In Vitro Characterization of Inhibitors for Lung A549 and Leukemia K562 Cell Lines from Fungal Transformation of Arecoline Supported by In Silico Docking to M3-mAChR and ADME Prediction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of the Isolated Compounds
2.2. Biological Activity
2.2.1. In Vitro Cytotoxic Activity
In Vitro Cytotoxic Activity Using Cancer Cell Lines
In Vitro Cytotoxic Activity Using Normal Cell Lines
2.2.2. Flow Cytometry Analysis of DNA Content for Cell Cycle and Apoptosis
Cell Cycle Arrest and Apoptosis Induced by Compound 1 Using Non-Small-Cell Lung Cancer A549
Cell Cycle Arrest and Apoptosis Induced by Compounds 3 and 5 Using Leukemia Cancer Cell K562
2.3. In Silico Molecular Docking
2.4. Prediction of Drug-Likeness and Pharmacokinetics ADME
3. Experimental Procedures
3.1. General Procedures
3.2. Microorganisms, Culture Conditions, and Fermentation Procedures
3.2.1. Microorganisms
3.2.2. Preliminary Screening Procedures
3.2.3. Large Scale Fermentation
3.3. Isolation of Compounds
3.3.1. Isolation of Compounds from Arecoline Hydrobromide Transformation by C. blakesleeana NRRL 1369
Isolation of Compounds 1 and 2 from Ethyl Acetate Extract
Isolation of Compounds 3 and 4 from n-Butanol Extract
3.3.2. Isolation of Compound 5 from Arecoline Hydrobromide Transformation by A. niger ATCC 10549
3.4. Physical and Spectral Data of Compounds
3.5. Biological Activity
3.5.1. In Vitro Cytotoxic Activity
3.5.2. Flow Cytometry Analysis of DNA Content for Cell Cycle and Apoptosis
3.6. Molecular Docking Studies for the Selected Target
3.7. Prediction of Drug-Likeness and Pharmacokinetics ADME
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.J.; Peng, W.; Hu, M.B.; Xu, M.; Wu, C.J. The pharmacology, toxicology and potential applications of arecoline: A review. Pharm. Biol. 2016, 54, 2753–2760. [Google Scholar] [CrossRef]
- Lord, G.A.; Lim, C.K.; Warnakulasuriya, S.; Peters, T.J. Chemical and analytical aspects of areca nut. Addict. Biol. 2002, 7, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Liu, Y.J.; Wu, N.; Sun, T.; He, X.Y.; Gao, Y.X.; Wu, C.J. Areca catechu L.(Arecaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Ethnopharmacol. 2015, 164, 340–356. [Google Scholar] [CrossRef]
- Tseng, S.K.; Chang, M.C.; Su, C.Y.; Chi, L.Y.; Chang, J.Z.C.; Tseng, W.Y.; Yeung, S.Y.; Hsu, M.L.; Jeng, J.H. Arecoline induced cell cycle arrest, apoptosis, and cytotoxicity to human endothelial cells. Clin. Oral Investig. 2012, 16, 1267–1273. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J.; Chang, L.S. Arecoline-induced death of human leukemia K562 cells is associated with surface up-modulation of TNFR2. J. Cell. Physiol. 2012, 227, 2240–2251. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.W.; Hsieh, B.S.; Cheng, H.L.; Hu, Y.C.; Chang, W.T.; Chang, K.L. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells. Toxicol. Appl. Pharmacol. 2012, 258, 199–207. [Google Scholar] [CrossRef]
- Chen, P.H.; Huang, B.; Shieh, T.Y.; Wang, Y.H.; Chen, Y.K.; Wu, J.H.; Huang, J.H.; Chen, C.C.; Lee, K.W. The influence of monoamine oxidase variants on the risk of betel quid-associated oral and pharyngeal cancer. Sci. World J. 2014, 2014, 183548. [Google Scholar] [CrossRef]
- Lee, S.S.; Tsai, C.H.; Yu, C.C.; Chang, Y.C. Elevated snail expression mediates tumor progression in areca quid chewing-associated oral squamous cell carcinoma via reactive oxygen species. PLoS ONE 2013, 8, e67985. [Google Scholar] [CrossRef]
- Frucht, H.; Jensen, R.T.; Dexter, D.; Yang, W.L.; Xiao, Y. Human colon cancer cell proliferation mediated by the M3 muscarinic cholinergic receptor. Clin. Cancer Res. 1999, 5, 2532–2539. [Google Scholar]
- Oppitz, M.; Möbus, V.; Brock, S.; Drews, U. Muscarinic receptors in cell lines from ovarian carcinoma: Negative correlation with survival of patients. Gynecol. Oncol. 2002, 85, 159–164. [Google Scholar] [CrossRef]
- Rayford, W.; Noble, M.J.; Austenfeld, M.A.; Weigel, J.; Mebust, W.K.; Shah, G.V. Muscarinic cholinergic receptors promote growth of human prostate cancer cells. Prostate 1997, 30, 160–166. [Google Scholar] [CrossRef]
- Song, P.; Sekhon, H.S.; Jia, Y.; Keller, J.A.; Blusztajn, J.K.; Mark, G.P.; Spindel, E.R. Acetylcholine is synthesized by and acts as an autocrine growth factor for small cell lung carcinoma. Cancer Res. 2003, 63, 214–221. [Google Scholar]
- Song, P.; Sekhon, H.S.; Lu, A.; Arredondo, J.; Sauer, D.; Gravett, C.; Mark, G.P.; Grando, S.A.; Spindel, E.R. M3 muscarinic receptor antagonists inhibit small cell lung carcinoma growth and mitogen-activated protein kinase phosphorylation induced by acetylcholine secretion. Cancer Res. 2007, 67, 3936–3944. [Google Scholar] [CrossRef]
- Spindel, E.R. Muscarinic receptor agonists and antagonists: Effects on cancer. In Muscarinic Receptors. Handbook of Experimental Pharmacology; Fryer, A., Christopoulos, A., Nathanson, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 208, pp. 451–468. [Google Scholar]
- Alessandrini, F.; Cristofaro, I.; Di Bari, M.; Zasso, J.; Conti, L.; Tata, A.M. The activation of M2 muscarinic receptor inhibits cell growth and survival in human glioblastoma cancer stem cells. Int. Immunopharmacol. 2015, 29, 105–109. [Google Scholar] [CrossRef]
- Suriyo, T.; Chotirat, S.; Auewarakul, C.U.; Chaiyot, K.; Promsuwicha, O.; Satayavivad, J. Variation of nicotinic subtype α7 and muscarinic subtype M3 acetylcholine receptor expression in three main types of leukemia. Oncol. Lett. 2019, 17, 1357–1362. [Google Scholar] [CrossRef]
- Siregar, P.; Audira, G.; Feng, L.Y.; Lee, J.H.; Santoso, F.; Yu, W.H.; Lai, Y.H.; Li, J.H.; Lin, Y.T.; Chen, J.R.; et al. Pharmaceutical assessment suggests locomotion hyperactivity in zebrafish triggered by arecoline might be associated with multiple muscarinic acetylcholine receptors activation. Toxins 2021, 13, 259. [Google Scholar] [CrossRef]
- Giri, S.; Idle, J.R.; Chen, C.; Zabriskie, T.M.; Krausz, K.W.; Gonzalez, F.J. A metabolomic approach to the metabolism of the areca nut alkaloids arecoline and arecaidine in the mouse. Chem. Res. Toxicol. 2006, 19, 818–827. [Google Scholar] [CrossRef]
- Ohshima, H.; Friesen, M.; Bartsch, H. Identification in rats of N-nitrosonipecotic acid as a major urinary metabolite of the areca-nut alkaloid-derived nitrosamines, N-nitrosoguvacoline and N-nitrosoguvacine. Cancer Lett. 1989, 44, 211–216. [Google Scholar] [CrossRef]
- Thorsen, T.S.; Matt, R.; Weis, W.I.; Kobilka, B.K. Modified T4 lysozyme fusion proteins facilitate G protein-coupled receptor crystallogenesis. Structure 2014, 22, 1657–1664. [Google Scholar] [CrossRef]
- Chemicalbook.com. Arecoline Hydrobromide (300-08-3) 1H NMR Spectrum. 2022. Available online: https://www.chemicalbook.com/SpectrumEN_300-08-3_1HNMR.htm (accessed on 2 August 2022).
- Srinivasan, P.R.; Lichter, R.L. 13C NMR spectral studies of arecoline, hordenine, strychnine and brucine. Org. Magn. Reson. 1979, 8, 198–201. [Google Scholar] [CrossRef]
- Dega-Szafran, Z.; Dulewicz, E.; Szafran, M. NMR study of 4-hydroxy-1-methylpiperidine betaine derivatives. J. Mol. Struct. 2006, 792–793, 50–55. [Google Scholar] [CrossRef]
- Rubiralta, M.; Giralt, E.; Diez, A. 1H NMR Properties of Piperidine Derivatives. In Studies in Organic Chemistry; Elsevier: Amsterdam, The Netherlands, 1991; Volume 43, pp. 34–87. [Google Scholar]
- Lambert, J.B.; Keske, R.G.; Carhart, R.E.; Jovanovich, A.P. The conformational rivalry between the nonbonding electron pair and the proton on nitrogen. J. Am. Chem. Soc. 1967, 89, 3761–3767. [Google Scholar] [CrossRef]
- Matera, C.; Flammini, L.; Quadri, M.; Vivo, V.; Ballabeni, V.; Holzgrabe, U.; Mohr, K.; De Amici, M.; Barocelli, E.; Bertoni, S.; et al. Bis(ammonio)alkane-type agonists of muscarinic acetylcholine receptors: Synthesis, in vitro functional characterization, and in vivo evaluation of their analgesic activity. Eur. J. Med. Chem. 2014, 75, 222–232. [Google Scholar] [CrossRef]
- Abraham, R.J.; Aboitiz, N.; Merrett, J.; Sherborne, B.; Whitcombe, I. Conformational analysis. Part 34. An NMR investigation of the conformational equilibrium and intramolecular hydrogen bonding in nipecotic acid derivatives. J. Chem. Soc. Perkin Trans. 2 2000, 12, 2382–2392. [Google Scholar] [CrossRef]
- Bartoszak-Adamska, E.; Dega-Szafran, Z.; Komasa, A.; Szafran, M. Structural, spectroscopic and computational studies of the 2: 1 complex of nipecotic acid with squaric acid. Chem. Phys. 2014, 444, 7–14. [Google Scholar] [CrossRef]
- Ozenil, M.; Aronow, J.; Piljak, D.; Vraka, C.; Holzer, W.; Spreitzer, H.; Wadsak, W.; Hacker, M.; Pichler, V. Synthesis, biological, and computational evaluation of antagonistic, chiral hydrobenzoin esters of arecaidine targeting mAChR M1. Pharmaceuticals 2020, 13, 437. [Google Scholar] [CrossRef]
- Mathew, C.D.; Nagasawa, T.; Kobayashi, M.; Yamada, H. Nitrilase-catalyzed production of nicotinic acid from 3-cyanopyridine in Rhodococcus rhodochrous J1. Appl. Environ. Microbiol. 1988, 54, 1030–1032. [Google Scholar] [CrossRef]
- Ida, C.; Ogata, S.; Okumura, K.; Taguchi, H. Induction of differentiation in K562 cell line by nicotinic acid-related compounds. Biosci. Biotechnol. Biochem. 2009, 73, 79–84. [Google Scholar] [CrossRef]
- Bézivin, C.; Tomasi, S.; Lohézic-Le Dévéhat, F.; Boustie, J. Cytotoxic activity of some lichen extracts on murine and human cancer cell lines. Phytomedicine 2003, 10, 499–503. [Google Scholar] [CrossRef]
- Machana, S.; Weerapreeyakul, N.; Barusrux, S.; Nonpunya, A.; Sripanidkulchai, B.; Thitimetharoch, T. Cytotoxic and apoptotic effects of six herbal plants against the human hepatocarcinoma (HepG2) cell line. Chin. Med. 2011, 6, 39. [Google Scholar] [CrossRef]
- Prayong, P.; Barusrux, S.; Weerapreeyakul, N. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia 2008, 79, 598–601. [Google Scholar] [CrossRef]
- Singh, L.D.; Ganju, K.; Rajpoot, R. Review on liposome as novel approach for cancer therapy. Asian J. Pharm. Res. Dev. 2020, 8, 122–129. [Google Scholar] [CrossRef]
- Badisa, R.B.; Darling-Reed, S.F.; Joseph, P.; Cooperwood, J.S.; Latinwo, L.M.; Goodman, C.B. Selective cytotoxic activities of two novel synthetic drugs on human breast carcinoma MCF-7 cells. Anticancer Res. 2009, 29, 2993–2996. [Google Scholar]
- Abdel-Aziz, H.A.; Aboul-Fadl, T.; Al-Obaid, A.-R.M.; Ghazzali, M.; Al-Dhfyan, A.; Contini, A. Design, synthesis and pharmacophoric model building of novel substituted nicotinic acid hydrazones with potential antiproliferative activity. Arch. Pharm. Res. 2012, 35, 1543–1552. [Google Scholar] [CrossRef]
- Iwata, K.; Ogata, S.; Okumura, K.; Taguchi, H. Induction of differentiation in human promyelocytic leukemia HL-60 cell line by niacin-related compounds. Biosci. Biotechnol. Biochem. 2003, 67, 1132–1135. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Lomize, A.L.; Hage, J.M.; Schnitzer, K.; Golobokov, K.; LaFaive, M.B.; Forsyth, A.C.; Pogozheva, I.D. PerMM: A web tool and database for analysis of passive membrane permeability and translocation pathways of bioactive molecules. J. Chem. Inf. Model. 2019, 59, 3094–3099. [Google Scholar] [CrossRef]
- Lomize, A.L.; Pogozheva, I.D. Physics-based method for modeling passive membrane permeability and translocation pathways of bioactive molecules. J. Chem. Inf. Model. 2019, 59, 3198–3213. [Google Scholar] [CrossRef]
- Ibrahim, A.-R.S.; Ragab, A.E. Fusidic acid ring B hydroxylation by Cunninghamella elegans. Phytochem. Lett. 2018, 25, 86–89. [Google Scholar] [CrossRef]
- Ibrahim, A.-R.S.; Elokely, K.M.; Ferreira, D.; Ragab, A.E. Microbial oxidation of the fusidic acid side chain by Cunninghamella echinulata. Molecules 2018, 23, 970. [Google Scholar] [CrossRef]
- Ragab, A.E.; Ibrahim, A.R.S.; Léon, F. 3-O-formyl-27-hydroxyfusidic acid: A new metabolite of fusidic acid by Cunninghamella echinulata. Rec. Nat. Prod. 2020, 14, 292–296. [Google Scholar] [CrossRef]
- Bahuguna, A.; Khan, I.; Bajpai, V.K.; Kang, S.C. MTT assay to evaluate the cytotoxic potential of a drug. Bangladesh J. Pharmacol. 2017, 12, 115–118. [Google Scholar] [CrossRef]
- Berridge, M.V.; Tan, A.S. Characterization of the cellular reduction of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys. 1993, 303, 474–482. [Google Scholar] [CrossRef]
- Plumb, J.A. Cell sensitivity assays: The MTT assay. In Cancer Cell Culture; Springer: Berlin/Heidelberg, Germany, 2004; pp. 165–169. [Google Scholar]
- Vistica, D.T.; Skehan, P.; Scudiero, D.; Monks, A.; Pittman, A.; Boyd, M.R. Tetrazolium-based assays for cellular viability: A critical examination of selected parameters affecting formazan production. Cancer Res. 1991, 51, 2515–2520. [Google Scholar]
- Demchenko, A.P. Beyond annexin V: Fluorescence response of cellular membranes to apoptosis. Cytotechnology 2013, 65, 157–172. [Google Scholar] [CrossRef]
- Thomsen, R.; Christensen, M.H. MolDock: A new technique for high-accuracy molecular docking. J. Med. Chem. 2006, 49, 3315–3321. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Frey, J.G.; Bird, C.L. Web-based services for drug design and discovery. Expert Opin. Drug Discov. 2011, 6, 885–895. [Google Scholar] [CrossRef]
Compound | Cytotoxicity IC50 (µM) ± SD | |
---|---|---|
Non-Small-Cell Lung Cancer A549 | Leukemia Cancer Cell K562 | |
Arecoline hydrobromide | 11.73 ± 0.71 | 15.30 ± 1.08 |
1 | 3.08 ± 0.19 | 1.56 ± 0.11 |
2 | >100 | >100 |
3 | 7.33 ± 0.45 | 3.33 ± 0.24 |
4 | 90.90 ± 0.59 | 67.30 ± 0.53 |
5 | 3.29 ± 0.20 | 2.15 ± 0.15 |
Staurosporine | 10.47 ± 0.64 | 5.07 ± 0.36 |
Doxorubicin | 5.05 ± 0.13 | 6.94 ± 0.21 |
Compound | Normal Lung Cell Line WI38 IC50 (µM) ± SD | ** SI (Lung) | Normal Blood Cell PCS-800-016 IC50 (µM) ± SD | ** SI (Blood Cell) |
---|---|---|---|---|
1 | 18.27 ± 0.91 | 5.93 | 9.872 ± 0.49 | 6.32 |
3 | 26.58 ± 1.33 | 3.64 | 37.86 ± 1.89 | 11.37 |
5 | 13.91 ± 0.69 | 5.00 | 20.20 ± 1.01 | 9.35 |
Staurosporine | 16.42 ± 0.82 | 1.57 | 12.99 ± 0.65 | 2.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragab, A.E.; Badawy, E.T.; Aboukhatwa, S.M.; Kabbash, A.; Abo El-Seoud, K.A. In Vitro Characterization of Inhibitors for Lung A549 and Leukemia K562 Cell Lines from Fungal Transformation of Arecoline Supported by In Silico Docking to M3-mAChR and ADME Prediction. Pharmaceuticals 2022, 15, 1171. https://doi.org/10.3390/ph15101171
Ragab AE, Badawy ET, Aboukhatwa SM, Kabbash A, Abo El-Seoud KA. In Vitro Characterization of Inhibitors for Lung A549 and Leukemia K562 Cell Lines from Fungal Transformation of Arecoline Supported by In Silico Docking to M3-mAChR and ADME Prediction. Pharmaceuticals. 2022; 15(10):1171. https://doi.org/10.3390/ph15101171
Chicago/Turabian StyleRagab, Amany E., Ebtisam T. Badawy, Shaimaa M. Aboukhatwa, Amal Kabbash, and Kamilia A. Abo El-Seoud. 2022. "In Vitro Characterization of Inhibitors for Lung A549 and Leukemia K562 Cell Lines from Fungal Transformation of Arecoline Supported by In Silico Docking to M3-mAChR and ADME Prediction" Pharmaceuticals 15, no. 10: 1171. https://doi.org/10.3390/ph15101171
APA StyleRagab, A. E., Badawy, E. T., Aboukhatwa, S. M., Kabbash, A., & Abo El-Seoud, K. A. (2022). In Vitro Characterization of Inhibitors for Lung A549 and Leukemia K562 Cell Lines from Fungal Transformation of Arecoline Supported by In Silico Docking to M3-mAChR and ADME Prediction. Pharmaceuticals, 15(10), 1171. https://doi.org/10.3390/ph15101171