of 2-R-2-(1-Aryl-7,8-Dimethoxy-5H-2,3-Benzodiazepin-4-yl)Acetic Acid Esters in the Eschenmoser Reaction. Chem. Heterocycl Compd. 2013, 49, 1352–1357. [Google Scholar] [CrossRef]
- Grasso, S.; De Sarro, G.; De Sarro, A.; Micale, N.; Polimeni, S.; Zappalà, M.; Puia, G.; Baraldi, M.; De Micheli, C. Synthesis and anticonvulsant activity of novel and potent 1-aryl-7,8-methylenedioxy-1,2,3,5-tetrahydro-4H-2,3-benzodiazepin-4-ones. Bioorg. Med. Chem. Lett. 2001, 11, 463–466. [Google Scholar] [CrossRef]
- Kümmerle, A.E.; Schmitt, M.; Cardozo, S.V.S.; Lugnier, C.; Villa, P.; Lopes, A.B.; Romeiro, N.C.; Justiniano, H.; Martins, M.A.; Fraga, C.A.; et al. Design, Synthesis, and Pharmacological Evaluation of N -Acylhydrazones and Novel Conformationally Constrained Compounds as Selective and Potent Orally Active Phosphodiesterase-4 Inhibitors. J. Med. Chem. 2012, 55, 7525–7545. [Google Scholar] [CrossRef]
- El-Haj, B.; Ahmed, S.; Garawi, M.; Ali, H. Linking Aromatic Hydroxy Metabolic Functionalization of Drug Molecules to Structure and Pharmacologic Activity. Molecules 2018, 23, 2119. [Google Scholar] [CrossRef] [Green Version]
- Gut, I.; Nedelchevá, V.; Soucek, P.; Stopka, P.; Tichavská, B. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity. Environ. Health Perspect. 1996, 104, 1211–1218. [Google Scholar] [CrossRef] [Green Version]
- Prut, L.; Belzung, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: A review. Eur. J Pharmacol. 2003, 463, 3–33. [Google Scholar] [CrossRef]
- Crawley, J.; Goodwin, F.K. Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol. Biochem. Behav. 1980, 13, 167–170. [Google Scholar] [CrossRef]
- Kapus, G.L.; Gacsályi, I.; Vegh, M.; Kompagne, H.; Hegedűs, E.; Leveleki, C.; Hársing, L.G.; Barkóczy, J.; Bilkei-Gorzó, A.; Lévay, G. Antagonism of AMPA receptors produces anxiolytic-like behavior in rodents: Effects of GYKI 52466 and its novel analogues. Psychopharmacology 2008, 198, 231–241. [Google Scholar] [CrossRef]
- Andreasen, J.T.; Fitzpatrick, C.M.; Larsen, M.; Skovgaard, L.; Nielsen, S.D.; Clausen, R.P.; Troelsen, K.; Spickering, D. Differential role of AMPA receptors in mouse tests of antidepressant and anxiolytic action. Brain Res. 2015, 1601, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Kovács, A.D.; Saje, A.; Wong, A.; Ramji, S.; Cooper, J.D.; Pearce, D.A. Age-dependent therapeutic effect of memantine in a mouse model of juvenile Batten disease. Neuropharmacology 2012, 63, 769–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vegh, M.G.; Kovács, A.D.; Kovács, G.; Szabó, G.; Tihanyi, K.; Hársing Jr, L.G.; Lévay, G. The new 2,3-benzodiazepine derivative EGIS-8332 inhibits AMPA/kainate ion channels and cell death. Neurochem. Int. 2007, 50, 555–563. [Google Scholar] [CrossRef] [PubMed]
- Resendez, J.C.; Rehagen, D. Chapter 21—Infusion Toxicology and Techniques. In A Comprehensive Guide to Toxicology in Nonclinical Drug Development, 2nd ed.; Faqi, A.S., Ed.; Academic Press: Boston, MA, USA, 2017. [Google Scholar] [CrossRef]
- Bourin, M.; Hascoet, M.; Mansouri, B.; Colombel, M.C.; Bradwejn, J. Comparison of behavioral effects after single and repeated administrations of four benzodiazepines in three mice behavioral models. J. Psychiatry Neurosci. 1992, 17, 72–77. [Google Scholar] [PubMed]
- Gerhard, U.; Hobi, V.; Kocher, R.; König, C. Acute sedative effect of a herbal relaxation tablet as compared to that of bromazepam. Schweiz. Rundsch. Med. Prax. 1991, 80, 1481–1486. [Google Scholar] [PubMed]
- Mejo, S.L. Anterograde Amnesia Linked to Benzodiazepines. Nurse Pract. 1992, 17, 44–50. [Google Scholar] [CrossRef]
- Tannenbaum, J.; Bennett, B.T. Russell and Burch’s 3Rs then and now: The need for clarity in definition and purpose. J. Am. Assoc. Lab. Anim. Sci. 2015, 54, 120–132. [Google Scholar] [PubMed]
- Es-safi, I.; Mechchate, H.; Amaghnouje, A.; Elbouzidi, A.; Bouhrim, M.; Bencheikh, N.; Hano, C.; Bousta, D. Assessment of Antidepressant-Like, Anxiolytic Effects and Impact on Memory of Pimpinella Anisum L. Total Extract on Swiss Albino Mice. Plants 2021, 10, 1573. [Google Scholar] [CrossRef]
- Maurmann, N.; Reolon, G.K.; Rech, S.B.; Fett-Neto, A.G.; Roesler, R. A Valepotriate Fraction of Valeriana glechomifolia Shows Sedative and Anxiolytic Properties and Impairs Recognition but not Aversive Memory in Mice. Evid.-Based Complement Altern. Med. 2011, 2011, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Walsh, R.N.; Cummins, R.A. The open-field test: A critical review. Psychol. Bull. 1976, 83, 482–504. [Google Scholar] [CrossRef]
- Triarhou, L.C. Dopaminergic Neuron Transplantation in the Weaver Mouse Model of Parkinson’s Disease; Springer: Boston, MA, USA, 2002. [Google Scholar] [CrossRef]
- Choleris, E. A detailed ethological analysis of the mouse open field test: Effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci. Biobehav. Rev. 2001, 25, 235–260. [Google Scholar] [CrossRef]
- Amaghnouje, A.; Mechchate, H.; Es-Safi, I.; Boukhira, S.; SAliqahtani, A.; MNoman, O.; ANasr, F.; Conte, R.; Calarco, A.; Bousta, D. Subacute Assessment of the Toxicity and Antidepressant-Like Effects of Origanum Majorana L. Polyphenols in Swiss Albino Mice. Molecules 2020, 25, 5653. [Google Scholar] [CrossRef] [PubMed]
- Bourin, M.; Hascoët, M. The mouse light/dark box test. Eur. J. Pharmacol. 2003, 463, 55–65. [Google Scholar] [CrossRef]
- Dere, E.; Huston, J.P.; De Souza Silva, M.A. The pharmacology, neuroanatomy and neurogenetics of one-trial object recognition in rodents. Neurosci. Biobehav. Rev. 2007, 31, 673–704. [Google Scholar] [CrossRef]
- Ennaceur, A.; Delacour, J. A new one-trial test for neurobiological studies of memory in rats. 1, Behavioral data. Behav. Brain Res. 1988, 31, 47–59. [Google Scholar] [CrossRef]
- Antunes, M.; Biala, G. The Novel Object Recognition Memory: Neurobiology, Test Procedure, and Its Modifications. Cogn. Processing 2012, 13, 93–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dapson, R.; Horobin, R. Dyes from a twenty-first century perspective. Biotech. Histochem. 2009, 84, 135–137. [Google Scholar] [CrossRef]
- John, R.; Ahmad, P.; Gadgil, K.; Sharma, S. Heavy metal toxicity: Effect on Plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int. J. Plant Prod. 2009, 3, 65–75. [Google Scholar] [CrossRef]
- Rao, J.V. Toxic effects of novel organophosphorus insecticide (RPR-V) on certain biochemical parameters of euryhaline fish, Oreochromis mossambicus. Pestic. Biochem. Physiol. 2006, 86, 78–84. [Google Scholar] [CrossRef]
- Zaoui, A.; Cherrah, Y.; Mahassini, N.; Alaoui, K.; Amarouch, H.; Hassar, M. Acute and chronic toxicity of Nigella sativa fixed oil. Phytomedicine 2002, 9, 69–74. [Google Scholar] [CrossRef] [Green Version]
- Vijayalakshmi, T.; Muthulakshmi, V.; Sachdanandam, P. Toxic studies on biochemical parameters carried out in rats with Serankottai nei, a siddha drug–milk extract of Semecarpus anacardium nut. J. Ethnopharmacol. 2000, 69, 9–15. [Google Scholar] [CrossRef]
Week 1 | Week 2 | Week 3 | Week 4 | |
---|---|---|---|---|
Vehicle | 35.2 ± 1.2 | 36.0 ± 1.2 | 38.0 ± 2.2 | 37.4 ± 1.4 |
VBZ102, 1.0 mg/kg | 31.2 ± 2.4 | 32.4 ± 1.3 | 32.2 ± 3.1 | 33.2 ± 1.5 |
VBZ102, 10.0 mg/kg | 33.4 ± 2.2 | 32.2 ± 4.0 | 30.4 ± 2.3 | 37.0 ± 1.2 |
Liver | Kidneys | Spleen | Adrenal Glands | Lungs | |
---|---|---|---|---|---|
Vehicle | 10.10 ± 0.67 | 1.62 ± 0.07 | 0.77 ± 0.09 | 0.40 ± 0.04 | 0.51 ± 0.10 |
VBZ102, 1.0 mg/kg | 9.71 ± 0.49 | 1.92 ± 0.03 | 0.80 ± 0.12 | 0.03 ± 0.03 | 0.56 ± 0.02 |
VBZ102, 10.0mg/kg | 9.13 ± 0.79 | 1.31 ± 0.24 | 5.65 ± 0.24 a | 0.03 ± 0.00 | 0.63 ± 0.08 |
Vehicle | VBZ102, 1.0 mg/kg | VBZ102, 10.0 mg/kg | |
---|---|---|---|
Urea | 0.28 ± 0.02 | 0.24 ± 0.01 | 0.38 ± 0.04 |
Creatinine | 3.40 ± 0.31 | 4.00 ± 0.00 | 4.33 ± 0.33 |
ALT | 45.80 ± 1.11 | 23.00 ± 2.52 | 44.33 ± 12.72 |
AST | 311.00 ± 27.22 | 223.33 ± 13.33 | 568.00 ± 180.58 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaghnouje, A.; Bohza, S.; Bohdan, N.; Es-Safi, I.; Kyrylchuk, A.; Achour, S.; El Fatemi, H.; Bousta, D.; Grafov, A. New 2,3-Benzodiazepine Derivative: Synthesis, Activity on Central Nervous System, and Toxicity Study in Mice. Pharmaceuticals 2021, 14, 814. https://doi.org/10.3390/ph14080814
Amaghnouje A, Bohza S, Bohdan N, Es-Safi I, Kyrylchuk A, Achour S, El Fatemi H, Bousta D, Grafov A. New 2,3-Benzodiazepine Derivative: Synthesis, Activity on Central Nervous System, and Toxicity Study in Mice. Pharmaceuticals. 2021; 14(8):814. https://doi.org/10.3390/ph14080814
Chicago/Turabian StyleAmaghnouje, Amal, Serhii Bohza, Nathalie Bohdan, Imane Es-Safi, Andrii Kyrylchuk, Sanae Achour, Hinde El Fatemi, Dalila Bousta, and Andriy Grafov. 2021. "New 2,3-Benzodiazepine Derivative: Synthesis, Activity on Central Nervous System, and Toxicity Study in Mice" Pharmaceuticals 14, no. 8: 814. https://doi.org/10.3390/ph14080814
APA StyleAmaghnouje, A., Bohza, S., Bohdan, N., Es-Safi, I., Kyrylchuk, A., Achour, S., El Fatemi, H., Bousta, D., & Grafov, A. (2021). New 2,3-Benzodiazepine Derivative: Synthesis, Activity on Central Nervous System, and Toxicity Study in Mice. Pharmaceuticals, 14(8), 814. https://doi.org/10.3390/ph14080814