Safety Investigations of Two Formulations for Vaginal Use Obtained from Eugenia uniflora L. Leaves in Female Rats
Abstract
:1. Introduction
2. Results
2.1. Clinical and Behavioral Observations
2.2. Relative Organ Weight
2.3. Hematological Parameters
2.4. Biochemical Data
2.5. Histopathological Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material and Crude Extract Preparation
4.2. Vaginal Gel Obtention
4.3. Pharmacological Assays
4.3.1. Animals
4.3.2. Experimental Design
4.3.3. Clinical and Behavioral Observations
4.3.4. Biochemical Analysis
4.3.5. Hematological Investigation
4.3.6. Macroscopic Evaluation and Relative Organ Weight
4.3.7. Histopathological Analysis
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asghar, M.; Younas, M.; Arshad, B.; Zaman, W.; Asma, A.; Rasheed, S.; Shah, A.H.; Ullah, F.; Saqib, S. Bioactive potential of cultivated Mentha arvensis L. for preservation and production of health-oriented food. J. Anim. Plant Sci. 2022, 32, 835–844. [Google Scholar]
- Saqib, S.; Ullah, F.; Naeem, M.; Younas, M.; Ayaz, A.; Ali, S.; Zaman, W. Mentha: Nutritional and Health Attributes to Treat Various Ailments Including Cardiovascular Diseases. Molecules 2022, 27, 6728. [Google Scholar] [CrossRef] [PubMed]
- Dutra, R.C.; Campos, M.M.; Santos, A.R.; Calixto, J.B. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol. Res. 2016, 112, 4–29. [Google Scholar] [CrossRef] [PubMed]
- De Araujo, F.F.; Neri-Numa, I.A.; De Paulo Farias, D.; Da Cunha, G.R.M.C.; Pastore, G.M. Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Res. Int. 2019, 121, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Fidelis, E.M.; Savall, A.S.P.; de Oliveira Pereira, F.; Quines, C.B.; Ávila, D.S.; Pinton, S. Pitanga (Eugenia uniflora L.) as a source of bioactive compounds for health benefits: A review. Arab. J. Chem. 2022, 15, 103691. [Google Scholar] [CrossRef]
- De Paulo Farias, D.; Neri-Numa, I.A.; de Araujo, F.F.; Pastore, G.M. A critical review of some fruit trees from the Myrtaceae family as promising sources for food applications with functional claims. Food Chem. 2020, 306, 125630. [Google Scholar] [CrossRef]
- Marques, M.A.A.; Lourenço, B.H.L.B.; Reis, M.D.P.; Pauli, K.B.; Soares, A.L.; Belettini, S.T.; Donadel, G.; Palozi, R.A.C.; Froehlich, D.L.; Lívero, F.A.R.; et al. Osteoprotective Effects of Tribulus terrestris L.: Relationship Between Dehydroepiandrosterone Levels and Ca2+-Sparing Effect. J. Med. Food 2019, 22, 241–247. [Google Scholar] [CrossRef]
- Gasparotto, F.M.; Palozi, R.A.C.; da Silva, C.H.F.; Pauli, K.B.; Donadel, G.; Lourenço, B.H.L.B.; Nunes, B.C.; Lívero, F.A.R.; Souza, L.M.; Lourenço, E.L.B.; et al. Antiatherosclerotic properties of Echinodorus grandiflorus (Cham. & Schltdl.) Micheli: From antioxidant and lipid-lowering effects to an anti-inflammatory role. J. Med. Food 2019, 22, 919–927. [Google Scholar]
- Sobeh, M.; El-Raey, M.; Rezq, S.; Abdelfattah, M.A.; Petruk, G.; Osman, S.; El-Shazly, A.M.; El-Beshbish, H.A.; Mahmoud, M.F.; Wink, M. Chemical profiling of secondary metabolites of Eugenia uniflora and their antioxidant, anti-inflammatory, pain killing and anti-diabetic activities: A comprehensive approach. J. Ethnopharmacol. 2019, 240, 111939. [Google Scholar] [CrossRef]
- Kujawska, M.; Schmeda-Hirschmann, G. The use of medicinal plants by Paraguayan migrants in the Atlantic Forest of Misiones, Argentina, is based on Guaraní tradition, colonial and current plant knowledge. J. Ethnopharmacol. 2022, 283, 114702. [Google Scholar] [CrossRef]
- Zida, A.; Bamba, S.; Yacouba, A.; Ouedraogo-Traore, R.; Guiguemdé, R.T. Anti-Candida albicans natural products, sources of new antifungal drugs: A review. J. De Mycol. Med. 2017, 27, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Souza, O.A.; Da Silva Ramalhão, V.G.; De Melo Trentin, L.; Funari, C.S.; Carneiro, R.L.; Da Silva Bolzani, V.; Rinaldo, D. Combining natural deep eutectic solvent and microwave irradiation towards the eco-friendly and optimized extraction of bioactive phenolics from Eugenia uniflora L. Sustain. Chem. Pharm. 2022, 26, 100618. [Google Scholar] [CrossRef]
- Den Heijer, C.D.; Hoebe, C.J.; Driessen, J.H.; Wolffs, P.; Van Den Broek, I.V.; Hoenderboom, B.M.; Rachael Williams, R.; Vries, F.; Dukers-Muijrers, N.H. Chlamydia trachomatis and the risk of pelvic inflammatory disease, ectopic pregnancy, and female infertility: A retrospective cohort study among primary care patients. Clin. Infect. Dis. 2019, 69, 1517–1525. [Google Scholar] [PubMed] [Green Version]
- Agência Nacional de Vigilância Sanitária. Formulário de Fitoterápicos da Farmacopeia Brasileira; Anvisa: Brasília, Brasil, 2011.
- Ferreira Rodrigues Sarquis, R.D.S.; Rodrigues Sarquis, Í.; Rodrigues Sarquis, I.; Fernandes, C.P.; Araújo da Silva, G.; Borja Lima e Silva, R.; Jardim, M.A.G.; Sánchez-Ortíz, B.L.; Carvalho, J.C.T. The use of medicinal plants in the riverside community of the Mazagão River in the Brazilian Amazon, Amapá, Brazil: Ethnobotanical and ethnopharmacological studies. Evid. Based Complement. Altern. Med. 2019, 2019, 6087509. [Google Scholar] [CrossRef] [PubMed]
- Elmazoudy, R.H.; Attia, A.A. Ginger causes subfertility and abortifacient in mice by targeting both estrous cycle and blastocyst implantation without teratogenesis. Phytomedicine 2018, 50, 300–308. [Google Scholar] [CrossRef]
- Lazzarotto-Figueiró, J.; Capelezzo, A.P.; Schindler, M.S.Z.; Fossá, J.F.C.; Albeny-Simões, D.; Zanatta, L.; Oliveira, J.V.; Dal Magro, J. Antioxidant activity, antibacterial and inhibitory effect of intestinal disaccharidases of extracts obtained from Eugenia uniflora L. Seeds. Braz. J. Biol. 2020, 81, 291–300. [Google Scholar] [CrossRef]
- Bittencourt, A.H.C.; Machado, J.S.; Da Silva, M.G.; Cosenza, B.A.P. Evaluation preliminary phytochemistry and antimicrobial activity of extracts in Eugenia uniflora L. on Escherichia coli and Staphylococcus aureus. Res. Soc. Dev. 2021, 10, e329101320579. [Google Scholar] [CrossRef]
- Braga, P.C.; Dal Sasso, M.; Spallino, A.; Sturla, C.; Culici, M. Vaginal gel adsorption and retention by human vaginal cells: Visual analysis by means of inorganic and organic markers. Int. J. Pharm. 2009, 373, 10–15. [Google Scholar] [CrossRef]
- Cora, M.C.; Kooistra, L.; Travlos, G. Vaginal cytology of the laboratory rat and mouse: Review and criteria for the staging of the estrous cycle using stained vaginal smears. Toxicol. Pathol. 2015, 43, 776–793. [Google Scholar] [CrossRef] [Green Version]
- Abdelfattah, M.A.; Ibrahim, M.A.; Abdullahi, H.L.; Aminu, R.; Saad, S.B.; Krstin, S.; Wink, M.; Sobeh, M. Eugenia uniflora and Syzygium samarangense extracts exhibit anti-trypanosomal activity: Evidence from in-silico molecular modelling, in vitro, and in vivo studies. Biomed. Pharmacother. 2021, 138, 111508. [Google Scholar] [CrossRef]
- Ferreira, M.R.A.; Daniele-Silva, A.; De Almeida, L.F.; Dos Santos, E.C.F.; Machado, J.C.B.; De Oliveira, A.M.; Pedrosa, M.F.F.; Guedes Paiva, P.M.; Napoleão, T.H.; Soares, L.A.L. Safety evaluation of aqueous extract from Eugenia uniflora leaves: Acute and subacute toxicity and genotoxicity in vivo assays. J. Ethnopharmacol. 2022, 298, 115668. [Google Scholar]
- Sobeh, M.; Hamza, M.S.; Ashour, M.L.; Elkhatieb, M.; El Raey, M.A.; Abdel-Naim, A.B.; Wink, M. A polyphenol-rich fraction from eugenia uniflora exhibits antioxidant and hepatoprotective activities in vivo. Pharmaceuticals 2020, 13, 84. [Google Scholar] [CrossRef] [PubMed]
- Meira, E.F.; Oliveira, N.D.; Mariani, N.P.; Porto, M.L.; Severi, J.A.; Siman, F.D.; Meyrelles, S.S.; Vasquez, E.C.; Gava, A.L. Eugenia uniflora (pitanga) leaf extract prevents the progression of experimental acute kidney injury. J. Funct. Foods 2020, 66, 103818. [Google Scholar] [CrossRef]
- Feitosa, I.S.; Albuquerque, U.P.; Monteiro, J.M. Knowledge and extractivism of Stryphnodendron rotundifolium Mart. in a local community of the Brazilian Savanna, Northeastern Brazil. J. Ethnobiol. Ethnomedicine 2014, 10, 64. [Google Scholar] [CrossRef] [Green Version]
- Donders, G.G.; Sobel, J.D. Candida vulvovaginitis: A store with a buttery and a show window. Mycoses 2017, 60, 70–72. [Google Scholar] [CrossRef]
- Bürger, M.E.; Ahlert, N.; Baldisserotto, B.; Langeloh, A.; Schirmer, B.; Foletto, R. Analysis of the abortive and/or infertilizing activity of Stryphnodendron adstringens (Mart. Coville). Braz. J. Vet. Res. Anim. Sci. 1999, 36, 296–299. [Google Scholar] [CrossRef]
- Araújo, V.O.; Andreotti, C.E.L.; Reis, M.P.; de Lima, D.A.; Pauli, K.B.; Nunes, B.C.; Gomes, C.; Germano, R.M.; Cardozo Junior, E.L.; Gasparotto Junior, A.; et al. 90-Day Oral Toxicity Assessment of Tropaeolum majus L. in Rodents and Lagomorphs. J. Med. Food 2018, 21, 823–831. [Google Scholar] [CrossRef]
Parameter | Naive | Placebo | 5% | 10% | 15% |
---|---|---|---|---|---|
Body weight (g) | 218 ± 6.3 | 221 ± 7.2 | 219 ± 6.9 | 220 ± 7.7 | 222 ± 7.1 |
Estrous cycle (days) | 4.7 ± 0.3 | 4.6 ± 0.2 | 4.6 ± 0.3 | 4.8 ± 0.3 | 4.7 ± 0.2 |
Liver (%) | 3.79 ± 0.11 | 3.52 ± 0.10 | 3.70 ± 0.05 | 3.51 ± 0.12 | 3.32 ± 0.20 |
Spleen (%) | 0.25 ± 0.01 | 0.24 ± 0.01 | 0.25 ± 0.01 | 0.24 ± 0.01 | 0.24 ± 0.01 |
Kidneys (%) | 0.42 ± 0.01 | 0.41 ± 0.01 | 0.40 ± 0.01 | 0.39 ± 0.01 | 0.41 ± 0.02 |
Reproductive organs (%) | 0.22 ± 0.02 | 0.22 ± 0.02 | 0.19 ± 0.01 | 0.23 ± 0.01 | 0.24 ± 0.03 |
Parameter | Naive | Placebo | 5% | 10% | 15% |
---|---|---|---|---|---|
Body weight (g) | 220 ± 5.2 | 219 ± 6.1 | 221 ± 7.0 | 219 ± 6.4 | 219 ± 6.6 |
Estrous cycle (days) | 4.6 ± 0.3 | 4.7 ± 0.3 | 4.6 ± 0.2 | 4.7 ± 0.3 | 4.8 ± 0.2 |
Liver (%) | 3.79 ± 0.11 | 3.52 ± 0.10 | 3.61 ± 0.14 | 3.44 ± 0.07 | 3.87 ± 0.12 |
Spleen (%) | 0.25 ± 0.01 | 0.24 ± 0.01 | 0.23 ± 0.01 | 0.25 ± 0.01 | 0.24 ± 0.01 |
Kidneys (%) | 0.42 ± 0.01 | 0.41 ± 0.01 | 0.40 ± 0.01 | 0.42 ± 0.02 | 0.39 ± 0.01 |
Reproductive organs (%) | 0.22 ± 0.02 | 0.22 ± 0.02 | 0.21 ± 0.01 | 0.22 ± 0.02 | 0.20 ± 0.01 |
Parameter | Naive | Placebo | 5% | 10% | 15% |
---|---|---|---|---|---|
Red blood cells (mm3) | 3.7 ± 0.9 | 5.3 ± 0.2 | 3.7 ± 0.9 | 5.1 ± 0.1 | 4.0 ±1.0 |
Hemoglobin (g/dL) | 7.9 ± 2.0 | 11.6 ± 0.1 | 8.3 ± 2.1 | 11.7 ± 0.3 | 8.5 ± 2.2 |
Hematocrit (%) | 21.6 ± 5.5 | 30.1 ± 5.1 | 22.1 ± 5.8 | 29.6 ± 4.6 | 22.4 ± 5.5 |
MCV (µm3) | 41.5 ± 10.4 | 56.4 ± 8.8 | 41.5 ± 10.7 | 57.5 ± 9.5 | 40.1 ± 10.0 |
HCM (pg) | 15.1 ± 3.4 | 21.9 ± 0.5 | 15.8 ± 4.0 | 22.8 ± 4.6 | 15.4 ± 4.2 |
CHCM (g/dL) | 26.1 ± 6.1 | 34.8 ± 7.8 | 27.0 ± 6.9 | 39.7 ± 8.0 | 27.5 ± 7.4 |
Platelets (mm3) | 241.5 ± 65.2 | 277.0 ± 56.4 | 255.6 ± 69.5 | 294.3 ± 49.5 | 239.3 ± 64.0 |
Monocytes (mm3) | 142.1 ± 40.0 | 105.1 ± 42.0 | 120.3 ± 76.4 | 154.4 ±39.9 | 128.1 ± 61.0 |
Segmented (mm3) | 1448.2 ± 465.0 | 1214.2 ± 446.0 | 1102.90 ± 278.5 | 1397.1 ± 352.8 | 1121.2 ± 297.3 |
Lymphocytes (mm3) | 1904.1 ± 605.0 | 2390.3 ± 661.3 | 2278.2 ± 854.1 | 1606.2 ± 631.0 | 1697.3± 752.2 |
Eosinophils (mm3) | 3.2 ± 2.2 | 3.7 ± 2.6 | 3.14 ± 2.1 | 0 | 0 |
Parameter | Naive | Placebo | 5% | 10% | 15% |
---|---|---|---|---|---|
Red blood cells (mm3) | 3.7 ± 0.9 | 5.3 ± 0.5 | 5.2 ± 0.1 | 4.5 ± 0.7 | 5.0 ± 0.8 |
Hemoglobin (g/dL) | 11.2 ± 2.0 | 11.6 ± 1.3 | 12.1 ± 2.3 | 10.3 ± 1.7 | 11.0 ± 1.8 |
Hematocrit (%) | 27.9 ± 5.5 | 30.1 ± 1.3 | 30.1 ± 2.7 | 25.6 ± 2.3 | 26.6 ± 4.4 |
MCV (µm3) | 41.7 ± 7.4 | 46.4 ± 8.8 | 57.0 ± 9.9 | 48.1 ± 8.1 | 45.4 ± 7.5 |
HCM (pg) | 17.9 ± 3.4 | 21.9 ± 3.5 | 23.0 ± 2.6 | 19.4 ± 3.3 | 18.7 ± 3.1 |
CHCM (g/dL) | 36.6 ± 6.8 | 38.8 ± 6.8 | 40.4 ± 5.9 | 34.7 ± 6.0 | 35.5 ± 5.9 |
Platelets (mm3) | 281.0 ± 65.8 | 317.0 ± 46.4 | 293.6 ± 45.3 | 291.4 ± 56.8 | 300.0 ± 57.9 |
Monocytes (mm3) | 142.1 ± 20.3 | 151.2 ± 28.0 | 145.1 ± 32.8 | 139.2 ± 29.1 | 135.2 ± 36.1 |
Segmented (mm3) | 1448.1 ± 365.5 | 1214.1 ± 346.0 | 1268.2 ± 310.7 | 1290.4 ± 342.7 | 1263.6 ± 200.8 |
Lymphocytes (mm3) | 3904.2 ± 605.1 | 4190.1 ± 661.3 | 3913.1 ± 599.7 | 3942.1 ± 570.3 | 4128.1 ± 622.9 |
Eosinophils (mm3) | 2.2 ± 1.2 | 3.1 ± 2.6 | 0 | 2.4 ± 1.4 | 0 |
Parameter | Naive | Placebo | 5% | 10% | 15% |
---|---|---|---|---|---|
Total protein (g/dL) | 6.14 ± 0.51 | 6.33 ± 1.11 | 6.32 ± 0.55 | 6.34 ± 0.62 | 6.31 ± 0.55 |
Albumin (g/dL) | 4.11 ± 0.32 | 3.99 ± 0.66 | 3.87 ± 0.78 | 4.01 ± 0.40 | 4.04 ± 0.69 |
Globulin (g/dL) | 2.33 ± 0.23 | 2.23 ± 0.33 | 2.40 ± 0.29 | 2.42 ± 0.39 | 2.28 ± 0.39 |
AST (U/L) | 126.73 ± 41.23 | 121.66 ± 55.42 | 130.22 ± 41.23 | 120.12 ± 41.74 | 131.33 ± 41.23 |
ALT (U/L) | 55.57 ± 11.20 | 61.12 ± 8.30 | 51.5 ± 9.98 | 49.15 ± 10.53 | 59.17 ± 11.30 |
GGT (U/L) | 1.52 ± 0.54 | 1.47 ± 0.58 | 1.55 ± 0.69 | 1.67 ± 0.66 | 1.62 ± 0.64 |
AP (U/L) | 104.15 ± 55.22 | 112.34 ± 47.49 | 114.6 ± 42.27 | 111.13 ± 54.45 | 115.15 ± 75.12 |
TB (mg/dL) | 0.047 ± 0.017 | 0.046 ± 0.017 | 0.049 ± 0.016 | 0.050 ± 0.020 | 0.049 ± 0.019 |
TG (mg/dL) | 77.12 ± 7.01 | 71.22 ± 8.12 | 69.22 ± 9.03 | 73.11 ± 8.76 | 69.72 ± 9.11 |
TC (mg/dL) | 60.17 ± 11.02 | 61.57 ± 10.04 | 59.11 ± 9.02 | 60.25 ± 8.12 | 68.17 ± 10.02 |
HDL-C (mg/dL) | 28.22 ± 6.14 | 30.29 ± 7.11 | 32.37 ± 9.11 | 30.71 ± 9.21 | 29.11 ± 8.84 |
VLDL-C (mg/dL) | 13.12 ± 3.12 | 12.11 ± 3.01 | 11.44 ± 4.01 | 11.04 ± 3.42 | 10.82 ± 3.99 |
LDL-C (mg/dL) | 21.11 ± 3.23 | 25.33 ± 4.11 | 26.13 ± 5.03 | 24.21 ± 3.99 | 22.22 ± 2.83 |
Creatinine (mg/dL) | 0.33 ± 0.08 | 0.35 ± 0.09 | 0.39 ± 0.06 | 0.39 ± 0.07 | 0.34 ± 0.08 |
Urea (mg/dL) | 50.01 ± 8.31 | 48.12 ± 6.99 | 50.99 ± 7.78 | 53.07 ± 9.11 | 52.06 ± 10.40 |
Progesterone (pg/mL) | 28.06 ± 7.34 | 30.11 ± 6.16 | 26.99 ± 8.79 | 33.31 ± 9.32 | 29.11 ± 7.65 |
Estradiol (pg/mL) | 47.22 ± 11.23 | 54.55 ± 12.21 | 55.33 ± 10.09 | 50.12 ± 10.21 | 45.22 ± 11.33 |
Free T3 (ng/mL) | 0.52 ± 0.11 | 0.55 ± 0.10 | 0.53 ± 0.09 | 0.48 ± 0.09 | 0.51 ± 0.11 |
TSH (ng/mL) | 4.71 ± 0.70 | 5.02 ± 0.72 | 4.99 ± 0.55 | 5.11 ± 0.99 | 4.95 ± 0.79 |
Parameter | Naive | Placebo | 5% | 10% | 15% |
---|---|---|---|---|---|
Total protein (g/dL) | 6.14 ± 0.51 | 6.33 ± 1.11 | 6.33 ± 0.99 | 6.51 ± 0.97 | 6.61 ± 0.66 |
Albumin (g/dL) | 4.11 ± 0.32 | 3.99 ± 0.66 | 3.92 ± 0.55 | 3.87 ± 0.77 | 4.02 ± 0.44 |
Globulin (g/dL) | 2.33 ± 0.23 | 2.23 ± 0.33 | 2.45 ± 0.40 | 2.37 ± 0.33 | 2.24 ± 0.41 |
AST (U/L) | 126.73 ± 41.23 | 121.66 ± 55.42 | 126.16 ± 56.56 | 120.42 ± 56.65 | 141.23 ± 42.31 |
ALT (U/L) | 55.57 ± 11.20 | 61.12 ± 8.30 | 53.5 ± 9.98 | 52.65 ± 10.56 | 55.77 ± 11.20 |
GGT (U/L) | 1.52 ± 0.54 | 1.47 ± 0.58 | 1.55 ± 0.59 | 1.57 ± 0.61 | 1.61 ± 0.54 |
AP (U/L) | 104.15 ± 55.22 | 112.34 ± 47.49 | 114.10 ± 44.17 | 110.42 ± 51.15 | 109.15 ± 49.29 |
TB (mg/dL) | 0.047 ± 0.017 | 0.046 ± 0.017 | 0.048 ± 0.019 | 0.049 ± 0.020 | 0.047 ± 0.017 |
TG (mg/dL) | 77.12 ± 7.01 | 71.22 ± 8.12 | 70.77 ± 8.21 | 68.99 ± 9.99 | 68.19 ± 8.89 |
TC (mg/dL) | 60.17 ± 11.02 | 61.57 ± 10.04 | 67 ± 8.02 | 66.15 ± 8.19 | 69.17 ± 10.22 |
HDL-C (mg/dL) | 28.22 ± 6.14 | 30.29 ± 7.11 | 35.66 ± 9.99 | 32.77 ± 7.54 | 27.55 ± 5.55 |
VLDL-C (mg/dL) | 13.12 ± 3.12 | 12.11 ± 3.01 | 12.14 ± 2.99 | 13.09 ± 3.99 | 14.82 ± 4.22 |
LDL-C (mg/dL) | 21.11 ± 3.23 | 25.33 ± 4.11 | 24.13 ± 5.02 | 23.11 ± 4.99 | 20.92 ± 4.12 |
Creatinine (mg/dL) | 0.33 ± 0.08 | 0.35 ± 0.09 | 0.39 ± 0.07 | 0.37 ± 0.08 | 0.36 ± 0.09 |
Urea (mg/dL) | 50.01 ± 8.31 | 48.12 ± 6.99 | 49.22 ± 8.43 | 50.07 ± 9.31 | 52.66 ± 9.66 |
Progesterone (pg/mL) | 28.06 ± 7.34 | 30.11 ± 6.16 | 30.22 ± 8.11 | 33.07 ± 9.31 | 28.21 ± 8.31 |
Estradiol (pg/mL) | 47.22 ± 11.23 | 54.55 ± 12.21 | 52.01 ± 10.99 | 48.98 ± 8.99 | 45.22 ± 11.21 |
Free T3 (ng/mL) | 0.52 ± 0.11 | 0.55 ± 0.10 | 0.52 ± 0.10 | 0.52 ± 0.10 | 0.53 ± 0.11 |
TSH (ng/mL) | 4.71 ± 0.70 | 5.02 ± 0.72 | 4.93 ± 0.77 | 5.01 ± 0.89 | 4.98 ± 0.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donadel, G.; Dalmagro, M.; de Oliveira, J.A.B.; Zardeto, G.; Pinc, M.M.; Hoscheid, J.; Alberton, O.; Belettini, S.T.; Jacomassi, E.; Gasparotto Junior, A.; et al. Safety Investigations of Two Formulations for Vaginal Use Obtained from Eugenia uniflora L. Leaves in Female Rats. Pharmaceuticals 2022, 15, 1567. https://doi.org/10.3390/ph15121567
Donadel G, Dalmagro M, de Oliveira JAB, Zardeto G, Pinc MM, Hoscheid J, Alberton O, Belettini ST, Jacomassi E, Gasparotto Junior A, et al. Safety Investigations of Two Formulations for Vaginal Use Obtained from Eugenia uniflora L. Leaves in Female Rats. Pharmaceuticals. 2022; 15(12):1567. https://doi.org/10.3390/ph15121567
Chicago/Turabian StyleDonadel, Guilherme, Mariana Dalmagro, João Antonio Berta de Oliveira, Giuliana Zardeto, Mariana Moraes Pinc, Jaqueline Hoscheid, Odair Alberton, Salviano Tramontin Belettini, Ezilda Jacomassi, Arquimedes Gasparotto Junior, and et al. 2022. "Safety Investigations of Two Formulations for Vaginal Use Obtained from Eugenia uniflora L. Leaves in Female Rats" Pharmaceuticals 15, no. 12: 1567. https://doi.org/10.3390/ph15121567
APA StyleDonadel, G., Dalmagro, M., de Oliveira, J. A. B., Zardeto, G., Pinc, M. M., Hoscheid, J., Alberton, O., Belettini, S. T., Jacomassi, E., Gasparotto Junior, A., & Lourenço, E. L. B. (2022). Safety Investigations of Two Formulations for Vaginal Use Obtained from Eugenia uniflora L. Leaves in Female Rats. Pharmaceuticals, 15(12), 1567. https://doi.org/10.3390/ph15121567