Concomitant Administration of Capecitabine and Folate Supplements: Need to Encourage Medication Reconciliation
Abstract
:1. Introduction
2. Results
2.1. Clinical Case of Patient 1
2.2. Clinical Case of Patient 2
2.3. Identification of Drug-Drug and Drug-Supplement Interactions
2.4. Folates/Capecitabine Use: Alert and Mechanism of Interaction
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Masuda, N.; Lee, S.-J.; Ohtani, S.; Im, Y.-H.; Lee, E.-S.; Yokota, I.; Kuroi, K.; Im, S.-A.; Park, B.-W.; Kim, S.-B.; et al. Adjuvant Capecitabine for Breast Cancer after Preoperative Chemotherapy. N. Engl. J. Med. 2017, 376, 2147–2159. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of Action and Clinical Strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/product-information/xeloda-epar-product-information_it.pdf (accessed on 1 October 2022).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/referral/fluorouracil-fluorouracil-related-substances-article-31-referral-ema-recommendations-dpd-testing_en.pdf (accessed on 1 October 2022).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/referral/fluorouracil-fluorouracil-related-substances-article-31-referral-annex-iii_en.pdf (accessed on 1 October 2022).
- Clinical Pharmacogenetics Implementation Consortium. Available online: https://cpicpgx.org/guidelines/guideline-for-fluoropyrimidines-and-dpyd/ (accessed on 1 October 2022).
- Lunenburg, C.A.T.C.; van der Wouden, C.H.; Nijenhuis, M.; Crommentuijn-van Rhenen, M.H.; de Boer-Veger, N.J.; Buunk, A.M.; Houwink, E.J.F.; Mulder, H.; Rongen, G.A.; van Schaik, R.H.N.; et al. Dutch Pharmacogenetics Working Group (DPWG) Guideline for the Gene–Drug Interaction of DPYD and Fluoropyrimidines. Eur. J. Hum. Genet. 2020, 28, 508–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamzic, S.; Aebi, S.; Joerger, M.; Montemurro, M.; Ansari, M.; Amstutz, U.; Largiadèr, C. Fluoropyrimidine chemotherapy: Recommendations for DPYD genotyping and therapeutic drug monitoring of the Swiss Group of Pharmacogenomics and Personalised Therapy. Swiss Med. Wkly. 2020, 150, w20375. [Google Scholar] [CrossRef] [PubMed]
- Conti, V.; De Bellis, E.; Manzo, V.; Sabbatino, F.; Iannello, F.; Dal Piaz, F.; Izzo, V.; Charlier, B.; Stefanelli, B.; Torsiello, M.; et al. A Genotyping/Phenotyping Approach with Careful Clinical Monitoring to Manage the Fluoropyrimidines-Based Therapy: Clinical Cases and Systematic Review of the Literature. J. Pers. Med. 2020, 10, 113. [Google Scholar] [CrossRef]
- Iachetta, F.; Bonelli, C.; Romagnani, A.; Zamponi, R.; Tofani, L.; Farnetti, E.; Nicoli, D.; Damato, A.; Banzi, M.; Casali, B.; et al. The Clinical Relevance of Multiple DPYD Polymorphisms on Patients Candidate for Fluoropyrimidine Based-Chemotherapy. An Italian Case-Control Study. Br. J. Cancer 2019, 120, 834–839. [Google Scholar] [CrossRef] [Green Version]
- Joerger, M.; Huitema, A.D.R.; Boot, H.; Cats, A.; Doodeman, V.D.; Smits, P.H.M.; Vainchtein, L.; Rosing, H.; Meijerman, I.; Zueger, M.; et al. Germline TYMS Genotype Is Highly Predictive in Patients with Metastatic Gastrointestinal Malignancies Receiving Capecitabine-Based Chemotherapy. Cancer Chemother. Pharmacol. 2015, 75, 763–772. [Google Scholar] [CrossRef]
- Romiti, A.; Roberto, M.; D’Antonio, C.; Onesti, C.E.; Barucca, V.; Milano, A.; Gentile, G.; Lionetto, L.; Medda, E.; Mazzuca, F.; et al. The TYMS-TSER polymorphism is associated with toxicity of low-dose capecitabine in patients with advanced gastrointestinal cancer. Anticancer Drugs 2016, 27, 1044–1049. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.; Li, X.; Zhang, M.; Zhang, J.; Hou, D.; Tong, Z.; Dong, M. CDA and MTHFR Polymorphisms Are Associated with Clinical Outcomes in Gastroenteric Cancer Patients Treated with Capecitabine-Based Chemotherapy. Cancer Chemother. Pharmacol. 2019, 83, 939–949. [Google Scholar] [CrossRef]
- Puerta-García, E.; Urbano-Pérez, D.; Carrasco-Campos, M.I.; Pérez-Ramírez, C.; Segura-Pérez, A.; Calleja-Hernández; Cañadas-Garre, M. Effect of DPYD, MTHFR, ABCB1, XRCC1, ERCC1 and GSTP1 on Chemotherapy Related Toxicity in Colorectal Carcinoma. Surg. Oncol. 2020, 35, 388–398. [Google Scholar] [CrossRef]
- Miranda, V.; Fede, A.; Nobuo, M.; Ayres, V.; Giglio, A.; Miranda, M.; Riechelmann, R.P. Adverse Drug Reactions and Drug Interactions as Causes of Hospital Admission in Oncology. J. Pain Symptom Manage. 2011, 42, 342–353. [Google Scholar] [CrossRef]
- Yetley, E.A. Multivitamin and Multimineral Dietary Supplements: Definitions, Characterization, Bioavailability, and Drug Interactions. Am. J. Clin. Nutr. 2007, 85, 269S–276S. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Available online: https://www.who.int/patientsafety/medication-safety/TransitionOfCare.pdf?ua= (accessed on 1 October 2022).
- European Union Network for Patient Safety and Quality of Care (PaSQ). Available online: http://www.pasq.eu/Home.aspx, (accessed on 1 October 2022).
- Blendon, R.J.; DesRoches, C.M.; Benson, J.M.; Brodie, M.; Altman, D.E. Americans’ views on the use and regulation of dietary supplements. Arch. Intern. Med. 2001, 161, 805–810. [Google Scholar] [CrossRef]
- Gardiner, P.; Sadikova, E.; Filippelli, A.C.; White, L.F.; Jack, B.W. Medical reconciliation of dietary supplements: Don’t ask, don’t tell. Patient Educ. Couns. 2015, 98, 512–517. [Google Scholar] [CrossRef] [Green Version]
- National Cancer Institute. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 1 October 2022).
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [Green Version]
- Wolters Kluwer. Lexicomp User Academy. Available online: https://www.wolterskluwer.com/en/solutions/lexicomp/resources/lexicomp-user-academy/drug-interactions-analysis (accessed on 1 October 2022).
- Scaglione, F.; Panzavolta, G. Folate, Folic Acid and 5-Methyltetrahydrofolate Are Not the Same Thing. Xenobiotica 2014, 44, 480–488. [Google Scholar] [CrossRef]
- Alvarez-Cabellos, R.; Garcia-Carbonero, R.; Garcia-Lacalle, C.; Gomez, P.; Tercero, A.; Sanchez, D.; Paz-Ares, L. Fluorouracil-Based Chemotherapy in Patients with Gastrointestinal Malignancies: Influence of Nutritional Folate Status on Toxicity. J. Chemother. 2007, 19, 744–749. [Google Scholar] [CrossRef]
- Cornish, P.L.; Knowles, S.R.; Marchesano, R.; Tam, V.; Shadowitz, S.; Juurlink, D.N.; Etchells, E.E. Unintended Medication Discrepancies at the Time of Hospital Admission. Arch. Intern. Med. 2005, 165, 424–429. [Google Scholar] [CrossRef]
- Sellitto, C.; Conti, V.; Corbi, G.; Manzo, V.; D’Ambrosio, B.; Gatani, S.; Filippelli, A. Persistent itching associated to silodosin in an elderly patient: Implications for drug-drug interactions and pharmacogenetics. Pharmacologyonline 2020, 3, 407–411. [Google Scholar]
- Rea, F.; Biffi, A.; Ronco, R.; Franchi, M.; Cammarota, S.; Citarella, A.; Conti, V.; Filippelli, A.; Sellitto, C.; Corrao, G. Cardiovascular Outcomes and Mortality Associated with Discontinuing Statins in Older Patients Receiving Polypharmacy. JAMA Netw. Open 2021, 4, e2113186. [Google Scholar] [CrossRef] [PubMed]
- Valeria, C.; Carmine, S.; Valentina, M.; Teresa, I.; Maria, C.; Martina, T.; Giancarlo, A.; Giovanna, N.; Graziamaria, C.; Amelia, F. The Need of a Multicomponent Guiding Approach to Personalize Clopidogrel Treatment. Pharm. J. 2021, 21, 116–127. [Google Scholar] [CrossRef] [PubMed]
- Conti, V.; Corbi, G.; Costantino, M.; De Bellis, E.; Manzo, V.; Sellitto, C.; Stefanelli, B.; Colucci, F.; Filippelli, A. Biomarkers to Personalize the Treatment of Rheumatoid Arthritis: Focus on Autoantibodies and Pharmacogenetics. Biomolecules 2020, 10, 1672. [Google Scholar] [CrossRef] [PubMed]
- Bright, D.R.; Calinski, D.M.; Kisor, D.F. Pharmacogenetic considerations in the elderly patient. Consult Pharm. 2015, 30, 228–239. [Google Scholar] [CrossRef]
- Chan, S.L.; Chan, A.W.H.; Mo, F.; Ma, B.B.Y.; Wong, K.C.W.; Lam, D.; Mok, F.S.T.; Chan, A.T.C.; Mok, T.; Chan, K.C.A. Association Between Serum Folate Level and Toxicity of Capecitabine During Treatment for Colorectal Cancer. Oncologist 2018, 23, 1436–1445. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Rivory, L.; Beale, P.; Ong, S.; Horvath, L.; Clarke, S.J. A Phase II Study of Fixed-Dose Capecitabine and Assessment of Predictors of Toxicity in Patients with Advanced/Metastatic Colorectal Cancer. Br. J. Cancer 2006, 94, 964–968. [Google Scholar] [CrossRef]
- Yap, Y.-S.; Kwok, L.-L.; Syn, N.; Chay, W.Y.; Chia, J.W.K.; Tham, C.K.; Wong, N.S.; Lo, S.K.; Dent, R.A.; Tan, S.; et al. Predictors of Hand-Foot Syndrome and Pyridoxine for Prevention of Capecitabine-Induced Hand-Foot Syndrome: A Randomized Clinical Trial. JAMA Oncol. 2017, 3, 1538–1545. [Google Scholar] [CrossRef]
- Hennig, I.M.; Naik, J.D.; Brown, S.; Szubert, A.; Anthoney, D.A.; Jackson, D.P.; Melcher, A.M.; Crawford, S.M.; Bradley, C.; Brown, J.M.B.; et al. Severe Sequence-Specific Toxicity When Capecitabine Is given after Fluorouracil and Leucovorin. J. Clin. Oncol. 2008, 26, 3411–3417. [Google Scholar] [CrossRef]
- Sharma, R.; Hoskins, J.M.; Rivory, L.P.; Zucknick, M.; London, R.; Liddle, C.; Clarke, S.J. Thymidylate Synthase and Methylenetetrahydrofolate Reductase Gene Polymorphisms and Toxicity to Capecitabine in Advanced Colorectal Cancer Patients. Clin. Cancer Res. 2008, 14, 817–825. [Google Scholar] [CrossRef] [Green Version]
- Rosmarin, D.; Palles, C.; Church, D.; Domingo, E.; Jones, A.; Johnstone, E.; Wang, H.; Love, S.; Julier, P.; Scudder, C.; et al. Genetic Markers of Toxicity from Capecitabine and Other Fluorouracil-Based Regimens: Investigation in the QUASAR2 Study, Systematic Review, and Meta-Analysis. J. Clin. Oncol. 2014, 32, 1031–1039. [Google Scholar] [CrossRef] [Green Version]
- Aschele, C.; Debernardis, D.; Casazza, S.; Antonelli, G.; Tunesi, G.; Baldo, C.; Lionetto, R.; Maley, F.; Sobrero, A. Immunohistochemical Quantitation of Thymidylate Synthase Expression in Colorectal Cancer Metastases Predicts for Clinical Outcome to Fluorouracil-Based Chemotherapy. J. Clin. Oncol. 1999, 17, 1760–1770. [Google Scholar] [CrossRef]
- Pullarkat, S.T.; Stoehlmacher, J.; Ghaderi, V.; Xiong, Y.P.; Ingles, S.A.; Sherrod, A.; Warren, R.; Tsao-Wei, D.; Groshen, S.; Lenz, H.J. Thymidylate Synthase Gene Polymorphism Determines Response and Toxicity of 5-FU Chemotherapy. Pharm. J. 2001, 1, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Lecomte, T.; Ferraz, J.-M.; Zinzindohoué, F.; Loriot, M.-A.; Tregouet, D.-A.; Landi, B.; Berger, A.; Cugnenc, P.-H.; Jian, R.; Beaune, P.; et al. Thymidylate Synthase Gene Polymorphism Predicts Toxicity in Colorectal Cancer Patients Receiving 5-Fluorouracil-Based Chemotherapy. Clin. Cancer Res. 2004, 10, 5880–5888. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, C.; Ragia, G.; Balgkouranidou, I.; Xenidis, N.; Amarantidis, K.; Koukaki, T.; Biziota, E.; Kakolyris, S.; Manolopoulos, V.G. Gender-dependent association of TYMS-TSER polymorphism with 5-fluorouracil or capecitabine-based chemotherapy toxicity. Pharmacogenomics 2021, 22, 669–680. [Google Scholar] [CrossRef]
- Schaerer, D.; Froehlich, T.K.; Hamzic, S.; Offer, S.M.; Diasio, R.B.; Joerger, M.; Amstutz, U.; Largiadèr, C.R. A Novel Nomenclature for Repeat Motifs in the Thymidylate Synthase Enhancer Region and Its Relevance for Pharmacogenetic Studies. J. Pers. Med. 2020, 10, 181. [Google Scholar] [CrossRef]
- Gallegos-Arreola, M.P.; Zúñiga-González, G.M.; Sánchez-López, J.Y.; Cruz, A.Y.N.; Peralta-Leal, V.; Figuera, L.E.; Puebla-Pérez, A.M.; Ronquillo-Carreón, C.A.; Puebla-Mora, A.G. TYMS 2R3R Polymorphism and DPYD [IVS]14+1G>A Gene Mutation in Mexican Colorectal Cancer Patients. Acta Biochim. Pol. 2018, 65, 227–234. [Google Scholar] [CrossRef]
- Naranjo, C.A.; Busto, U.; Sellers, E.M.; Sandor, P.; Ruiz, I.; Roberts, E.A.; Janecek, E.; Domecq, C.; Greenblatt, D.J. A Method for Estimating the Probability of Adverse Drug Reactions. Clin. Pharmacol. Ther. 1981, 30, 239–245. [Google Scholar] [CrossRef]
Characteristics | Patient 1 | Patient 2 |
---|---|---|
Sex | Female | Female |
Age (years) | 73 | 85 |
BSA (m2) | 1.5 | 1.4 |
Primary tumour site | Colon/rectum | Colon |
Tumour stage (AJCC TNM) | III | IV |
Chemotherapy regimen | CAPOX (capecitabine 1000 mg/m2 BID plus oxaliplatin 130 mg/m2) | capecitabine 800 mg/m2 BID |
Polymorphisms | Genotype of Patient 1 | Genotype of Patient 2 |
---|---|---|
*DPYD c.1905+1G>A (rs3918290) | GG | GG |
*DPYD c.1679T>G (rs55886062) | TT | TT |
*DPYD c.2846A>T (rs67376798) | AA | AA |
*DPYD c.1129-5923C>G (rs75017182) | CC | CC |
DPYD c.2194G>A (rs1801160) | GG | GG |
CDA c.79A>C (rs2072671) | AA | AA |
TSER 2R/3R (rs45445694) | 2R/2R | 2R/2R |
MTHFR c.677C>T (rs1801133) | CC | CC |
MTHFR c.1298A>C (rs1801131) | CC | AA |
GSTP1c.313A>G (rs1659) | AG | - |
ERCC1 c.*197G>T (rs3212986) | GT | - |
ERCC1 c.354T>C (rs11615) | TC | - |
XRCC1 c.1196A>G (rs25487) | GG | - |
Diarrhoea Baseline | No Diarrhoea After Therapy Modification | HFS Baseline | No HFS After Therapy Modification | ||||
---|---|---|---|---|---|---|---|
DRUG | NA SCORE | DRUG | NA SCORE | DRUG | NA SCORE | DRUG | NA SCORE |
capecitabine 1000 mg/m2, twice daily | 3 | capecitabine 625 mg/m2, twice daily (reduction) | 4 | capecitabine 1000 mg/m2, twice daily | 3 | capecitabine 625 mg/m2, twice daily (reduction) | 4 |
oxaliplatin 130 mg/m2 | 3 | oxaliplatin 100 mg/m2 (reduction) | 4 | oxaliplatin 130 mg/m2 | 3 | oxaliplatin 100 mg/m2 (reduction) | 4 |
verapamil | 3 | verapamil | 3 | verapamil | 2 | verapamil | 2 |
flecainide | 3 | flecainide | 3 | flecainide | 2 | flecainide | 2 |
apixaban | 2 | apixaban | 2 | apixaban | 2 | apixaban | 2 |
indapamide | 2 | indapamide | 2 | indapamide | 2 | indapamide | 2 |
lovastatin | 3 | lovastatin (dechallange) | 4 | lovastatin | 2 | lovastatin (dechallange) | 3 |
ezetimibe | 3 | ezetimibe (dechallange) | 4 | ezetimibe | 2 | ezetimibe (dechallange) | 3 |
Iron, vitamin C, acerola and folic acid, vitamins B | 3 | Iron, vitamin C, acerola and folic acid, vitamins B | 3 | Iron, vitamin C, acerola and folic acid, vitamins B | 2 | Iron, vitamin C, acerola and folic acid, vitamins B | 2 |
HFS Baseline | No HFS After the First Therapy Modification | No HFS After the Second Therapy Modification | |||
---|---|---|---|---|---|
DRUG | NA SCORE | DRUG | NASCORE | DRUG | NASCORE |
capecitabine 800 mg/m2, twice daily | 6 | capecitabine 800 mg/m2, twice daily (dechallange) | 7 | capecitabine 800 mg/m2, twice daily (rechallange) | 6 |
folic acid supplement | 2 | folic acid supplement (dechallange) | 3 | folic acid supplement (dechallange) | 3 |
Iron supplement | 2 | Iron supplement | 2 | Iron supplement | 2 |
aspirin | 2 | aspirin | 2 | aspirin | 2 |
enalapril | 2 | enalapril | 2 | enalapril | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefanelli, B.; Sellitto, C.; De Bellis, E.; Torsiello, M.; Bertini, N.; Pezzullo, A.M.; Corbi, G.; Sabbatino, F.; Pepe, S.; Tesse, A.; et al. Concomitant Administration of Capecitabine and Folate Supplements: Need to Encourage Medication Reconciliation. Pharmaceuticals 2022, 15, 1388. https://doi.org/10.3390/ph15111388
Stefanelli B, Sellitto C, De Bellis E, Torsiello M, Bertini N, Pezzullo AM, Corbi G, Sabbatino F, Pepe S, Tesse A, et al. Concomitant Administration of Capecitabine and Folate Supplements: Need to Encourage Medication Reconciliation. Pharmaceuticals. 2022; 15(11):1388. https://doi.org/10.3390/ph15111388
Chicago/Turabian StyleStefanelli, Berenice, Carmine Sellitto, Emanuela De Bellis, Martina Torsiello, Nicola Bertini, Angelo Maria Pezzullo, Graziamaria Corbi, Francesco Sabbatino, Stefano Pepe, Angela Tesse, and et al. 2022. "Concomitant Administration of Capecitabine and Folate Supplements: Need to Encourage Medication Reconciliation" Pharmaceuticals 15, no. 11: 1388. https://doi.org/10.3390/ph15111388
APA StyleStefanelli, B., Sellitto, C., De Bellis, E., Torsiello, M., Bertini, N., Pezzullo, A. M., Corbi, G., Sabbatino, F., Pepe, S., Tesse, A., Conti, V., & Filippelli, A. (2022). Concomitant Administration of Capecitabine and Folate Supplements: Need to Encourage Medication Reconciliation. Pharmaceuticals, 15(11), 1388. https://doi.org/10.3390/ph15111388