Chitosan/Cyclodextrin Nanospheres for Potential Nose-to-Brain Targeting of Idebenone
Abstract
:1. Introduction
2. Results and Discussion
2.1. In Vitro Release Studies
2.2. In Vitro Biological Studies
3. Materials and Methods
3.1. Materials
3.2. Preparation of the IDE/SBE-β-CD and the IDE/HP-β-CD Inclusion Complexes
3.3. Phase Solubility Studies of IDE
3.4. Preparation of CS NPs
3.5. Characterization of CS NPs
3.6. In Vitro Release of IDE from NPs
3.7. HPLC Analysis
3.8. FT-IR Analysis of Excised Nasal Mucosae
3.9. In Vitro Biological Studies
3.9.1. Cell Cultures
3.9.2. In Vitro Cytotoxicity Assays
3.9.3. Evaluation of Antioxidant Activity
3.9.4. Permeation Studies through Excised Nasal Mucosa
3.9.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gueven, N.; Ravishankar, P.; Eri, R.; Rybalka, E. Idebenone: When an antioxidant is not anantioxidant. Redox Biol. 2021, 38, 101812. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Rivero, J.M.; Pastor-Maldonado, C.J.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Munuera-Cabeza, M.; Suárez-Carrillo, A.; Talaverón-Rey, M.; Sánchez-Alcázar, J.A. Coenzyme Q10 Analogues: Benefits and Challenges for Therapeutics. Antioxidants 2021, 10, 236. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.; Liu, J.; Ren, M.; Ji, K.; Li, L.; Zhang, B.; Gong, Y.; Yan, C. Idebenone protects against oxidized low density lipoprotein induced mitochondrial dysfunction in vascular endothelial cells via GSK3β/β-catenin signalling pathways. Biochem. Biophys. Res. Commun. 2015, 465, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Erb, M.; Hoffmann-Enger, B.; Deppe, H.; Soeberdt, M.; Haefeli, R.H.; Rummey, C.; Feurer, A.; Gueven, N. Features of idebenone and related short-chain quinones that rescue ATP levels under conditions of impaired mitochondrial complex I. PLoS ONE 2012, 7, e36153. [Google Scholar] [CrossRef]
- Jaber, S.; Polster, B.M. Idebenone and Neuroprotection: Antioxidant, Pro-oxidant, or Electron Carrier? J. Bioenerg. Biomembr. 2015, 47, 111–118. [Google Scholar] [CrossRef]
- Nitta, A.; Murakami, Y.; Furukawa, Y.; Kawatsura, W.; Hayashi, K.; Yamada, K.; Hasegawa, T.; Nabeshima, T. Oral administration of idebenone induces nerve growth factor in the brain and improves learning and memory in basal forebrain-lesioned rats. Naunyn. Schmiedebergs Arch. Pharmacol. 1994, 349, 401–407. [Google Scholar] [CrossRef]
- Yan, J.; Sun, W.; Shen, M.; Zhang, Y.; Jiang, M.; Liu, A.; Ma, H.; Lai, X.; Wu, J. Idebenone improves motor dysfunction, learning and memory by regulating mitophagy in MPTP-treated mice. Cell Death Discov. 2022, 8, 28. [Google Scholar] [CrossRef]
- Pemp, B.; Kircher, K.; Reitner, A. Visual function in chronic Leber’s hereditary optic neuropathy during idebenone treatment initiated 5 to 50 years after onset. Graefes. Arch. Clin. Exp. Ophthalmol. 2019, 257, 2751–2757. [Google Scholar] [CrossRef]
- Pemp, B.; Mitsch, C.; Kircher, K.; Reitner, A. Changes in Visual Function and Correlations with Inner Retinal Structure in Acute and Chronic Leber’s Hereditary Optic Neuropathy Patients after Treatment with Idebenone. J. Clin. Med. 2021, 10, 151. [Google Scholar] [CrossRef]
- Gillis, J.C.; Benefield, P.; McTavish, D. Idebenone. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in age-related cognitive disorders. Drugs Aging 1994, 5, 133–152. [Google Scholar] [CrossRef]
- Schulz, J.B.; Boesch, S.; Bürk, K.; Dürr, A.; Giunti, P.; Mariotti, C.; Pousset, F.; Schöls, L.; Vankan, P.; Pandolfo, M. Diagnosis and treatment of Friedreich ataxia: A European perspective. Nat. Rev. Neurol. 2009, 5, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Barker, R.G.; Wyckelsma, V.L.; Xu, H.; Murphy, R.M. Mitochondrial content is preserved throughout disease progression in the mdx mouse model of Duchenne muscular dystrophy, regardless of taurine supplementation. Am. J. Physiol. Cell Physiol. 2018, 314, C483–C491. [Google Scholar] [CrossRef] [PubMed]
- Cenini, G.; Voos, W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front. Pharmacol. 2019, 10, 902. [Google Scholar] [CrossRef]
- Thal, L.J.; Grundman, M.; Berg, J.; Ernstrom, K.; Margolin, R.; Pfeiffer, E.; Weiner, M.F.; Zamrini, E.; Thomas, R.G. Idebenone treatment fails to slow cognitive decline in Alzheimer’s disease. Neurology 2003, 61, 1498–1502. [Google Scholar] [CrossRef] [PubMed]
- Parkinson, M.H.; Schulz, J.B.; Giunti, P. Co-enzyme Q10 and idebenone use in Friedreich’s ataxia. J. Neurochem. 2013, 126, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Deary, I.; Corley, J.; Gow, A.; Adkins, J.; Noble, S.; Gillis, J.; Benfield, P.; Mctavish, D.; Tsou, A.; Friedman, L.; et al. Idebenone: A guide to its use in Alzheimer’s disease, other age-related cognitive disorders and Friedreich’s ataxia. Drugs Ther. Perspect. 2010, 26, 1–5. [Google Scholar] [CrossRef]
- Giovanni, D.S.; Valeria, P.; Bahaa, F.; Majid, A.F. Monitoring cardiac function during idebenone therapy in Friedreich’s ataxia. Curr. Pharm. Des. 2015, 21, 479–483. [Google Scholar] [CrossRef]
- Lynch, D.R.; Perlman, S.L.; Meier, T. A phase 3, double-blind, placebo-controlled trial of idebenone in friedreich ataxia. Arch. Neurol. 2010, 67, 941–947. [Google Scholar] [CrossRef]
- Available online: https://ml-eu.globenewswire.com/Resource/Download/6ebfc842-83ba-4f91-8027-bface4af00d0 (accessed on 6 October 2020).
- Becker, C.; Bray-French, K.; Drewe, J. Pharmacokinetic evaluation of idebenone. Expert. Opin. Drug. Metab. Toxicol. 2010, 6, 1437–1444. [Google Scholar] [CrossRef]
- Bodmer, M.; Vankan, P.; Dreier, M.; Kutz, K.W.; Drewe, J. Pharmacokinetics and metabolism of idebenone in healthy male subjects. Eur. J. Clin. Pharmacol. 2009, 65, 493–501. [Google Scholar] [CrossRef]
- Qian, X.; Wang, G.; Li, J.; Zhang, Z.; Zhang, M.; Yang, Q.; Zhang, Z.; Li, Y. Improving oral bioavailability of water-insoluble idebenone with bioadhesive liposomes. J. Drug Del. Sci. Thecnol. 2022, 75, 103640. [Google Scholar] [CrossRef]
- Pignatello, R.; Acquaviva, R.; Campisi, A.; Raciti, G.; Musumeci, T.; Puglisi, G. Effects of liposomal encapsulation on the antioxidant activity of lipophilic prodrugs of idebenone. J. Liposome. Res. 2011, 21, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Venuti, V.; Crupi, V.; Fazio, B.; Majolino, D.; Acri, G.; Testagrossa, B.; Stancanelli, R.; De Gaetano, F.; Gagliardi, A.; Paolino, D.; et al. Physicochemical Characterization and Antioxidant Activity Evaluation of Idebenone/Hydroxypropyl-β-Cyclodextrin Inclusion Complex. Biomolecules 2019, 9, 531. [Google Scholar] [CrossRef]
- Lauro, M.R.; Carbone, C.; Sansone, F.; Ruozi, B.; Chillemi, R.; Sciuto, S.; Aquino, R.P.; Puglisi, G. Innovative oral spray-dried Idebenone systems to improve patient compliance. Drug Dev. Ind. Pharm. 2016, 42, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Lauro, F.; Ilari, S.; Giancotti, L.A.; Ventura, C.A.; Morabito, C.; Gliozzi, M.; Malafoglia, V.; Palma, E.; Paolino, D.; Mollace, V.; et al. Pharmacological effect of a new idebenone formulation in a model of carrageenan-induced inflammatory pain. Pharmacol. Res. 2016, 111, 767–773. [Google Scholar] [CrossRef]
- Cannavà, C.; Crupi, V.; Guardo, M.; Majolino, D.; Stancanelli, R.; Tommasini, S.; Ventura, C.A.; Venuti, V. Phase solubility and FTIR-ATR studies of idebenone/sulfobutyl ether β-cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 2013, 75, 255–262. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, M.; Zhu, X.; Li, M.; Guo, M.; Liu, P.; He, Z.; Fu, Q. Effectiveness of idebenone nanorod formulations in the treatment of Alzheimer’s disease. J. Control Release 2021, 336, 169–180. [Google Scholar] [CrossRef]
- Alexander, A.; Agrawal, M.; Chougule, M.B.; Saraf, S.; Saraf, S. Chapter 9—Nose-to-brain drug delivery: An alternative approach for effective brain drug targeting. In Nanopharmaceuticals; Elsevier: Amsterdam, The Netherlands, 2020; pp. 175–200. [Google Scholar] [CrossRef]
- Su, Y.; Sun, B.; Gao, X.; Dong, X.; Fu, L.; Zhang, Y.; Li, Z.; Wang, Y.; Jiang, H.; Han, B. Intranasal Delivery of Targeted Nanoparticles Loaded With miR-132 to Brain for the Treatment of Neurodegenerative Diseases. Front. Pharmacol. 2020, 11, 1165. [Google Scholar] [CrossRef]
- Casettari, L.; Illum, L. Chitosan in nasal delivery systems for therapeutic drugs. J. Control Release 2014, 190, 189–200. [Google Scholar] [CrossRef]
- Sonaje, K.; Chuang, E.Y.; Lin, K.J.; Yen, T.C.; Su, F.Y.; Tseng, M.T.; Sung, H.W. Opening of epithelial tight junctions and enhancement of paracellular permeation by chitosan: Microscopic, ultrastructural, and computed-tomographic observations. Mol. Pharm. 2012, 9, 1271–1279. [Google Scholar] [CrossRef]
- Musumeci, T.; Pellitteri, R.; Spatuzza, M.; Puglisi, G. Nose-to-brain delivery: Evaluation of polymeric nanoparticles on olfactory ensheathing cells uptake. J. Pharm. Sci. 2014, 103, 628. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, A.; Musumeci, T.; Serapide, M.F.; Pellitteri, R.; Uchegbu, I.F.; Puglisi, G. Nose to brain delivery in rats: Effect of surface charge of rhodamine B labeled nanocarriers on brain subregion localization. Colloids Surf. B Biointerfaces 2017, 154, 297. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Gómez, C.P.; Cecilia, J.A. Chitosan: A Natural Biopolymer with a Wide and Varied Range of Applications. Molecules 2020, 25, 3981. [Google Scholar] [CrossRef] [PubMed]
- Sultan, M.H.; Moni, S.S.; Madkhali, O.A.; Bakkari, M.A.; Alshahrani, S.; Alqahtani, S.S.; Alhakamiy, N.A.; Mohan, S.; Ghazwani, M.; Bukhary, H.A.; et al. Characterization of cisplatin-loaded chitosan nanoparticles and rituximab-linked surfaces as target-specific injectable nano-formulations for combating cancer. Sci. Rep. 2022, 12, 468. [Google Scholar] [CrossRef] [PubMed]
- Garg, U.; Chauhan, S.; Nagaich, U.; Jain, N. Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting. Adv. Pharm. Bull. 2019, 9, 195–204. [Google Scholar] [CrossRef]
- Mohammed, M.A.; Syeda, J.T.M.; Wasan, K.M.; Wasan, E.K. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics 2017, 9, 53. [Google Scholar] [CrossRef]
- Cannavà, C.; De Gaetano, F.; Stancanelli, R.; Venuti, V.; Paladini, G.; Caridi, F.; Ghica, C.; Crupi, V.; Majolino, D.; Ferlazzo, G.; et al. Chitosan-hyaluronan nanoparticles for tumor targeting of vinblastine sulfate: Characterization and internalization studies. Pharmaceutics 2022, 14, 942. [Google Scholar] [CrossRef]
- Mahmood, M.A.; Madni, A.; Rehman, M.; Rahim, M.A.; Jabar, A. Ionically cross-linked chitosan nanoparticles for sustained delivery of docetaxel: Fabrication, post-formulation and acute oral toxicity evaluation. Int. J. Nanomed. 2012, 14, 10035–10046. [Google Scholar] [CrossRef]
- Ai, J.W.; Liao, W.; Ren, Z.L. Enhanced anticancer effect of copper-loaded chitosan nanoparticles against osteosarcoma. RSC Adv. 2017, 7, 15971. [Google Scholar] [CrossRef] [Green Version]
- Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2018, 16, 101–112. [Google Scholar] [CrossRef]
- Mahmoud, A.A.; El-Feky, G.S.; Kamel, R.; Awad, G.E. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int. J. Pharm. 2011, 413, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Abruzzo, A.; Zuccheri, G.; Belluti, F.; Provenzano, S.; Verardi, L.; Bigucci, F.; Cerchiara, T.; Luppi, B.; Calonghi, N. Chitosan nanoparticles for lipophilic anticancer drug delivery: Development, characterization and in vitro studies on HT29 cancer cells. Colloids. Surf. B. Biointerfaces 2016, 145, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.; Zhang, J.; Tan, W.; Miao, Q.; Guo, Z. Preparation of Doxorubicin-Loaded Carboxymethyl-β-Cyclodextrin/Chitosan Nanoparticles with Antioxidant, Antitumor Activities and pH-Sensitive Release. Mar. Drugs. 2022, 21, 278. [Google Scholar] [CrossRef] [PubMed]
- Ammar, H.O.; El-Nahhas, S.A.; Ghorab, M.M.; Salama, H.A. Chitosan/cyclodextrin nanoparticles as drug delivery system. J. Incl. Phenom. Macrocycl. Chem. 2012, 72, 127–136. [Google Scholar] [CrossRef]
- Kurkov, S.V.; Loftsson, T. Cyclodextrins. Int. J. Pharm. 2013, 453, 167–180. [Google Scholar] [CrossRef]
- Cid-Samamed, A.; Rakmai, J.; Mejuto, J.C.; Simal-Gandara, J.; Astray, G. Cyclodextrins inclusion complex: Preparation methods, analytical techniques and food industry applications. Food Chem. 2022, 384, 132467. [Google Scholar] [CrossRef]
- Paladini, G.; Caridi, F.; Crupi, V.; De Gaetano, F.; Majolino, D.; Tommasini, S.; Ventura, C.A.; Venuti, V.; Stancanelli, R. Temperature-Dependent Dynamical Evolution in Coum/SBE-β-CD Inclusion Complexes Revealed by Two-Dimensional FTIR Correlation Spectroscopy (2D-COS). Molecules 2021, 26, 3749. [Google Scholar] [CrossRef]
- Carneiro, S.B.; Duarte, F.I.C.; Heimfarth, L.; de Souza Siqueira Quintans, J.; Quintans-Junior, L.J.; da Veiga Junior, V.F.; de Lima, A.A.N. Drug inclusion complexes: In vivo and in vitro approaches. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef]
- Montenegro, L.; Trapani, A.; Fini, P.; Mandracchia, D.; Latrofa, A.; Cioffi, N.; Chiarantini, L.; Picceri, G.G.; Brundu, S.; Puglisi, G. Chitosan nanoparticles for topical co-administration of the antioxidants glutathione and idebenone: Characterization and in vitro release. Br. J. Pharm. Res. 2014, 4, 2387. [Google Scholar] [CrossRef]
- Karim, Z.; Rohana, A. The β-cyclodextrin-chitosan inclusion complex: Characterization and application in the removal of pesticides in wastewater. Arch. Environ. Sci. 2012, 6, 1–12. [Google Scholar]
- Trapani, A.; Lopedota, A.; Franco, M.; Cioffi, N.; Ieva, E.; Garcia-Fuentes, M.; Alonso, M.J. A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur. J. Pharm. Biopharm. 2010, 75, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Popescu, R.; Ghica, M.V.; Dinu-Pîrvu, C.L.; Anut, V.; Lupuliasa, D.; Popa, L. New Opportunity to Formulate Intranasal Vaccines and Drug Delivery Systems Based on Chitosan. Int. J. Mol. Sci. 2020, 21, 5016. [Google Scholar] [CrossRef] [PubMed]
- Zheng, A.P.; Liu, H.X.; Yuan, L.; Meng, M.; Wang, J.C.; Zhang, X.; Zhang, Q. Comprehensive studies on the interactions between chitosan nanoparticles and some live cells. J. Nanopart. Res. 2011, 13, 4765–4776. [Google Scholar] [CrossRef]
- Loftsson, T.; Jarho, P.; Másson, M.; Järvinen, T. Cyclodextrins in drug delivery. Expert. Opin. Drug. Deliv. 2005, 2, 335–351. [Google Scholar] [CrossRef]
- Skuredina, A.A.; Tychinina, A.S.; Le-Deygen, I.M.; Belogurova, N.G.; Kudryashova, E.V. Regulation of Properties of Lipid Membranes by Interaction with 2-Hydroxypropyl β-Cyclodextrin: Molecular Details. Russ. J. Bioorg. Chem. 2020, 46, 692–701. [Google Scholar] [CrossRef]
- Higuchi, T. Physical chemical analysis of percutaneous absorption process from creams and ointments. J. Soc. Cosmet. Chem. 1960, 11, 85–97. [Google Scholar]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Effects on drug permeation through biological membranes. J. Pharm. Pharmacol. 2011, 63, 1119–1135. [Google Scholar] [CrossRef]
- Coisne, C.; Tilloy, S.; Monflier, E.; Wils, D.; Fenart, L.; Gosselet, F. Cyclodextrins as Emerging Therapeutic Tools in the Treatment of Cholesterol-Associated Vascular and Neurodegenerative Diseases. Molecules 2016, 21, 1748. [Google Scholar] [CrossRef]
- Hu, C.S.; Chiang, C.H.; Hong, P.D.; Yeh, M.K. Influence of charge on FITC-BSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers. Int. J. Nanomed. 2012, 7, 4861–4872. [Google Scholar] [CrossRef]
- Ventura, C.A.; Tommasini, S.; Crupi, V.; Giannone, I.; Cardile, V.; Musumeci, T.; Puglisi, G. Chitosan microspheres for intrapulmonary administration of moxifloxacin: Interaction with biomembrane models and in vitro permeation studies. Eur. J. Pharm. Biopharm. 2008, 68, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Aibani, N.; Rai, R.; Patel, P.; Cuddihy, G.; Wasan, E.K. Chitosan Nanoparticles at the Biological Interface: Implications for Drug Delivery. Pharmaceutics 2021, 13, 1686. [Google Scholar] [CrossRef] [PubMed]
- De Gaetano, F.; Marino, A.; Marchetta, A.; Bongiorno, C.; Zagami, R.; Cristiano, M.C.; Paolino, D.; Pistarà, V.; Ventura, C.A. Development of Chitosan/Cyclodextrin Nanospheres for Levofloxacin Ocular Delivery. Pharmaceutics 2021, 13, 1293. [Google Scholar] [CrossRef] [PubMed]
- Venuti, V.; Stancanelli, R.; Acri, G.; Crupi, V.; Paladini, G.; Testagrossa, B.; Tommasini, S.; Ventura, C.A.; Majolino, D. “Host-guest” interactions in Captisol®/Coumestrol inclusion complex: UV–vis, FTIR-ATR and Raman studies. J. Mol. Struct. 2017, 1146, 512–521. [Google Scholar] [CrossRef]
- Rossi, B.; Venuti, V.; Mele, A.; Punta, C.; Melone, L.; Crupi, V.; Majolino, D.; Trotta, F.; D’Amico, F.; Gessini, A.; et al. Probing the molecular connectivity of water confined in polymer hydrogels. J. Chem. Phys. 2015, 142, 014901. [Google Scholar] [CrossRef]
- Higuchi, T.; Connors, K.A. Phase solubility technique. Adv. Anal. Chem. Instrum. 1965, 4, 117–211. [Google Scholar]
- Loftsson, T.; Brewster, M.E. Cyclodextrins as functional excipients: Methods to enhance complexation efficiency. J. Pharm. Sci. 2012, 101, 3019–3032. [Google Scholar] [CrossRef]
- Costa, P.; Sousa Lobo, J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci. 2001, 13, 123–133. [Google Scholar] [CrossRef]
- Paarakh, M.P.; Jose, P.A.; Setty, C.M.; Christoper, G.P. Release kinetics–concepts and applications. Int. J. Pharm. Res. Technol. 2018, 8, 12–20. [Google Scholar] [CrossRef]
- Raslan, H.K.; Maswadeh, H. In vitro dissolution kinetic study of theophylline from mixed controlled release matrix tablets containing hydroxypropylmethyl cellulose and glycerylbehenate. Indian J. Pharm. Sci. 2006, 68, 308–312. [Google Scholar] [CrossRef]
- Crupi, V.; Majolino, D.; Mondello, M.R.; Migliardo, P.; Venuti, V. FT-IR spectroscopy: A powerful tool in pharmacology. J. Pharm. Biom. Anal. 2002, 29, 1149–1152. [Google Scholar] [CrossRef]
- Crupi, V.; Interdonato, S.; Majolino, D.; Mondello, M.R.; Pergolizzi, S.; Venuti, V. Structural changes of tissue samples exposed to low frequency electromagnetic field: A FT-IR absorbance study. Spectroscopy 2004, 18, 513–518. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, U.; Pandey, C.M.; Mishra, P.; Pandey, G. Application of student’s t-test, analysis of variance, and covariance. Ann. Card. Anaesth. 2019, 22, 407–411. [Google Scholar] [CrossRef] [PubMed]
Sample | Theoretical IDE Amount (mg) * | RH (nm) ± S.D. | P.I. ± S.D. | ζ (mV) ± S.D. | Yield (%) ± S.D. | E.E. (%) ± S.D. | D.C. (%) ± S.D. |
---|---|---|---|---|---|---|---|
Empty CS NPs | - | 138.28 ± 2.36 | 0.181 ± 0.056 | +27.3 ± 2.5 | 75.12 ± 1.82 | - | - |
Non-overloaded CS NPs | 1 | 140.08 ± 3.71 | 0.169 ± 0.068 | +28.2 ± 1.9 | 53.2 ± 2.91 | 42.10 ± 2.03 | 2.93 ± 0.62 |
Sample | Theoretical IDE Amount (mg) * | IDE/HP-β-CD Inclusion Complex Added to Polyanion Solution | IDE/HP-β-CD Inclusion Complex Added to Polycation Solution | ||||
---|---|---|---|---|---|---|---|
RH (nm) ± S.D. | P.I. ± S.D. | ζ (mV) ± S.D. | RH (nm) ± S.D. | P.I. ± S.D. | ζ (mV) ± S.D. | ||
Overloaded CS NPs | 1.5 | 145.12 ± 1.36 | 0.206 ± 0.029 | +29.0 ± 1.9 | 141.56 ± 3.12 | 0.146 ± 0.051 | +30.2 ± 1.5 |
2 | 164.08 ± 0.80 | 0.231 ± 0.079 | +27.1 ± 0.9 | 139.08 ± 4.21 | 0.205 ± 0.029 | +28.8 ± 2.3 | |
2.5 | 171.10 ± 4.69 | 0.169 ± 0.091 | +28.1 ± 2.0 | 136.38 ± 0.91 | 0.224 ± 0.014 | +29.3 ± 0.9 | |
3 | 189.24 ± 2.71 | 0.112 ± 0.043 | 23.0 ± 1.7 | 146.94 ± 5.10 | 0.201 ± 0.058 | +30.1 ± 1.8 |
Sample | Theoretical IDE Amount (mg) * | IDE/HP-β-CD Inclusion Complex Added to Polyanion Solution | IDE/HP-β-CD Inclusion Complex Added to Polycation Solution | ||||
---|---|---|---|---|---|---|---|
Yield (%) ± S.D. | E.E. (%) ± S.D. | D.C. (%) ± S.D. | Yield (%) ± S.D. | E.E. (%) ± S.D. | D.C. (%) ± S.D. | ||
Overloaded CS NPs | 1.5 | 47.02 ± 4.26 | 43.90 ± 4.32 | 4.44 ± 0.98 | 54.36 ± 2.41 | 48.25 ± 1.72 | 4.21 ± 1.01 |
2 | 45.78 ± 3.69 | 45.91 ± 3.11 | 5.51 ± 1.21 | 56.63 ± 1.11 | 62.35 ± 6.13 | 6.09 ± 0.87 | |
2.5 | 43.12 ± 5.01 | 51.81 ± 2.13 | 7.44 ± 1.26 | 57.23 ± 7.01 | 72.74 ± 1.91 | 7.85 ± 1.20 | |
3 | 40.25 ± 6.32 | 55.25 ± 3.17 | 9.17 ± 2.01 | 64.01 ± 2.14 | 65.22 ± 5.12 | 6.80 ± 0.81 |
Samples | Zero Order Model | First Order Model | Higuchi Model | Hixson–Crowell Model | ||||
---|---|---|---|---|---|---|---|---|
R2 | K0 (h−1) | R2 | K1 (h−1) | R2 | KH (h−1/2) | R2 | KHC (h−1/3) | |
Non-overloaded CS NPs | 0.9907 | 1.2837 | 0.9856 | 0.0219 | 0.9851 | 10.254 | 0.9924 | 0.1067 |
Overloaded CS NPs-PC | 0.9789 | 1.5525 | 0.8770 | 0.0855 | 0.9568 | 12.293 | 0.9052 | 0.0804 |
Overloaded CS NPs-PA | 0.8579 | 1.6706 | 0.9946 | 0.1802 | 0.9630 | 10.871 | 0.9921 | 0.0272 |
Sample | Cumulative IDE (% w/w) |
---|---|
Free IDE | 3.78 ± 2.11 |
IDE/HP-β-CD inclusion complex | 34.56 ± 2.82 |
Non-overloaded CS NPs | 25.98 ± 1.88 |
Overloaded CS NPs-PC | 27.67 ± 3.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Gaetano, F.; d’Avanzo, N.; Mancuso, A.; De Gaetano, A.; Paladini, G.; Caridi, F.; Venuti, V.; Paolino, D.; Ventura, C.A. Chitosan/Cyclodextrin Nanospheres for Potential Nose-to-Brain Targeting of Idebenone. Pharmaceuticals 2022, 15, 1206. https://doi.org/10.3390/ph15101206
De Gaetano F, d’Avanzo N, Mancuso A, De Gaetano A, Paladini G, Caridi F, Venuti V, Paolino D, Ventura CA. Chitosan/Cyclodextrin Nanospheres for Potential Nose-to-Brain Targeting of Idebenone. Pharmaceuticals. 2022; 15(10):1206. https://doi.org/10.3390/ph15101206
Chicago/Turabian StyleDe Gaetano, Federica, Nicola d’Avanzo, Antonia Mancuso, Anna De Gaetano, Giuseppe Paladini, Francesco Caridi, Valentina Venuti, Donatella Paolino, and Cinzia Anna Ventura. 2022. "Chitosan/Cyclodextrin Nanospheres for Potential Nose-to-Brain Targeting of Idebenone" Pharmaceuticals 15, no. 10: 1206. https://doi.org/10.3390/ph15101206
APA StyleDe Gaetano, F., d’Avanzo, N., Mancuso, A., De Gaetano, A., Paladini, G., Caridi, F., Venuti, V., Paolino, D., & Ventura, C. A. (2022). Chitosan/Cyclodextrin Nanospheres for Potential Nose-to-Brain Targeting of Idebenone. Pharmaceuticals, 15(10), 1206. https://doi.org/10.3390/ph15101206